
SARS-CoV-2 Reverse Genetics Reveals a Variable
Infection Gradient in the Respiratory Tract
Yixuan J. Hou,1,19 Kenichi Okuda,3,19 Caitlin E. Edwards,1,19 David R. Martinez,1,19 Takanori Asakura,3
Kenneth H. Dinnon III,2 Takafumi Kato,3 Rhianna E. Lee,3 Boyd L. Yount,1 Teresa M. Mascenik,3 Gang Chen,3 

Kenneth N. Olivier,16 Andrew Ghio,17 Longping V. Tse,1 Sarah R. Leist,1 Lisa E. Gralinski,1 Alexandra Schä fer,1
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SUMMARY

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-
19) remain unknown.We utilized a reverse genetics system to generate aGFP reporter virus to explore severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to
demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization.
High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expres-
sion in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking
gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures.
COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-in-
fected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings high-
light the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the
lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host in-
teractions in protective immunity, host susceptibility, and virus pathogenesis.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

has been identified as the causative agent of the ongoing

pandemic coronavirus disease 2019 (COVID-19) (Gorbalenya

et al., 2020). SARS-CoV-2 emerged inWuhan, China in December

2019 and rapidly spread to more than 175 countries within three

months (Huang et al., 2020; Zhu et al., 2020). As of May 18,

2020, about 4.7 million confirmed cases and > 316,000 deaths

have been reported worldwide. The absence of approved
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RESULTS

Recombinant viruses replicate similarly to the SARS-
CoV-2 clinical isolate in vitro

A full-length infectious complementary DNA (cDNA) clone of a

US SARS-CoV-2 clinical isolate WA1 was generated by cloning

seven genomic fragments separately into vector plasmids (Fig-

ure 1A). Additionally, two reporter viruses were constructed by

replacing a 276-bp region in ORF7 with a green fluorescent pro-

tein (GFP) or aGFP-fused nanoluciferase (nLuc) gene (Figure 1A).

After assembly into full-length cDNA, full-length RNA was elec-

troporated into Vero-E6 cells (Scobey et al., 2013; Yount et al.,

2003). After recovering the wild-type (WT), icSARS-CoV-2-

GFP, and icSARS-CoV-2-nLuc-GFP recombinant viruses, viral

replication was confirmed by the presence of sub-genomic-

length leader-containing RNA transcripts 20 h after electropora-

tion (Figure S1). All three recombinant viruses replicated (Fig-

ure S1), generated similar plaques in Vero E6 cells, and could

be passaged serially in the cell culture without exogenous trypsin

(Figure 1B). We defined cytopathic effect (CPE) by cell rounding

and detachment from monolayers. GFP signals were evident in

cells two days after transfection with RNA transcripts from

both indicator viruses (Figure 1C).

To distinguish our recombinant viruses from the circulating

SARS-CoV-2 strains, we introduced a silent mutation (T15102A)

into a conserved region in nsp12 to ablate an endogenous SacI

site in themolecular clone (FigureS1).Weconfirmed thepresence

of thismutation in all three recombinant viruses but not in the clin-

ical SARS-CoV-2 isolate via Sanger sequencing and PCR amplifi-

cation followedbySacI digestion (Figures 1Dand1E). To evaluate

viral RNA synthesis, we performed Northern blot analyses that

showed that the number of sub-genomic RNA (sgRNA) bands

wasequivalent in the recombinantandclinical isolates,confirming

the presence of eight principle sub-genomicmRNAs during infec-

tion (Figure 1F). As expected, themolecularweights of sgRNA2 to

sgRNA 7 in the two reporter viral samples were higher than those

in the clinical isolate and WT samples, reflecting the insertion of

the 720-bp GFP gene or the 1,233-bp nLuc-GFP gene into the

366-bp ORF7 genetic location. These data also demonstrated

that ORF7 was not essential for in vitro replication of SARS-

CoV-2.

Next, we evaluated one-step (multiplicity of infection [MOI] = 5)

and multi-step (MOI = 0.05) growth curves of the three recombi-

nant viruses in Vero E6 cells in comparison to the clinical isolate

WA1 strain. The titer of all SARS-CoV-2 increased and plateaued

to mid-106 plaque-forming units (PFU)/mL within 12–18 h in the

one-step curve and within 36–48 h in the multi-step curve (Fig-

ures 2A and 2B). In contrast to other reported indicator viruses

(Thao et al., 2020), the three recombinant viruses replicated to ti-

ters equivalent to the clinical isolate.

Serine proteases TMPRSS2 and Furin, but not
exogenous Trypsin, enhance the replication of SARS-
CoV-2
Host proteases, including cell surface and intracellular prote-

ases, play an essential role in CoV infection by processing the

S protein to trigger membrane fusion (Izaguirre, 2019; Mat-

suyama et al., 2010; Matsuyama et al., 2005; Menachery et al.,

vaccines and only a single emergency-use FDA-approved thera-
peutic against SARS-CoV-2 hinders pandemic control.

