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ABSTRACT The coronavirus disease 2019 (COVID-19) pandemic, caused by severe
acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has now caused over 2
million deaths worldwide and continues to expand. Currently, much is unknown about
functionally neutralizing human antibody responses and durability to SARS-CoV-
2months after infection or the reason for the discrepancy in COVID-19 disease and
sex. Using convalescent-phase sera collected from 101 COVID-19-recovered individuals
21 to 212days after symptom onset with 48 additional longitudinal samples, we meas-
ured functionality and durability of serum antibodies. We also evaluated associations
of individual demographic and clinical parameters with functional neutralizing anti-
body responses to COVID-19. We found robust antibody durability out to 6 months,
as well as significant positive associations with the magnitude of the neutralizing anti-
body response and male sex and in individuals with cardiometabolic comorbidities.

IMPORTANCE In this study, we found that neutralizing antibody responses in COVID-19-
convalescent individuals vary in magnitude but are durable and correlate well with re-
ceptor binding domain (RBD) Ig binding antibody levels compared to other SARS-CoV-2
antigen responses. In our cohort, higher neutralizing antibody titers are independently
and significantly associated with male sex compared to female sex. We also show for
the first time that higher convalescent antibody titers in male donors are associated
with increased age and symptom grade. Furthermore, cardiometabolic comorbidities are
associated with higher antibody titers independently of sex. Here, we present an in-
depth evaluation of serologic, demographic, and clinical correlates of functional anti-
body responses and durability to SARS-CoV-2 which supports the growing literature on
sex discrepancies regarding COVID-19 disease morbidity and mortality, as well as func-
tional neutralizing antibody responses to SARS-CoV-2.

KEYWORDS antibodies, SARS-CoV-2, immunology, neutralizing antibodies,
neutralizing

Over 12 months have passed since the emergence and eventual global spread of
the novel coronavirus, SARS-CoV-2, the agent of the COVID-19 pandemic. As

SARS-CoV-2 continues to spread and mutate across naive and previously exposed pop-
ulations, increased understanding of the breadth and durability of individual humoral
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responses to natural infection is needed to assess the reinfection risk of individuals
and also to guide the deployment of and to inform recently authorized vaccines and
antibody-based therapies. Recent work has shown that SARS-CoV-2 can stimulate the
production of highly neutralizing antibodies directed against the spike protein (S)
which is necessary for viral attachment, fusion, and entry into host cells (1, 2). We and
others have shown that antibodies directed against the angiotensin-converting
enzyme 2 (ACE2) receptor binding domain (RBD) of the S protein consistently demon-
strate a strong correlation with functional neutralization (3–5) and are protective in
nonhuman primate and rodent models (6–9). Furthermore, low conservation between
the RBD of SARS-CoV-2 and other non-SARS human betacoronaviruses makes RBD an
appealing target for highly specific COVID-19 responses.

Serum antibody responses to endemic betacoronaviruses initially wane weeks to
months after infection but remain detectable up to at least 1 year (10, 11). After SARS-
CoV-1 and Middle East respiratory syndrome (MERS) CoV infections, IgG levels peak at
4 months and then slowly wane but remain detectable for at least 2 years and up to
17 years (11, 12). Although antibody seroconversion to primary SARS-CoV-2 infection is
nearly universal within the first 2 weeks after symptom onset (4, 13–15), the magnitude
of this response varies with symptom severity (4, 16, 17). Longevity of serum antibodies
to SARS-CoV-2 S protein after vaccination as well as natural infection has been studied
out to 3 months, during which time IgG, IgM, and IgA levels to most SARS-CoV-2 anti-
gens peak and begin to decline (16, 18–20), as plasmablast and short-lived plasma cell
responses wane. More recent data suggest that S protein IgG levels begin to reach a
steady level with much lower rates of decline after 90 days postinfection, which lasts
out to at least 8 months (5, 21, 22). Thus, studies show that SARS-CoV-2 virus-neutraliz-
ing antibodies in recovered individuals are so far durable, but the protective titer of
these antibodies is unknown.

The clinical and demographic determinants of the breadth and durability of function-
ally neutralizing antibodies have not been studied in depth out to 6 months after SARS-
CoV-2 infection. A recent study found higher ratios of RBD antibodies to nucleocapsid (N)
antibodies in outpatient compared to inpatient populations (4), and some studies have
suggested that there is a faster decline in S antibody levels in asymptomatic than in
symptomatic individuals (4, 17). In this study, we add to growing evidence of sex dispar-
ities in neutralizing antibody responses previously seen up to 114days post-symptom
onset in predominantly urban areas (23–28). Our data support these findings out to 6
months postinfection in a previously uncharacterized cohort in a semiurban and rural
population in North Carolina. Identifying these differences is critical to understanding
long-term protection from natural infection as well as vaccine-induced immunity. In this
study, we use both novel and established assays to characterize the binding and longev-
ity of serum antibodies to SARS-CoV-2 RBD, spike protein N-terminal domain (NTD), and
N antigens and to measure the level and durability of SARS-CoV-2-neutralizing antibod-
ies. We further define demographic and clinical correlates of the magnitude and durabil-
ity of both binding and functional antibody responses to SARS-CoV-2.

