24 research outputs found

    SARS-CoV-2 seroprevalence and risk factors among meat packing, produce processing, and farm workers

    Get PDF
    Meat packing, produce processing, and farm workers are known to have an elevated risk of COVID-19, but occupational risk factors in this population are unclear. We performed an observational cohort study of meat packing, produce processing, and farm workers in North Carolina in fall 2020. Blood, saliva, and nasal turbinate samples were collected to assess for SARS-CoV-2 seropositivity. Risk factors for SARS-CoV-2 seropositivity were investigated using chi-square tests, two-sample t-tests, and adjusted risk ratio analyses. Among 118 enrolled workers, the baseline SARS-CoV-2 seroprevalence was 50.0%. Meat packing plant workers had the highest SARS-CoV-2 seroprevalence (64.6%), followed by farm workers (45.0%) and produce processing workers (10.0%), despite similar sociodemographic characteristics. Compared to SARS-CoV-2 seronegative workers, seropositive workers were more likely to work in loud environments that necessitated yelling to communicate (RR: 1.83, 95% CI: 1.25–2.69), work in cold environments (RR: 1.58, 95% CI: 1.12–2.24), or continue working despite developing symptoms at work (RR: 1.63, 95% CI: 1.14–2.32). After adjusting for age and working despite symptoms, high occupational noise levels were associated with a 1.72 times higher risk of SARS-CoV-2 seropositivity (95% CI: 1.16–2.55). Half of food processing workers showed evidence of past SARS-CoV-2 infection, a prevalence five times higher than most of the United States population at the time of the study. Work environments with loud ambient noise may pose elevated risks for SARS-CoV-2 transmission. Our findings also highlight the disproportionate burden of COVID-19 among underserved and economically disadvantaged Latinx communities in the United States

    Seroepidemiology and risk factors for SARS-CoV-2 infection among household members of food processing and farm workers in North Carolina

    Get PDF
    Background Racial and ethnic minorities have borne a disproportionate burden from COVID-19. Certain essential occupations, including food processing and farm work, employ large numbers of Hispanic migrant workers and have been shown to carry an especially high risk of infection. Methods We conducted an observational cohort study measuring the seroprevalence of SARS-CoV-2 and assessing risk factors for seropositivity among North Carolina food processing and farm workers and members of their households. Participants completed questionnaires and we collected blood samples and used an enzyme-linked immunosorbent assay to assess SARS-CoV-2 seropositivity. Univariate and multivariate analyses were carried out to identify risk factors associated with seropositivity, using generalized estimating equations to account for household clustering. Findings Among the 218 participants, 94.5% were Hispanic, and SARS-CoV-2 seropositivity was 50.0%. Most seropositive individuals did not report a history of illness compatible with COVID-19. Attending church, having a prior history of COVID-19, having a seropositive household member, and speaking Spanish as one's primary language were associated with SARS-CoV-2 seropositivity, while preventive behaviors were not. Interpretation These findings underscore the substantial burden of COVID-19 among a population of mostly Hispanic essential workers and their households in rural North Carolina. Our study contributes to a large body of evidence showing that Hispanic Americans have suffered a disproportionate COVID-19 burden. We also highlight the epidemiologic importance of viral transmission within the household

    Outcomes of Convalescent Plasma with Defined High versus Lower Neutralizing Antibody Titers against SARS-CoV-2 among Hospitalized Patients: CoronaVirus Inactivating Plasma (CoVIP) Study

    Get PDF
    COVID-19 convalescent plasma (CCP) was an early and widely adopted putative therapy for severe COVID-19. Results from randomized control trials and observational studies have failed to demonstrate a clear therapeutic role for CCP for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Underlying these inconclusive findings is a broad heterogeneity in the concentrations of neutralizing antibodies (nAbs) between different CCP donors. We conducted this study to evaluate the effectiveness and safety of nAb titer-defined CCP in adults admitted to an academic referral hospital. Patients positive by a SARS-CoV-2 nucleic acid amplification test and with symptoms for 1:640 (high-titer group) or ≥1:160 to 1:640 (standard-titer group) in addition to standard of care treatments. The primary clinical outcome was time to hospital discharge, with mortality and respiratory support evaluated as secondary outcomes. Adverse events were contrasted by CCP titer. Between 28 August and 4 December 2020, 316 participants were screened, and 55 received CCP, with 14 and 41 receiving high- versus standard-titer CCP, respectively. Time to hospital discharge was shorter among participants receiving high- versus standard-titer CCP, accounting for death as a competing event (hazard ratio, 1.94; 95% confidence interval [CI], 1.05 to 3.58; Gray’s P = 0.02). Severe adverse events (SAEs) (≥grade 3) occurred in 4 (29%) and 23 (56%) of participants receiving the high versus standard titer, respectively, by day 28 (risk ratio, 0.51; 95% CI, 0.21 to 1.22; Fisher’s P = 0.12). There were no observed treatment-related AEs. (This study has been registered at ClinicalTrials.gov under registration no. NCT04524507)

    Sex Disparities and Neutralizing-Antibody Durability to SARS-CoV-2 Infection in Convalescent Individuals