The genome of SARS-CoV-2 is an �30 kb RNA predicted to 
encode 16 non-structural proteins (nsp1–nsp16), four structural 
proteins (spike, membrane, envelope, and nucleocapsid), and 
eight accessory proteins (3a, 3b, 6, 7a, 7b, 8b, 9b, and 14) (Wu 
et al., 2020a), expressed from genome-length or sub-genomic 
mRNAs. The spike (S) glycoprotein mediates viral entry via bind-
ing to the human angiotensin-converting enzyme (ACE2) (Hoff-
mann et al., 2020; Walls et al., 2020; Yan et al., 2020), followed 
by proteolytic processing by transmembrane protease, serine 
2 (TMPRSS2), furin, and perhaps other lung proteases, which 
trigger fusion of viral and cellular membranes. Spike glycoprotein 
is also the main target of host neutralizing antibodies (nAbs)
(Hoffmann et al., 2020).

SARS-CoV-2 infection primarily targets the respiratory tract. A 
fraction of SARS-CoV-2 infections manifest as bilateral lower-

zone pneumonias and diffuse alveolar damage (DAD) that might 
progress to acute respiratory distress syndrome (ARDS), espe-
cially in the aged and individuals with co-morbidities (Carsana 
et al., 2020; Guan et al., 2020). In comparison to symptoms of 
MERS-CoV and SARS-CoV 2003 infections, clinical symptoms 
of COVID-19 are broader and more variable (Huang et al., 
2020; Pan et al., 2020a; Wu and McGoogan, 2020; Zhu et al., 
2020). Differences in transmissibility and viral shedding suggest 
the in vivo replication sites and/or replication efficiency of SARS-
CoV-2 differ significantly from SARS-CoV (Pan et al., 2020b; 
Wö lfel et al., 2020; Zou et al., 2020).

A wealth of single-cell RNA sequencing (scRNA-seq) data 
have been mobilized to describe the expression of ACE2 and 
TMPRSS2 with emphasis on the human respiratory tract (Aguiar 
et al., 2020; Sajuthi et al., 2020; Sungnak et al., 2020). However, 
complementary techniques are needed to describe the organ-
level architecture of receptor expression, improve on the 
sensitivity of scRNA for low-expression genes, e.g., ACE2, and 
to describe the function of ACE2, i.e., mediate infectivity. 
Accordingly, a combination of RNA in situ hybridization (RNA-
ISH) techniques, a novel set of SARS-CoV-2 reporter viruses 
produced by reverse genetics, and primary cultures from all 
affected regions of the respiratory tract was assembled for our 
investigations.

We utilized the reverse genetics systems to test for protection 
and/or durability of protection afforded by convalescent serum 
and/or SARS-CoV-2-specific monoclonal antibodies (mAbs) 
and antigenicity relationships between SARS-CoV and SARS-
CoV-2 after natural human infections. These tools were also 
utilized to contrast two non-exclusive hypotheses that might 
account for key aspects of SARs-CoV-2 transmission and path-
ogenesis: (1) transmission is mediated by airborne microparti-

cles directly infecting the lung (Morawska and Cao, 2020; Wilson 
et al., 2020); or (2) the nose is the initial site of infection, followed 
by aspiration of the viral inoculum from the oropharynx into the 
lung (Dickson et al., 2016; Wö lfel et al., 2020). Accordingly, we 
characterized the ACE2 and TMPRSS2 expression amounts in 
the nose and lung and in parallel the SARS-CoV-2 infection of hu-
man nasal, bronchial, bronchiolar, and alveolar epithelial cul-
tures. These findings were compared with virus distributions 
and tropisms in lungs from lethal COVID-19 cases.
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Figure 1. Design and recovery of SARS-CoV-2 recombinant viruses

(A) Full-length cDNA clone constructs and genomes of recombinant viruses. Restriction sites, cohesive ends, and the genetic marker T15102A (*) are indicated in

the schematic diagram. GFP or GFP-fused nLuc genes were introduced into the ORF7 (replacing aas 14–104) of SARS-CoV-2 genome.

(B) Plaques of recombinant viruses.

(C) CPE and GFP signals were observed in Vero-E6 cells electroporated with sub-genomic RNA (sgRNA)-N alone (mock) or sgRNA-Nmixed with full-length RNA

transcripts (recombinant viruses) at two days after transfection. Scale bar, 100 mm.

(D and E) SacI digestion (D) and Sanger sequencing (E) of a 1.5-kb region covering the genetic marker in vial genomes.

(F) Northern blot analysis of genomic and sgRNAs isolated from the virus-infected cells. Abbreviations are as follows: Isolate, clinical isolate strain WA1; WT,

icSARS-CoV-2-WT; GFP, icSARS-CoV-2-GFP, nLuc-GFP: icSARS-CoV-2-nLuc-GFP.

See also Figure S1.



Vero cells were infected with the icSARS-CoV-2-GFP reporter

virus in the presence of 0, 1, or 5 mg/mL of trypsin. Unlike some

coronaviruses (CoVs) (Menachery et al., 2020;Wicht et al., 2014),

trypsin did not trigger syncytium formation, and at 24 and 48 h, a
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Figure 2. Growth curves and the role of proteases in SARS-CoV-2 replication

(A and B) One-step (A) and multi-step (B) growth curves of clinical isolate and recombinant viruses in Vero E6 cells, with MOI of 5 and 0.05, respectively.

(C and D) Fluorescent images (C) and viral titers (D) of the SARS-CoV-2-GFP replicates in Vero cells supplemented with different concentrations of trypsin.