RESULTS
Donor characteristics. Between 11 April and 22 July 2020, a total of 101 eligible

COVID-19 convalescent plasma (CP) donors were enrolled in this study. The majority
of donors donated once; however, 31 donors provided sequential donations amounting
in an additional 48 serum samples. Donors were over 18 years of age, 51% male and
49% female (based on sex assigned at birth). The median age was 43years (interquartile
range 29, full range 18 to 79), which is similar to other CP donor cohorts (22, 23), and the
majority identified as non-Hispanic, white/Caucasian. When stratifying by sex, no statisti-
cally significant differences were observed in median age (males, 44 years old [y/o];
females, 41 y/o), median time from symptom onset or diagnosis (males, 57 days; females,
58.5 days), and median symptom grade (males, 2; females, 2) between males and females.
Donors were diagnosed with SARS-CoV-2 by either SARS-CoV-2 reverse transcriptase PCR
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(RT-PCR) (n=79) or blood antibody testing by Emergency Use Authorization (EUA)-
approved commercial assays (n=22) (Table 1; see also Table S1 in the supplemental ma-
terial). Donors diagnosed by antibody test either had RT-PCR-confirmed household con-
tacts or COVID-19 symptoms without RT-PCR testing or were unable to provide a copy of
their RT-PCR result. The median time from symptom onset or RT-PCR diagnosis to first
donation was 57days (full range, 21 to 121). Thirty-four donors reported comorbid condi-
tions, the most common being hay fever and high blood pressure (Table S2). Eight donors
were asymptomatic, and 93 reported symptoms. The median time of symptom duration
for symptomatic donors without ongoing symptoms (72/90) was 16days (full range, 2 to
107). Fifty-seven donors had mild-to-moderate disease (grade 1 to 2; outpatient), 14
donors had severe disease (grade 3 to 4; hospitalized), and 22 donors had unknown dis-
ease severity (Table 1). The most common symptoms reported were fatigue (89%), head-
ache (77%), fever (74%), and muscle aches (73%) (Table S2). The majority of donors
resided in central North Carolina, with the highest proportion from Orange and Wake
counties (Fig. S1).

Neutralization and binding antibody assays. To investigate in-depth functional
antibody responses to SARS-CoV-2 infection at convalescence, we employed two virus
neutralization assays, one using an authentic live SARS-CoV-2 with a luciferase reporter
(29) and another using a pseudovirus (PSV) neutralization assay (see Materials and
Methods). We also measured total Ig binding to the spike protein RBD and NTD, as
well as IgG binding to N protein antigen. We found that 98% (99/101) of donors gener-
ated antibodies to at least one SARS-CoV-2 antigen or virus (Fig. 1a and b), 92% (93/
101) had at least two positive antibody assays, and 65% (65/101) had functional and
binding antibodies to all viruses and antigens. Only two donors had negative results in
every assay; both were asymptomatic and both were diagnosed by an antibody test.
We found that the most sensitive assays to detect antibodies in recovered donors were
the RBD total Ig assay (96% of donors positive), followed by PSV neutralization and N
IgG assays (both 93% of donors positive).

All donors with undetectable RBD antibody titers also had undetectable neutraliz-
ing antibody assays, and the RBD total Ig and IgG binding assay showed the strongest
correlation with the two neutralization assays (Fig. 1c to f and Fig. S2). Among the
other binding assays, the N assay had the weakest correlations with both neutralization
assays compared to the spike antigen-based NTD assay. We then looked at quantitative
measures of functionally neutralizing as well as RBD-binding antibody levels by end-
point titer. The majority of donors (80%) had detectable live reporter virus-neutralizing
antibody titers, and.50% of these exceeded 1:160 (the FDA-recommended threshold
for therapeutic applications of convalescent-phase plasma) (Fig. S2). The majority of
RBD total Ig and IgG endpoint titers were found to be within the range of 1:160 to
1:640, and overall the total Ig and IgG titers were very similar. Since isotype-specific
IgA and, to a lesser extent, IgM antibodies may influence the early neutralizing anti-
body response (30), we also measured RBD IgA and IgM binding titers. Approximately
60% of donors demonstrated detectable IgA or IgM antibodies to RBD, with most in
the lower titer range (1:20 to 1:159) (Fig. S2).