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has now caused over 2 million deaths worldwide and continues to expand. Currently, much is unknown about functionally neutralizing human antibody responses and durability to SARS-CoV-2 months after infection or the reason for the discrepancy in COVID-19 disease and sex. Using convalescent-phase sera collected from 101 COVID-19-recovered individuals 21 to 212 days after symptom onset with 48 additional longitudinal samples, we measured functionality and durability of serum antibodies. We also evaluated associations of individual demographic and clinical parameters with functional neutralizing antibody responses to COVID-19. We found robust antibody durability out to 6 months, as well as significant positive associations with the magnitude of the neutralizing antibody response and male sex and in individuals with cardiometabolic comorbidities. IMPORTANCE In this study, we found that neutralizing antibody responses in COVID-19-convalescent individuals vary in magnitude but are durable and correlate well with receptor binding domain (RBD) Ig binding antibody levels compared to other SARS-CoV-2 antigen responses. In our cohort, higher neutralizing antibody titers are independently and significantly associated with male sex compared to female sex. We also show for the first time that higher convalescent antibody titers in male donors are associated with increased age and symptom grade. Furthermore, cardiometabolic comorbidities are associated with higher antibody titers independently of sex. Here, we present an indepth evaluation of serologic, demographic, and clinical correlates of functional antibody responses and durability to SARS-CoV-2 which supports the growing literature on sex discrepancies regarding COVID-19 disease morbidity and mortality, as well as functional neutralizing antibody responses to SARS-CoV-2

    The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that first emerged in late 2019 is responsible for a pandemic of severe respiratory illness. People infected with this highly contagious virus can present with clinically inapparent, mild, or severe disease. Currently, the virus infection in individuals and at the population level is being monitored by PCR testing of symptomatic patients for the presence of viral RNA. There is an urgent need for SARS-CoV-2 serologic tests to identify all infected individuals, irrespective of clinical symptoms, to conduct surveillance and implement strategies to contain spread. As the receptor binding domain (RBD) of the spike protein is poorly conserved between SARS-CoVs and other pathogenic human coronaviruses, the RBD represents a promising antigen for detecting CoV-specific antibodies in people. Here we use a large panel of human sera (63 SARS-CoV-2 patients and 71 control subjects) and hyperimmune sera from animals exposed to zoonotic CoVs to evaluate RBD's performance as an antigen for reliable detection of SARS-CoV-2-specific antibodies. By day 9 after the onset of symptoms, the recombinant SARS-CoV-2 RBD antigen was highly sensitive (98%) and specific (100%) for antibodies induced by SARS-CoVs. We observed a strong correlation between levels of RBD binding antibodies and SARS-CoV-2 neutralizing antibodies in patients. Our results, which reveal the early kinetics of SARS-CoV-2 antibody responses, support using the RBD antigen in serological diagnostic assays and RBD-specific antibody levels as a correlate of SARS-CoV-2 neutralizing antibodies in people

    SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo

    Get PDF
    The spike D614G substitution is prevalent in global SARS-CoV-2 strains, but its effects on viral pathogenesis and transmissibility remain unclear. We engineered a SARS-CoV-2 variant containing this substitution. The variant exhibits more efficient infection, replication, and competitive fitness in primary human airway epithelial cells, but maintains similar morphology and in vitro neutralization properties, compared with the ancestral wild-type virus. Infection of human angiotensin-converting enzyme 2 (ACE2) transgenic mice and Syrian hamsters with both viruses resulted in similar viral titers in respiratory tissues and pulmonary disease. However, the D614G variant transmits significantly faster and displayed increased competitive fitness than the wild-type virus in hamsters. These data show that the D614G substitution enhances SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human cells and animal models

    SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract

    Get PDF
    The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expres-sion in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-in-fected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings high-light the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host in-teractions in protective immunity, host susceptibility, and virus pathogenesis

    Evaluation of a COVID-19 convalescent plasma program at a U.S. academic medical center

    No full text
    Amidst the therapeutic void at the onset of the COVID-19 pandemic, a critical mass of scientific and clinical interest coalesced around COVID-19 convalescent plasma (CCP). To date, the CCP literature has focused largely on safety and efficacy outcomes, but little on implementation outcomes or experience. Expert opinion suggests that if CCP has a role in COVID-19 treatment, it is early in the disease course, and it must deliver a sufficiently high titer of neutralizing antibodies (nAb). Missing in the literature are comprehensive evaluations of how local CCP programs were implemented as part of pandemic preparedness and response, including considerations of the core components and personnel required to meet demand with adequately qualified CCP in a timely and sustained manner. To address this gap, we conducted an evaluation of a local CCP program at a large U.S. academic medical center, the University of North Carolina Medical Center (UNCMC), and patterned our evaluation around the dimensions of the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework to systematically describe key implementation-relevant metrics. We aligned our evaluation with program goals of reaching the target population with severe or critical COVID-19, integrating into the structure of the hospital-wide pandemic response, adapting to shifting landscapes, and sustaining the program over time during a compassionate use expanded access program (EAP) era and a randomized controlled trial (RCT) era. During the EAP era, the UNCMC CCP program was associated with faster CCP infusion after admission compared with contemporaneous affiliate hospitals without a local program: median 29.6 hours (interquartile range, IQR: 21.2–48.1) for the UNCMC CCP program versus 47.6 hours (IQR 32.6–71.6) for affiliate hospitals; (P<0.0001). Sixty-eight of 87 CCP recipients in the EAP (78.2%) received CCP containing the FDA recommended minimum nAb titer of ≥1:160. CCP delivery to hospitalized patients operated with equal efficiency regardless of receiving treatment via a RCT or a compassionate-use mechanism. It was found that in a highly resourced academic medical center, rapid implementation of a local CCP collection, treatment, and clinical trial program could be achieved through re-deployment of highly trained laboratory and clinical personnel. These data provide important pragmatic considerations critical for health systems considering the use of CCP as part of an integrated pandemic response
    corecore