(E and F) Fluorescent images (E) and viral titers (F) of the SARS-CoV-2-GFP replicates in normal Vero or Vero-furin cells.

(G and H) Fluorescent images (G) and viral titers (H) of the SARS-CoV-2-GFP replicates in normal LLC-MK or LLC-MK-TMPRSS2 cells.

All scale bars, 200 mm. Data are presented in mean ± SD.

See also Figure S2.

2020; Millet and Whittaker, 2014; Wicht et al., 2014). Therefore, 
we evaluated the multi-step replication (MOI = 0.03) of the 
icSARS-CoV-2-GFP in the presence of selected proteases via 
fluorescent microscopy and measurements of viral titer.



(ID50) activities in the range were from 1:30.6 to 1:376.5 (Fig-

ure 3F). Surprisingly, two of these serum samples, A and E,

neutralized icSARS-CoV-2-nLuc-GFP with 11.9- and 8.1-fold

of decreases in ID50, respectively. In contrast, 10 COVID-19

convalescent serum samples displayed variable neutralization

ID50 titers that ranged from 61.67 to 782.70 against icSARS-

CoV-2-nLuc-GFP but little, if any, neutralization of 2003

icSARS-CoV-nLuc or icMERS-CoV-nLuc viruses at the lowest

dilutions tested (Figures 3B, 3D, and 3H).

RNA in situ hybridization localization of the SARS-CoV-2
receptor complex in the normal human upper and lower
respiratory tract
The sites of SARS-CoV-2 infection in the upper airways (nose

and oropharynx) and lung (lower airways and alveoli) are under

active investigation (Rockx et al., 2020). Accordingly, we charac-

terized ACE2 and TMPRSS2 expression in these regions by us-

ing RNA-ISH (Figures 4 and S3). Consistent with the low amount

of ACE2 expression reported from scRNA-seq data (Brann et al.,

2020; Durante et al., 2020; Sajuthi et al., 2020), low amounts of

ACE2 were detected in the respiratory epithelium lining the nasal

cavity (Figure 4A). Scattered, low amounts of ACE2 and

TMPRSS2 expression were also observed in the squamous

epithelium lining oropharyngeal tonsillar tissue (Figure S3A).

Notably, progressively reduced amounts of ACE2 expression

were observed in the lower airway regions, culminating in mini-

mal amounts in the alveolar region. Quantitative comparisons

of nasal and bronchial airway epithelia obtained as brush sam-

ples simultaneously from the same subjects by qPCR revealed

significantly higher expression of ACE2 but not TMPRSS2 in

the nasal than the bronchial tissues (Figure 4B). In a separate

qPCR study, there was a gradient of reduced ACE2 expression

from proximal to distal intrapulmonary regions (Figure 4C). In

contrast, TMPRSS2 mRNA exhibited an overall higher expres-

sion amount in all respiratory tract regions than ACE2.

Previously reported scRNA-seq data describing ACE2 and

TMPRSS2 expression in the upper and lower respiratory system

have detected ACE2 in �5% of total cells interrogated (Deprez

et al., 2019; Sajuthi et al., 2020) (Figure 4D). We recently devel-

oped a single-cell (cytospin) RNA-ISH technique that is 5–103

more sensitive at assigning cell-type-specific expression pat-

terns than scRNA-seq (Okuda et al., 2019) (Figure 4E). This tech-

nique identified ACE2 expression in �20% of interrogated cells

versus �5% by scRNA-seq (Figure 4F). These studies identified

the forkhead box J1 (FOXJ1)-defined ciliated cell as the most

frequent cell type in nasal scrapes (Figure S4B) and that the per-

centage of ciliated cells expressing ACE2 was higher in the nose

than in bronchi (Figure 4G). ACE2+- andMUC5B+-defined secre-

tory (‘‘club’’) cells were less frequent and expressed less ACE2

than ciliated cells in each airway region (Figures 4H and 4I).

Both cell types in each region exhibited considerable variability

in ACE2 expression (Figures 4H and 4I). Studies of nasal submu-

cosal glands exhibited few or no detectable ACE2+ glandular

cells (Figure S4C). Finally, application of this technique to freshly

excised distal lung digests revealed expression of ACE2 in a

fraction of AT2 cells (Figure 4Evi). ACE2 was detected in

HOPX+ cells, which in humans can be AT1 or AT2 cells (Fig-

ure 4Evii) (Ota et al., 2018).

slightly higher percentage of trypsin-exposed cells expressed 
GFP signals and CPE than did controls (Figures 2C and S2). 
Trypsin also resulted in slightly lower virus titers than controls 
(Figure 2D), suggesting that trypsin impairs the stability of viral 
particles in supernatants.
SARS-CoV-2 S protein exhibits a novel 4 amino acid (aa) furin-

cleavage site ‘‘RRAR’’ at the junction between S1 and S2 sub-
units (Andersen et al., 2020; Coutard et al., 2020). We observed 
increased icSARS-CoV-2-GFP expression in the furin-overex-
pressing versus WT cells at 24 h (Figure 2E), correlating with 1 
log10 higher infectious titers than WT Vero cells at early times af-
ter infection (Figure 2F). Moreover, extensive CPE was noted in 
furin cells versus parental Vero cell cultures (Figure S2). In 
contrast, enhanced expression of TMPRSS2 in a rhesus monkey 
kidney epithelial cell line, LLC-MK cells, resulted in higher 
amounts of GFP expression and higher icSARS-CoV-2-GFP ti-
ters (Figures 2G and 2H). These data suggest that serine prote-
ases like furin and TMPRSS2 enhance the replication efficiency 
and cytopathology of SARS-CoV-2 in vitro.