Functional and binding antibody level durability. Overall donor antibody levels,
including additional donations from 31/101 donors who donated more than once
(total samples donated n=149), revealed stable neutralizing, RBD, and NTD-binding
antibodies over 6 months (Fig. 2). Among the specific assays, neutralizing antibodies to
virus and binding antibodies to NTD were the most stable out to 180 days (Fig. 2a and
b). Through 120 days and beyond, there was a slight decrease in PSV-neutralizing anti-
bodies and total Ig binding antibodies to RBD (Fig. 2c and d). RBD total Ig decreases
over time were likely due in part to the decline of IgA and IgM titers that we observed
after day 90 (Fig. 2f and g) but not due to shifts in RBD IgG levels (Fig. 2e). Notably,
compared with antibodies directed against spike protein antigens, there was a stron-
ger decrease in N binding IgG levels over this time period (Fig. 2h). When comparing
the correlation coefficients of the trendlines in Fig. 2a and d to h with a Fisher r-to-z
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TABLE 1 Convalescent-phase plasma donor characteristics at time of donationa

Characteristic No.
Age (yr)
18–39 39
40–64 53
65–79 9
801 0

Sex
M 52
F 49

Parity (n = 48)
Parous 26
Nulliparous 22

Comorbid conditions
None 64
One 18
Two or more 16
Unknown 3

Race (n = 98)
White/Caucasian 75
Black/African American 7
Asian 5
Pacific Islander 1
Other 10

Ethnicity (n = 98)
Hispanic 15
Non-Hispanic 82
Unknown 1

ABO (n = 99)
A1 36
A2 7
B1 7
B2 1
AB1 6
AB2 0
O1 36
O2 6

COVID-19 disease characteristics
RT-PCR diagnosed 79
Antibody diagnosed 22
Diagnostic test unknown 1
Symptomatic 93
Asymptomatic 8
Overall symptom grade (n = 71)
1 (mild) 24
2 (moderate) 33
3 (severe) 11
4 (potentially life-threatening) 3

Supplemental oxygen required (n = 71) 6

Median time Days, range
From symptom onset or RT-PCR diagnosis to donation (n = 95) 57, 21–121
Of symptom duration (n = 70) 16, 2–107

aPlasma donor demographic and COVID-19 disease characteristics. n = 101 unless otherwise specified. RT-PCR,
reverse transcriptase PCR. Symptom grades: grade 1 (mild), mild symptoms causing no or minimal interference with
usual social and functional activities with intervention not indicated; grade 2 (moderate), moderate symptoms
causing greater thanminimal interference with usual social and functional activities with intervention indicated;
grade 3 (severe), severe symptoms causing inability to perform usual social and functional activities with intervention
or hospitalization indicated; oxygen administered via nasal cannula; grade 4 (potentially life-threatening), potentially
life-threatening symptoms causing inability to perform basic self-care functions with intervention indicated to
prevent permanent impairment, persistent disability, or death; hospitalization requiring intubation or use of
supplemental oxygen (continuous positive airway pressure [CPAP] or oxygen administered via mask).
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transformation, we found significant (P, 0.05) differences only between NTD antibody
levels compared to all of the other assays which either stayed constant or decreased.

We then studied in detail the donors who provided sequential donations to exam-
ine temporal kinetics of antibody levels at an individual level. Overall functional

FIG 1 Neutralizing and binding antibody results. (a) Pie chart with overall assay results for all 101 donors, four assays
shown (reporter virus neutralization assay, RBD and NTD total Ig assays, and nucleocapsid IgG assay). (b) Venn diagram
showing overlap among five assays (reporter virus neutralization assay, pseudovirus neutralization assay, RBD and NTD
total Ig assays, and nucleocapsid IgG assay). (c) Heat map of Spearman’s correlation coefficients examining the
association between all assays performed. Red represents positive association between assays, and black represents
negative associations. Nonsignificant correlation coefficients (P. 0.05) are left blank. (d) Reporter virus NT50 dilution
plotted against pseudovirus NT50 dilution, P, 0.0001. (e) Reporter virus NT50 dilution plotted against RBD total Ig
antibody level (endpoint titer), P, 0.0001. (f) Pseudovirus NT50 dilution plotted against RBD total Ig antibody level
(endpoint titer), P, 0.0001. For panels d to f, nonparametric, two-tailed Spearman’s rank correlation was used to
calculate correlation coefficients (r) and P values (p); titers below LOD were all set to 5, all double-negative values
were removed, and blue lines represent linear regression fit with 95% confidence interval (gray shading).
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neutralizing antibody levels to live reporter virus and RBD-binding Ig levels showed no
significant changes between donation times (Fig. S3). To ascertain if initial antibody ti-
ter plays a role in antibody changes over time, we separated sequential donors into
three groups by initial titer: .1:640, 1:160 to 1:640, and 1:20 to 1:159. Median live re-
porter viral neutralization antibody titers (Fig. S3i to k) and RDB Ig antibody titers
(Fig. S3l to n) between the first two donations showed a modest decrease in the high-
est-initial-titer group (.1:640) but not in the lower-titer groups. However, earlier time
points are needed in the lower-titer groups to better compare these levels to the high-
titer group, as we may not see changes in the lower-titer groups due to longer time to
first donation in these groups. This decrease in the RBD total Ig group with initial

FIG 2 Antibody titers over time. (a) Functional antibody (NT50 dilution) plotted against days post-symptom onset or RT-PCR diagnosis; r =
20.041, P= 0.63. (b) NTD total Ig (index) plotted against days-post symptom onset or RT-PCR diagnosis; r= 0.092, P= 0.28. (c) Functional
antibody (PSV NT50 dilution) plotted against days post-symptom onset or RT-PCR diagnosis; r = 20.21, P= 0.014. (d) RBD total Ig (endpoint
titer) plotted against days post-symptom onset or RT-PCR diagnosis; r = 20.18, P= 0.033. (e) RBD IgG (endpoint titer) plotted against days
post-symptom onset or RT-PCR diagnosis; r = 20.035, P= 0.68. (f) RBD IgA (endpoint titer) plotted against days post-symptom onset or RT-
PCR diagnosis; r = 20.41, P, 0.0001. (g) RBD IgM (endpoint titer) plotted against days post-symptom onset or RT-PCR diagnosis; r = 20.39,
P, 0.0001. (h) Nucleocapsid IgG (index) plotted against days post-symptom onset or RT-PCR diagnosis; r= 0.092, P= 0.0029. For panels a to
h, n= 138, nonparametric, two-tailed Spearman’s rank correlation was used to calculate correlation coefficients (r) and P values (p); titers
below LOD were set to 5, all double-negative values were removed, and blue lines represent LOESS regression fit with 95% confidence
interval (gray shading).
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titer.1:640 was likely due to RBD IgA and IgM levels in these donors, which showed a
significant decline between the first two donations (P, 0.05) (data not shown).

Demographic and clinical correlates of functional antibody titers. SARS-CoV-2
binding and functionally neutralizing antibody levels were higher in males than in
females (Fig. 3a and b and Fig. S4), increased with increasing age, and correlated posi-
tively with male age and symptom grade (Fig. 3c and d). This difference between males
and females (Fig. 3a and b) remained after negative data points were removed from
each analysis. Surprisingly, positive correlations with antibody levels and age and
symptom grade (Fig. 3e to k and Fig. S5a to f) were restricted to the male population
(Fig. 3e and f). Sex stratification revealed that in males, age and symptom grade were
significantly positively correlated, as were age and RBD Ig and functionally neutralizing
antibody levels (Fig. 3e and g to k). On the other hand, in females, only RBD IgA levels
were associated with symptom grade (Fig. 3f). Males and females were equally likely to
be hospitalized (P=0.95).

We then examined the possibility that antibody stability over time was influenced
by sex or age. No significant differences were observed in neutralizing or binding anti-
body levels over time (first 90 days) between males and females (Fig. 4a to h). In con-
trast, there were rapid declines in both types of antibodies in the youngest age group
(18 to 43 y/o) over the first 90-day period (Fig. 4i and j) that may have been related to
decreases in serum RBD IgA, but not IgM, which showed a significant decline in this
age group over this time period (Fig. 4k). We then calculated an estimate of the effect
of age, adjusted for time from symptom onset to donation, stratified by sex on the var-
ious functional and binding antibody levels. Among males, we observed that for each
1-year increase in age there was a significant increase in antibody levels in all assays
tested except N IgG and RBD IgM, but among females, age did not seem to affect anti-
body levels after accounting for time from symptom onset (Fig. 4l).

Since we identified that in male donors, increased symptom grade or disease sever-
ity correlated with higher antibody levels, we looked more closely at individual symp-
toms to ascertain if any in particular were associated with each other or with donor se-
rum antibody levels. We found that of the most common symptoms, only loss of sense
of taste and smell were associated, though more strongly in female than male donors
(Fig. S6a and b). Surprisingly, we found a negative effect of reporting tiredness or fa-
tigue in male donors on the level of RBD Ig binding antibodies (Fig. S6b). We also eval-
uated the association between antibody levels and the presence of comorbid condi-
tions and found that donors with cardiometabolic diseases had higher levels of
neutralizing, RBD Ig, N IgG, and NTD Ig antibodies (Fig. S7). This observation was inde-
pendent of sex. Symptom duration (Fig. 3 and Fig. S5h to n), nulliparity, and ABO blood
group were not significantly associated with functional or binding antibody levels.