The neutralization sensitivity of SARS-CoV-2 nLuc virus 
to potent SARS and MERS monoclonal antibodies and 
polyclonal sera
Three neutralization assays were developed utilizing luciferase 
reporter CoVs, including SARS-CoV, MERS-CoV, and SARS-
CoV-2 (Figures 3A–3H). Previous studies have identified remark-

ably potent SARS and MERS nAbs that target receptor binding 
domains and exhibit strong neutralizing activities in vitro and 
in vivo (Ying et al., 2015; Yu et al., 2015; Zhu et al., 2007). We uti-
lized three highly cross-reactive nAb against SARS-CoV (S230, 
S230.15, and S227.9), two nAbs against MERS-CoV (MERS-27 
and m336), and one broadly cross-reactive nAb against Dengue 
virus (EDE1-C10). We also tested a pooled mouse serum sample 
collected from BALB/c mice vaccinated and boosted with a Ven-
ezuelan equine encephalitis virus viral replicon particle (VRP-
SARS-COV-2-S) encoding the SARS-CoV-2 S gene. The boost 
was performed three weeks after vaccination, and sera were 
collected one week before and one week after boost.
Both the MERS nAbs, MERS-27 and m336, neutralized the 

icMERS-CoV-nLuc virus but not the 2003 SARS-CoV-nLuc or 
2019 SARS-CoV-2-nLuc-GFP recombinant viruses. Similarly, 
the three SARS nAbs, S230, S230.15, and S227.9 exhibited 
potent neutralization activities against icSARS-CoV-nLuc, but 
not icSARS-CoV-2-nLuc-GFP (Figures 3A, 3C, and 3E). As a 
negative control, a Dengue virus nAb EDE1-C10 did not neutralize 
any of the three tested CoVs. Importantly, the mouse serum sam-

ple neutralized 99.4% of the icSARS-CoV-2-nLuc-GFP virus at a 
1:2 dilution after prime, and much more potent neutralization was 
noted after VRP-SARS-CoV-2-S boost (Figure 3G).

The S proteins of SARS-CoV and SARS-CoV-2 share 75%
identity in amino acid sequences. To investigate whether 
SARS-CoV and SARS-CoV-2 infections elicit cross-neutralizing 
antibodies, we evaluated five serum samples from patients 
who survived the 2003 SARS-CoV Toronto outbreak and 10 
serum samples from COVID-19 survivors by using nLuc neutral-
ization assays with the two reporter CoVs. All five 2003 SARS 
serum samples demonstrated high neutralization titers against 
SARS-CoV-nLuc virus, and half-maximal inhibitory dilution



SARS-CoV-2 infections (Boucher, 2019; CDC COVID-19

Response Team, 2020). To test whether dysregulation of

ACE2 expression is a feature of CF, we performed RNA-ISH

studies in excised CF lungs and revealed a striking upregula-

tion of ACE2 and TMPRSS2 expression in CF airways

(Figure 5A).

A

C

E

G H

F

D

B

Figure 3. Neutralization assays using luciferase reporter coronaviruses

(A and B) mAbs (A) and COVID-19 sera (B) against icMERS-CoV-nLuc.

(C and D) mAbs (C) and SARS and COVID-19 sera (D) against icSARS-CoV-nLuc.

(E–G) mAbs (E), SARS and COVID-19 sera (F), and vaccinated mouse serum (G) against icSARS-CoV-2-nLuc-GFP.

(H) ID50 values of SARS and COVID-19 sera cross-neutralizing SARS-CoV and SARS-CoV-2. The same sera samples are indicated with arrows.

TheMERS-CoV neutralizing mAbswere the following: MERS-27 andm336; the SARS-CoV neutralizing mAbs were the following: S230, S230.15, and S227.9; the

Dengue virus mAb was the following: EDE1-C10. SARS patient serum samples are labeled as ‘‘A’’ to ‘‘E’’; COVID-19 patient serum samples are labeled as ‘‘1’’ to

‘‘10’’. Mouse serum was produced by immunized BALB/c mice with SARS-CoV-2 spike.

Pre-existing pulmonary disease and ACE2 and 
TMPRSS2 expression
Suppurative muco-obstructive lung diseases, e.g., cystic 
fibrosis (CF) and non-CF bronchiectasis (NCFB), are charac-
terized by airway mucus accumulation and neutrophilic inflam-

mation and are reported to be at increased risk for severe
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Figure 4. Intraregional ACE2 and TMPRSS2 mRNA expression in normal human airways

(A) Representative RNA-ISH images demonstrating regional distribution of ACE2 and TMPRSS2 mRNA localization (red signal) in normal human airway surface

epithelium. Scale bars, 20 mm.

(B) Comparison of ACE2 and TMPRSS2 mRNA expression between matched nasal and bronchial brushed tissues obtained from seven healthy subjects.