DISCUSSION

In-depth serological, clinical, and demographic correlates of durable and protec-
tive functional antibodies in individuals who have recovered from COVID-19 have not
been well described. Understanding serological responses to COVID-19 disease and
vaccination will allow us to define which antibody populations may be protective
against reinfection and thus act as immunological correlates of protection. Of 101
convalescent-phase plasma donors who experienced a range of COVID-19 disease,
the vast majority have detectable levels of functionally neutralizing as well as binding
antibodies to SARS-CoV-2 RBD, NTD, and N antigens. Furthermore, though their titers
are heterogeneous, most donors have neutralizing and RBD-targeting antibody titers
of .1:160. Even low levels of functionally neutralizing antibodies to SARS-CoV-2, as
seen here in about a quarter of donors, are protective in nonhuman primate vaccine
models (31, 32). This suggests that low serum levels of a few highly potent antibodies
may be enough to confer protection, and we find that such antibodies are nearly uni-
versally produced upon exposure to the virus in this donor cohort of mostly sympto-
matic cases.

Sex Gap in Antibody Responses to COVID-19
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FIG 3 Clinical correlates of antibody titers. (a) Functional antibody (PSV NT50 dilution) in males (n= 49) and females (n= 46) at first donation. (b)
RBD IgG titers in males and females at first donation. Horizontal bars indicate median values. For panels a and b, statistical significance was
determined using Mann-Whitney U tests. (c and d) Spearman’s correlation between age and PSV NT50 or RBD Ig levels at first donation. (e and f)

(Continued on next page)
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Of three SARS-CoV-2 antigens used for antibody detection in this study, the RBD
was the most sensitive in detecting prior SARS-CoV-2 infection. Furthermore, RBD total
Ig levels showed the strongest correlation with functionally neutralizing antibodies,
suggesting its role as the immunodominant antigenic target of antibodies that neutral-
ize SARS-CoV-2 infection. We found that 95% of sera with an RBD total Ig titer of
$1:160 had positive live reporter virus-neutralizing antibody titers, suggesting that
this may be a cutoff used as a surrogate for functional antibody assays. Furthermore,
the majority of donors with undetectable live reporter virus-neutralizing antibody lev-
els had detectable RBD-binding antibodies, suggesting they may have RBD-targeting
neutralizing antibodies that are below the assay detection limit. This hypothesis can be
tested in future studies using passive transfer mouse protection models. This highlights
the potential role for RBD-based antibody assay development and testing as a surro-
gate for functional antibody assays that could be deployed in the clinical and vaccina-
tion setting in a scalable, high-throughput fashion.

The strongest demographic correlate of neutralizing antibody levels we found was
male sex. Studies have shown that COVID-19 disease is associated with higher morbidity
and mortality rates in men than in women (33). The reason for this finding is unknown
and seems unrelated to CD81 and CD41 T cell frequency (22); however, it may be related
to an uncoordinated response between CD41 T cell responses and serum antibody
responses driven by the presence of underlying comorbidities (34). Another recent find-
ing suggests higher thromboembolism risk in males than in females (35). Sex differences
in other respiratory viral disease outbreaks have been seen, for example, during the 2009
influenza pandemic where female sex correlated with severe disease in a young cohort
in Canada (36). Some viral infections as well as vaccinations such as the influenza vaccina-
tion have been seen to elicit stronger serum antibody and cellular immune responses in
females (37), while others elicit stronger serologic antibody responses in males (38).
Differences in disease severity and humoral responses to vaccines have been hypothe-
sized to be influenced by a combination of sex hormone effects on immune cell signal-
ing, X chromosome immune-related gene expression and microRNA (miRNA) levels, and
genetic polymorphisms (37) in genes encoding important immunologic proteins such as
interleukin-6 (IL-6) (39) and cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4) (40).

Significantly higher SARS-CoV-2 RBD antibodies and functionally neutralizing antibod-
ies in male than in female COVID-19 CP donors with mild to moderate disease in the first
30 to 114days post-symptom onset have been previously reported (23–28). Our findings
support these data and add that these sex differences in antibody levels are also seen
with SARS-CoV-2 N protein and NTD antigens and that age and symptom grade also
influenced the sex disparity in RBD-binding and functionally neutralizing antibody
responses. We further add that independent of sex, donors with cardiometabolic diseases
had higher levels of neutralizing, RBD Ig, N IgG, and NTD Ig antibodies than those without
cardiometabolic diseases. These findings confirm male sex, especially males with
increased age and worse COVID-19 symptom severity, as a demographic correlate of
functional antibodies and symptom severity as well as cardiometabolic disease as clinical
correlates of functional antibodies. Our findings, however, contrast with other mild dis-
ease cohort studies out to 60 to 125days post-symptom onset where binding and/or
neutralizing antibody levels were higher in females (41–43) or showed no difference
between males and females (44–49); these data were recently reviewed elsewhere (50).
These differences may be due to differences in sampling methods, cohort comorbidities
which are not usually identified, and/or geography. Our findings recognize that there are
currently unknown underlying factors which predispose older males and individuals with
cardiometabolic disease to either prolonged viral replication and immune exposure to
SARS-CoV-2 or differential immune activation.

FIG 3 Legend (Continued)
Nonparametric, two-tailed, Spearman’s correlation heat map of clinical correlates and antibody titers stratified by sex (red = positive association,
blue = negative association, blank = nonsignificant association). (g to k) Correlation between age and NT50 or RBD Ig levels at first donation.
Spearman’s rank correlation was used to calculate correlation coefficients (r) and P values (p).
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FIG 4 Antibody differences between sexes and age groups. (a to h) Differences in (a) functional antibody (NT50 dilution) levels, (b) NTD total
Ig (index), (c) functional antibody (PSV NT50 dilution) levels, (d) RBD total Ig (endpoint titers), (e) RBD IgG (endpoint titers), (f) RBD IgA
(endpoint titers), (g) RBD IgM, and (h) nucleocapsid IgG (index) between males (n= 49) and females (n= 46) at first donation. (i) Differences in
functional antibody (NT50 dilution) levels between age groups. (j) Differences in RBD total Ig titers between age groups. (k) Differences in
RBD IgA (endpoint titers) between age groups. For panels i to k, donors were divided into tertiles based on their age. For panels a to h, lines
represent linear regression fit and shaded areas represent 95% confidence interval. Lines from linear regression were fitted from days 30 to
90 to avoid overfitting where fewer observations were available. Spearman’s rank correlation was used to calculate correlation coefficients (r)
and P values (p). (l) Forest plot of estimated effect (95% confidence interval) of age on antibody titers at first donation, stratified by sex.
Linear regression model was adjusted for time from symptom onset or RT-PCR diagnosis.
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We do not yet know what level of functional antibodies is required for protection
from SARS-CoV-2. Although female donors in this cohort have lower antibody levels
than males, this may be enough to confer long-term protection. This observation war-
rants further investigation, including consideration of a similar sex bias in vaccine-
induced immunity. Furthermore, we found significant differences in sex and functional
antibody production despite reported disease severity, suggesting that prolonged vire-
mia and/or abnormal cytokine activation may not be the only things responsible for this
finding. Other hypotheses that have been made to explain COVID-19 disease sex differ-
ences include poorer T cell responses in males (33) and the presence of previously unde-
tected autoantibodies against t I interferons (51) in males with severe disease. On the
other hand, the hypothesis that expression of ACE2 and TMPRSS, important SARS-CoV-2
cellular entry receptors in human lung and other tissues, plays a role in the sex disparity
is thought to be an unlikely explanation (52).

In the face of SARS-CoV-2 vaccinations and new viral mutations, it is critical to
define functional antibody durability after natural infection and vaccination. Here, we
show that functionally neutralizing antibodies to live SARS-CoV-2 virus remain stable
months post-symptom onset and that this is likely maintained to 180 days. Not surpris-
ingly, levels of RBD-binding IgA and IgM antibodies declined rapidly within the first 3
months after symptom onset. However, NTD-binding Ig antibodies remain stable, and
RBD-binding Ig antibodies declined modestly. Levels of neutralizing and RBD Ig anti-
bodies on an individual level were also maintained, with only a modest decrease
within the first 90 days after symptom onset in donors with initial titers of .1:640.
When broken down by age group, 18- to 34-year-old donors demonstrated a signifi-
cant decrease in functional antibody and RBD Ig responses over the first 90 days post-
symptom onset that was likely driven by rapidly declining RBD IgA levels.

We also find that N IgG antibodies correlate least with neutralizing antibodies and con-
tinue to decline 120 to 180days post-symptom onset, a trend which was noted 90days
post-symptom onset in a mild-disease community cohort (18). This suggests that though
SARS-CoV-2 N antibodies may be generated at high levels early after symptomatic infec-
tion, N may not be an immunodominant target of the adaptive immune response and
thus is a less sensitive measure of remote infection. This further suggests that the use of
N protein in seroprevalence studies may bias results toward more recent infections and
warrants further investigation in cohorts of mild and asymptomatic COVID-19 disease.

One major limitation of this study is the demographic uniformity of our study popu-
lation, which limits the generalizability of our findings and highlights the need to do
these studies with a more diverse and representative population. Another bias in our
donor population is our focus on recalling donors with higher neutralizing antibody
titers to repeat donations. Thus, our “sequential donation” population is biased toward
higher-titer donors.