(legend continued on next page) 



To gain insight into pathways that might contribute to dysregu-

lation of ACE2 expression in CF lungs, we tested the effects of

selected cytokines on ACE2 expression in large airway epithelial

(LAE) cultures. Interleukin-1b (IL-1b), the dominant pro-mucin

secretory cytokine in CF and NCFB secretions (Chen et al.,

2019), upregulated ACE2, but not TMPRSS2 (Figure 5Bi).

Because CF subjects experience recurrent virus-driven exacer-

bations, we tested the effect of interferon-b (IFN-b) on ACE2

expression. ACE2 expression was significantly increased,

whereasTMPRSS2expressiondecreased, by IFN-b (Figure 5Bii).

In contrast, IL-13, a cytokine associated with Th2-high asthma,

inhibited ACE2 expression (Figure 5Biii).

SARS-CoV-2 infectivity specific to the respiratory tract
region
To test the relationship between ACE2 entry receptor expres-

sion and SARS-CoV-2 infection, we inoculated primary epithe-

lial cultures from the human nasal epithelia (human nasal

epithelial cells [HNE], n = 9 donors), large airway (bronchi and

large airway epithelial cells (LAE), n = 7 donors), lower airway

(bronchiolar and small airway epithelial cells [SAE], n = 3 do-

nors), nasal submucosal glands (n = 2 donors), type II- and

type I-like pneumocytes (AT2/AT1-like) (n = 3 donors), micro-

vascular endothelial cells (MVE) (n = 2 donors), and fibroblasts

(FBs) (n = 2 donors), and an immortalized nasal cell line

(UNCNN2TS) with icSARS-CoV-2-GFP reporter virus. We

observed GFP signals and detected viral titers in HNE, LAE,

SAE, AT2-like, and AT1-like cell cultures (Figure 6A). In

contrast, nasal submucosal gland, UNCNN2TS, MVE, or FB

cells were not susceptible, as evidenced by no GFP signals

or detectable infectious titers of progeny viruses (not shown).

We measured the relative infectivity of the SARS-CoV-2 GFP

virus in primary cells on the basis of the average peak titers

and observed that infectivity exhibited the same pattern as the

ACE2 expression amounts from the upper to lower respiratory

tract (Figures 6Bi–6Biv). The icSARS-CoV-2-GFP virus repli-

cated efficiently in the HNE and LAE, and peak viral titers were

significantly higher than the titers in SAE, AT2-like, and AT1-

like cultures (Figure 6Bv). Although the viral peak titers were

similar, the icSARS-CoV-2-GFP infection in HNE culture resulted

in significantly higher titers than LAE at 24 h, 48 h, and 96 h after

infection, suggestingmore robust replication in the primary nasal

cells (Figure 6Bvi). Collectively, these data indicate that virus

infectivity or replication efficiency varies markedly from proximal

airway to alveolar respiratory regions.

We utilized whole-mount immunohistochemistry of HNE and

LAE cultures to identify cell types infected by SARS-CoV-2 (Fig-

ures 6C and S4A). The ciliated cell was routinely infected and

extruded. In contrast, the other major cell type facing the airway

lumen, i.e., the MUC5B+ club cell, was not infected, nor was the

MUC5AC+metaplastic goblet cell. We did note a cell type co-ex-

pressing the ciliated cell marker tubulin, and MUC5B was rarely

infected in the HNE, a finding consistent with infection of a secre-

tory (club) cell transitioning to a ciliated cell phenotype.

There is debate whether AT2 and/or AT1 cells express suffi-

cient ACE2 to mediate infection and whether AT2, AT1, or both

cell types are infectable. Previous studies reported 2003

SARS-CoV infects AT2 but not AT1 pneumocytes (Mossel

et al., 2008). To focus on the relative infectivity by SARS-CoV-2

for AT2 versus AT1 cells, we tested standard AT2-AT1 cell cul-

tures and a novel cell culture approach that well preserves AT2

and AT1 cell populations over the infection or GFP expression in-

terval. As shown in Figures 6A andS4B, AT2 cells appeared to be

preferentially infected.

SARS-CoV-2 infectivity specific to the respiratory tract
region
We next investigated three other aspects of SARS-CoV-2 infec-

tion of human airway epithelia. First, the variability of infectivity

among HNE and LAE cultures from multiple donors was charac-

terized. Although all nine HNE and seven LAE were infected by

icSARS-CoV-2-GFP, we observed marked variability in GFP sig-

nals per culture surface area and viral growth curves. LAE cul-

tures exhibited higher variability in susceptible cells than the

HNE cultures at 72 hours after infection (Figures 6A, 6B, 6D

and S4C). We quantitated ciliated cell numbers in five LAE cul-

tures, and we noted no correlation between susceptibility and

ciliated cell percentages (Figure 6Dii).

Second, to further characterize the infectivity of LAE versus

SAE, we compared replication rates of three SARS-CoV-2

viruses in LAE and SAE cultures from the same donor. All three

viruses replicated more slowly in SAE than LAE cells. The GFP

virus replicated modestly less effectively than the clinical isolate

orWT virus in the two regions (Figure 6E). This observation differs

(C) Relative expression of ACE2 and TMPRSS2mRNA in different airway regions enriched for epithelial cells, including tracheas, bronchi, bronchiole, and alveoli,

obtained from matched seven normal lungs.

(D) Frequency of ACE2+ and TMPRSS2+ cells among total cells identified in distinct anatomical airway regions in a re-analysis of scRNA-seq data (Deprez

et al., 2019).

(E) RNA-ISH images depicting mRNA expression of ACE2 and cell type markers, including FOXJ1 (ciliated) (i, ii, and iv), MUC5B (secretory) (iii and v), SFTPC

(alveolar type 2) (vi), and HOPX (alveolar type 1 or 2) (vii) on cytospins of nasal versus bronchial superficial epithelial and purified alveolar cells. Scale bars, 10 mm.

(F) Frequency of ACE2+ cells among nasal and bronchial preparations. A total of 1,000 cells were analyzed for ACE2 expression per donor (N = 3).

G. Frequency of ACE2+ cells among FOXJ1+ or MUC5B+ cells in nasal or bronchial preparations. A total of 200 FOXJ1+ or MUC5B+ cells were analyzed for ACE2 
expression per donor (N = 3).
(H and I) Histograms depicting number of dot signals of ACE2 expression in FOXJ1 or MUC5B+ cells in nasal (H) or bronchial (I) preparations identified by scRNA-
ISH. ACE2+ dot signals were counted in 200 FOXJ1 or MUC5B+ cells per donor (N = 3). Statistics for (B), (C), (F), and (G) used linear mixed-effect model with the 
donor as random-effect factor for comparison between groups, and pairwise comparisons of groups with more than two levels were performed using Tukey post 
hoc tests. (H) and (I) used generalized linear mixed-effect models with Poisson distribution to compare the difference in cell counts at varying ACE2 expression 
amounts between FOXJ1+ and MUC5B+ cells. Histobars and error bars represent mean ± SD. Different symbol colors indicate results from different individual 
donors.

See also Figure S3.



from the equivalent replication noted in the Vero-E6 cells (Fig-

ures 2A and 2B), suggesting an intact ORF7 gene contributes

to SARS-CoV-2 replication, and perhaps virulence, in human

tissues.

Third, we compared the replication of SARS-CoV and SARS-

CoV-2 in LAE cells. SARS-Urbani WT and GFP viruses, in parallel

with the threeSARS-CoV-2 viruses,were administered to LAEcul-

tures from the samedonor. GFP signals were detected in LAE cul-

tures for both viruses, but the SARS-CoV-2-GFP exhibited de-

layed and less-intense signals than did SARS-CoV-Urbani-GFP

(Figure S4D). This phenotype is consistent with the growth curve

in which a lower titer of SARS-CoV-2 was recorded at 24 h.

SARS-CoV-2 infection in COVID-19 autopsy lungs
We utilized RNA-ISH and immunohistochemistry (RNA-ISH/IHC)

to localize virus in four lungs from SARS-CoV-2-infected

deceased subjects (Table S1). Multiple observations at different

length scales were notable. First, at the macroscopic level, the

infection appeared patchy, segmental, and peripheral (Figures

7A and S5A). These characteristics are consistent with an aspi-

ration distribution of an infectious inoculum. Second, ciliated

cells within the superficial epithelia lining proximal airway sur-

faces, particularly the trachea, were infected (Figures 7B and

S5B). As observed in vitro, MUC5B+ club and MUC5AC+ goblet

cells were not infected in vivo. Third, the submucosal glands that

Figure 5. Inflammatory cytokines alter ACE2 and TMPRSS2 expression

(A) RNA-ISH images demonstrating regional distribution of ACE2 and TMPRSS2mRNA localization in normal and CF human airways. Scale bars, 20 mm. Images

were obtained from four different airway regions from one normal or CF subject as representative of N = 6 normal or CF subjects studied.

(B) mRNA expression of ACE2 and TMPRSS2 measured by Taqman assay after inflammatory cytokine challenge in primary human large airway epithelial cells.

Shown in (i) is IL-1b (10 ng/mL, 7 days, N = 8), in (ii) is IFN-b (10 ng/mL, 3 days, N = 4 donors, 2–3 cultures per donor), and in iii is IL-13 (10 ng/mL, 7 days, N = 8).

Wilcoxon matched pairs signed rank test was used for comparison between control and cytokine treatment groups. Histobars and error bars represent mean ±

SD. Different symbol colors indicate results from different individual donors.
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imal airways (Figure 4G). The higher nasal ACE2 expression-level

findings were confirmed by qPCR data comparing nasal to bron-

chial airway epithelia. qPCR data also revealed that ACE2

amounts further waned in the more distal bronchiolar and alve-

olar regions. Importantly, these ACE2 expression patterns

were paralleled by high SARS-CoV-2 infectivity of nasal epithe-

lium with a gradient in infectivity characterized by a marked

reduction in the distal lung (bronchioles and alveoli) (Figures 6A

and 6B).

Multiple aspects of the variability in SARS-CoV-2 infection of

respiratory epithelia were notable in these studies. First, signifi-

cant donor variations in virus infectivity and replication efficiency

were observed. Notably, the variability was less in the nose than

lower airways. The reason(s) for the differences in lower airway

susceptibility are important but remain unclear (Cockrell et al.,

2018). We identified variations in ACE2 receptor expression (Fig-

ures 4A–4D) but not numbers of ciliated cells as potential vari-

ables (Figure 6D). Second, variation in infectivity of a single cell

type, i.e., the ciliated cell, was noted with only a fraction of cili-

ated cells having access to virus infected at 72 h (Figure 6A).