Understanding human antibody responses and correlates of neutralizing antibodies
to SARS-CoV-2 is critical in the next coming phase of understanding SARS-CoV-2 vaccine
efficacy and protection against reinfection. We find that SARS-CoV-2 functionally neutral-
izing antibodies are maintained for months after infection. Our findings further support
the role of RBD-binding antibodies as correlates of functionally neutralizing antibodies,
suggesting that vaccines that induce potent RBD responses may be particularly effica-
cious. Furthermore, we add to the growing literature a role for sex as a correlate of SARS-
CoV-2 functional neutralization. The association of male sex in this cohort with higher
neutralizing antibody levels reveals a sexual dimorphism in humoral immune responses
to SARS-CoV-2. We hypothesize that this is likely due to a combination of factors such as
differences in duration of mucosal replication, T cell responses, sex hormone roles in
immune activation, and genetic differences in immune responses. This finding may have
clinical as well as vaccine outcome implications and warrants further investigation.

MATERIALS ANDMETHODS
Donors and plasma collection. Convalescent-phase plasma was obtained from volunteer donors

who met U.S. Food and Drug Administration (FDA) criteria for plasma collections in the UNC Blood
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Donor Center. Donors were recruited via Internal Review Board (IRB)-approved direct contact of SARS-
CoV-2-positive persons diagnosed through the hospital laboratory system and public solicitation
through multiple media outlets. Fresh sera and plasma collected in the diversion pouch as part of the
standard plasmapheresis procedure were saved for research from donors who consented to study par-
ticipation. All donors had confirmed SARS-CoV-2 infection by blood antibody testing or nasopharyngeal
swab indicating the presence of SARS-CoV-2 RNA as performed by reverse transcriptase PCR (RT-PCR) in
a U.S. laboratory with a Clinical Laboratory Improvement Amendments certification. All donors were
recovered from their COVID-19 illness and qualified for collection in adherence with FDA regulatory
guidance. As required at the time, some donors had a negative repeat SARS-CoV-2 RT-PCR test done
within 72 h prior to donation. At the time of plasma collection, donors were offered participation in the
study. All donors who participated provided written informed consent. The research was approved by
the UNC Institutional Review Board and conducted under good clinical research practices. Participating
donor characteristics and information regarding COVID-19 symptoms and history were obtained
through in-person and telephone interviews using a standardized questionnaire as part of UNC IRB no.
20-1141. We used RStudio (R version 3.6.2) (53) to generate a map of the counties our donors reside in.
We generated a 4-point symptom severity scale for this study based on the National Institutes of Health
Division of AIDS grading system (54). For this study time period, we did not prescreen donors to deter-
mine the presence of SARS-CoV-2 antibodies; donor qualifications were based strictly on their positive
SARS-CoV-2 diagnostic test and eligibility for plasma donation.

Recombinant SARS-CoV-2 spike protein antigens. The production of RBD antigen from SARS-CoV-
2 was previously described (3). The NTD antigen (16 to 305 amino acids, accession no. P0DTC2.1) was
cloned into the paH mammalian expression vector and purified using nickel-nitrilotriacetic acid agarose
in the same manner.

ELISAs. The RBD enzyme-linked immunosorbent assay (ELISA) used in this study was initially described
previously (3), and the NTD ELISA was performed in the same manner. Briefly, ELISAs were done either as a
single-point dilution at 1:40 or as serial titrations starting at a dilution of 1:20 or 1:40. ELISA plates were
coated with 200ng/well of antigen and blocked, a 2-fold serum dilution series was done, and diluted serum
was incubated for 1 h at 37°C. Alkaline phosphatase-linked secondary antibodies were used at 1:2,500 dilu-
tion each (IgM and IgG, Sigma; IgA, Abcam). The PNPP substrate (Sigma) was added to develop the plate,
and absorbance was measured at 10 min for total Ig (combination of all three secondary antibodies) or IgG
or 25 min for IgA or IgM at 405nm using a plate reader (BioTek). Each sample was tested in duplicate.
Antibody titration measurements were recorded as endpoint titers. Ten plasma samples were tested in the
RBD total Ig format and compared to serum; all titer results were within a 2-fold dilution (data not shown).
Receiver operating characteristic analyses were done to obtain cutoff values and sensitivity and specificity
estimates on the SARS-CoV-2 assays using pre-2019 negative-control sera and RT-PCR-confirmed COVID-19
cases that were at least 9 days post-symptom onset (see Table S3 in the supplemental material). Positive
and negative controls were used to standardize each ELISA and normalize across experiments.

Nucleocapsid protein ELISA. Detection of IgG antibody to SARS-CoV-2 N antigen was performed
with a microparticle chemiluminescence assay (Abbott Laboratories) on the Abbott Architect i2000SR
immunoassay analyzer. The EUA-approved Abbott SARS-CoV-2 IgG assay utilizes microparticles coated
with SARS-CoV-2 N protein to capture N-specific IgG. Bound IgG was detected via addition of anti-
human acridinium-labeled second-step antibody. Following a second wash step, pretrigger and trigger
solutions were added, and a chemiluminescent reaction was detected and reported in relative light units
(RLU). The RLU generated are reflective of the amount of antibody bound to the microparticles. The sam-
ple RLU were compared to the assay-specific calibrator RLU to generate an index value (S/C). Index val-
ues of $ 1.4 were considered positive. Sensitivity and specificity have been previously obtained for this
assay (Table S3) (55, 56).