Third, the dominant secretory cell, i.e., the MUC5B+ club cell,

was not infected in vitro or in vivo, despite detectable ACE2

and TMPRSS2 expression (Figures 4G-4I). Collectively, these

data suggest that measurements of ACE2 and TMPRSS2

expression do not fully describe cell infectivity and that a

description of other variables that mediate susceptibility to infec-

tion, including the innate immune system(s), is needed (Menach-

ery et al., 2014).

The ACE2 receptor gradient in the normal lung raised ques-

tions focused on the initial sites of respiratory tract virus infec-

tion, the mechanisms that seed infection into the deep lung,

and the virus-host interaction networks that attenuate or

augment intra-regional virus growth in the lung to produce se-

vere disease, especially in vulnerable patients experiencing

chronic lung or inflammatory diseases (Guan et al., 2020; Leung

et al., 2020).

We speculate that nasal surfaces might be the dominant initial

site for SARS-CoV-2 respiratory tract infection (Wölfel et al.,

2020). First, SARS-CoV-2 RNA has been detected in aerosol par-

ticles in the range of aerodynamic sizes exhaled during normal

tidal breathing (Liu et al., 2020; Papineni and Rosenthal, 1997).

Aerosol deposition and fomite mechanical delivery deposition

modeling suggest that aerosols containing virus inhaled by naive

subjects achieve the highest density of deposition, i.e., highest

Figure 6. Replication of SARS-CoV-2 in primary human respiratory cells

(A) Representative GFP signals in icSARS-CoV-2-GFP-infected HNE, LAE, SAE, AT2-like, and AT1-like cultures at 48 h. Scale bar, 80.

(B) Growth curves of icSARS-CoV-2-GFP in (i) HNE, n = 9 donors; (ii) LAE, n = 7 donors; (iii) SAE, n = 3 donors; (iv) AT1-like (empty symbols) and AT2-like (filled

symbols) cells, n = 3 donors per cell type. Cells from female and male donors are labeled in pink and blue, respectively. Triplicated viral infections under MOI of 3

or 0.5 are shown in solid and dotted lines, respectively. In (v) is a comparison of the highest titers of individual culture among cell types and in (vi) is a comparison of

individual titers in HNE and LAE at different time points.

(C) Representative whole-mount extended focus views of icSARS-CoV-2-GFP-infected HNE and LAE cell cultures. Color coding is as follows: red, filamentous

actin (phalloidin); white, a-tubulin (multiciliated cells); green, GFP (virus); blue, nuclei (Hoechst 33342); yellow, MUC5B (left) and MUC5AC (right). An arrow

represents viral-infected a-tubulin+ (ciliated) and MUC5B+ (secretory) transitional HNEs. Scale bars, 50 mm.

(D) Shown in (i) is the variability of GFP and cilia signals in icSARS-CoV-2-GFP-infected LAE cultures collected from five different donors at 72 hours after

infection, scale bar, 200 mm. Shown in (ii) is the quantification of ciliated area in the LAE cultures.

(E) Growth curves of icSARS-CoV-2-GFP infected in LAE and SAE collected form the same donor. Cultures were infected with SARS-CoV-2 clinical isolate (i), WT

(ii), and GFP (iii) with MOI of 0.5. Data are presented in mean ± SD.

See also Figure S4.

populate the large airway regions of the lung were not infected 
(Figure S5C). Fourth, alveolar cells were also infected. RNA in 
situ and IHC co-localization of an AT2 cell marker, SPC (SFTPC), 
and AT1 cell marker (AGER) with SARS-CoV-2 indicated that 
AT2 cells and AT1 cells (or AT2 cells that had transitioned to 
AT1 cells) were infected (Figures 7C and S5D).
During the routine Alcian Blue Periodic Acid Schiff (AB-PA) 

staining that detects mucins or mucin-like carbohydrates in 
SARS-CoV-2-infected autopsy lungs, we noted faint AB-PAS 
staining in the peripheral lung, i.e., the alveolar region in some 
lungs (Figures 7D). Because aberrant mucin secretion and accu-
mulation is a feature of parenchymal diseases that can progress 
to fibrosis, the AB-PAS material was characterized in more detail 
(Figures 7Dii–7Dv). IHC studies suggested that this material in 
large airways was a mixture of the secreted mucins MUC5B 
and MUC5AC (Figure 7Div). In the alveolar parenchymal region, 
MUC5B alone was detected and was enriched in the peripheral 
subpleural area, as often observed in idiopathic pulmonary 
fibrosis (IPF) (Figure 7Dv) (Evans et al., 2016). Note, in none of 
the autopsy lungs studied was mechanical ventilation employed 
and the lung in graphics A and D of Figure 7 was immersion fixed. 
These observations, coupled to the observation that MUC5AC 
was not detected in the peripheral region, makes it unlikely 
that MUC5B selectively was mechanically spread from central 
to peripheral lung zones.