SARS-CoV-2-WA1 neutralization assay. Full-length SARS-CoV-2 viruses expressing a nanoluciferase
gene were designed and recovered via reverse genetics as previously described (3, 29) in a 96-well
microneutralization format. Briefly, Vero E6 cells were infected with SARS-2-nLuc viruses, and titers were
determined to generate an 8-point curve. Initial serum dilutions to detect the presence of neutralizing anti-
body were 1:20 or 1:50, and all serum samples were tested in duplicate. Internal serum controls, cell-only
controls, and virus-only controls were included in each neutralization assay plate. Plates were incubated for
48h, at which point cells were lysed and luciferase activity was measured on a Nano-Glo luciferase assay
system (Promega). Antibody neutralization titers to SARS-CoV-2 were reported as serum dilutions at which
a 50% reduction in relative light units (NT50) to virus-only controls was observed. Limit of detection (LOD)
was set to 1:10, or one-half the starting dilution of 1:20, since all NT50 values above a titer of 1:10 that were
run with a 1:50 starting dilution were.1:25. Thirteen plasma samples were tested and compared to serum;
all NT50 results were within a 3-fold dilution (data not shown). Pre-COVID-19 serum samples were also
tested, and 13/13 had an NT50 of,1:20 in this assay.

SARS-CoV-2 pseudovirus neutralization assay. The “PhenoSense SARS CoV-2-neutralizing anti-
body (NAb) assay” has been developed by leveraging the proprietary PhenoSense assay platform that
was developed to evaluate antiretroviral drug susceptibility (57) and later adapted to evaluate entry
inhibitors and neutralizing antibody (58) as well as coreceptor tropism (59). The production of luciferase
is dependent on virus entry and the completion of a single round of virus replication. Agents that inhibit
pseudovirus entry or replication reduce luciferase activity in a dose-dependent manner, providing a
quantitative measure of drug and antibody susceptibility.

The measurement of neutralizing antibody activity using the PhenoSense SARS CoV-2 NAb assay is
performed by generating HIV-1 pseudovirions that contain and express the complete SARS-CoV-2 spike
protein open reading frame. The pseudovirus is prepared by cotransfecting HEK293 producer cells with
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an HIV-1 genomic vector and a SARS-CoV-2 envelope expression vector. Neutralizing antibody activity is
measured by assessing the inhibition of luciferase activity in HEK293 target cells expressing the ACE2 re-
ceptor following preincubation of the pseudovirions with serial dilutions of the serum specimen. The
expression of luciferase activity in target cells is inhibited in the presence of anti-SARS-CoV-2 neutraliz-
ing antibody. Data are displayed by plotting the percent inhibition of luciferase activity against log10 re-
ciprocal of the serum/plasma dilution. Neutralizing antibody titers are reported as the reciprocal of the
serum dilution conferring 50% inhibition (NT50) of pseudovirus infection.

% Inhibition ¼ 100% –
RLU Vector1 Sample1Diluentð Þ –RLU Backgroundð Þ

RLU Vector1Diluentð Þ –RLU Backgroundð Þ

!
� 100%

!

The results of the PhenoSense SARS CoV-2 NAb assay can be reported as an NT50 titer (1/dilution) or
qualitatively (positive, negative) based on a predefined dilution cutoff (e.g., .50% inhibition at 1:40 dilu-
tion). To ensure that the measured neutralizing antibody activity is SARS-CoV-2 specific, each test speci-
men is also assessed using a nonspecific pseudovirus (specificity control) that expresses a nonreactive
envelope protein of one or more unrelated viruses (e.g., avian influenza virus).

Statistical analyses. We used the Wilcoxon rank sum test to test for differences between two
groups and the Kruskal-Wallis test followed by Benjamini-Yekutieli correction to test for differences
between three or more groups. We calculated the phi coefficient as a measure of association between
two binary factors and relied on the chi-square test to test for differences. We also calculated the
Spearman rank correlation coefficient and used locally estimated scatterplot smoothing (LOESS) to visu-
alize antibody trends over time. Linear regression models were used to further assess relationships with
antibody levels, after first transforming antibody levels to the base-2 logarithm scale. Venn diagram and
correlation heat maps were created to visualize associations. All statistical analyses were performed
using R 4.0.2 (Vienna, Austria), all tests were two sided, and a P value of ,0.05 was considered statisti-
cally significant.
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