DISCUSSION

We generated a SARS-CoV-2 reverse genetics system; charac-
terized virus RNA transcription profiles; evaluated the effect of 
ectopically expressed proteases on virus growth; and used re-
porter viruses to characterize virus tropisms, ex vivo replication, 
and to develop a high-throughput neutralizing assay. These re-
agents were utilized to explore aspects of early infectivity and 
disease pathogenesis relevant to SARS-CoV-2 respiratory 
infections.
Our single-cell RNA-ISH technology extended the description 

of ACE2 in respiratory epithelia on the basis of scRNA-seq data 
(Sungnak et al., 2020). Single-cell RNA-ISH detected �20% of 
upper respiratory cells expressing ACE2 versus �4% for 
scRNA-seq (Figure 4F). Most of the RNA-ISH-detected ACE2-
expressing cells were ciliated cells, not normal MUC5B+ secre-

tory (club) cells or goblet cells. Notably, the nose contained the 
highest percentage of ACE2-expressing ciliated cells in the prox-
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matorymediators that might condition alveolar cells for infection.

Aspiration of SARS-CoV-2 into the lung is consistent with the

patchy, bibasilar infiltrates observed by chest CT in COVID-19

(Xu et al., 2020). Notably, robust microaspiration and gastro-

esophageal aspiration are observed frequently in subjects who

are at risk for more severe COVID-19 lower respiratory disease,

e.g., older, diabetic, and obese subjects (Pan et al., 2020a; Phil-

lips et al., 2015). Finally, our autopsy studies demonstrated

patchy, segmental or subsegmental disease, consistent with

aspiration of virus into the lung from the oropharynx.

These speculations describing the early pathogenesis of

SARS-CoV-2 upper and lower respiratory tract disease are

consistent with recent clinical observations. The data from

Wölfel et al. (2020) in COVID-19-positive subjects support the

concept of early infection in the upper respiratory tract (0–5 d)

followed by subsequent aspiration and infection of the lower

lung. These authors focused on the oropharynx as a potential

site of the early virus propagation. As noted above, however, a

nasal-oropharyngeal axis also exists, which has two implica-

tions. First, the nasal surfaces could seed the oropharynx for

infection. Second, it is likely that oropharyngeal secretions

reflect a mixture of local secretions admixed with a robust contri-

bution of nasal mucus and virus.

Animal model data are also compatible with the scenario of

aspiration-induced focal SARS-CoV-2 lung disease. The data

of Rockx et al. (2020) noted focal lung disease after combined

intranasal versus intratracheal dosing with SARS-CoV-2 in cyn-

omolgus monkeys. Notably, other findings in this model phe-

nocopied our observations of human disease, e.g., early nasal

shedding of virus, infection of nasal ciliated cells, and infection

of AT2 and likely AT1 cells. Perhaps more definitive data

describing nasal cavity seeding of the lower lung bymicroaspira-

tion emanate from the studies of Richard et al. (2020). These in-

vestigators demonstrated in ferret models that genetically

marked virus delivered to the nasal cavity more efficiently trans-

mitted infection to the lower lungs than a virus with a distinct ge-

netic marker delivered directly into the lungs.

In addition to identifying possible microaspiration risk factors

associated with COVID-19 disease severity in the elderly, dia-

betic, and obese, our studies provide insights into variables

that control disease severity in subjects at risk because of pre-

existing pulmonary disease (Leung et al., 2020; Sajuthi et al.,

2020). For example, ACE2 expression was increased in the lungs

of CF patients excised at transplantation. A major cytokine that

produces the muco-inflammatory CF airways environment,

Figure 7. Characterization of cell types for SARS-CoV-2 infection in SARS-CoV-2 autopsy lungs

(A) Sections from an autopsy lung with SARS-CoV-2 infection were stained by hematoxylin and eosin (i) and probed for SARS-CoV-2 by RNA-ISH (ii–iv). A SARS-

CoV-2 sense probe (ii) was used as a negative control. Scale bars, 1 mm.

(B) The trachea from a SARS-CoV-2 autopsy was probed for SARS-CoV-2 by RNA ISH. Shown in (i) is a colorimetric detection of SARS-CoV-2 (red) showing

infection of surface epithelium. Shown in (ii–iv) is the co-localization of SARS-CoV-2 (red) with cell-type-specific markers (green) determined by dual-immu-

nofluorescent staining (ii, acetylated a-tubulin cilia marker; iii, MUC5B secretory cell marker; and iv, MUC5AC mucous (goblet)-cell marker). Scale bars, 10 mm.

(C) Co-localization of SARS-CoV-2 with alveolar cell-type-specific markers in the alveolar space from a SARS-CoV-2 autopsy. Shown in (i) is the dual color-

fluorescent RNA-ISH co-localization of SARS-CoV-2 (green) with alveolar type II cell marker SFTPC (red). Shown in (ii) is the dual-immunofluorescent co-

localization of SARS-CoV-2 (green) with alveolar type I cell marker AGER (magenta). Scale bars, 20 mm.

(D) Mucin expression in SARS-CoV-2 autopsy lung. Shown in (i) is the AB-PAS (blue to purple) stain for complex carbohydrate (mucin), in (ii) is MUC5B

immunohistochemistry, in (iii–v) is the dual-immunofluorescent staining for MUC5B (green) and MUC5AC (red) in the large airway (iv) and the alveoli (v).

Abbreviation is as follows: SM, submucosal grand. Scale bars, 2mm (i–iii) and 200 mm (iv and v).

See also Figure S5.

MOI per unit surface area, in the nose (Booth et al., 2005; Farzal 
et al., 2019; Teunis et al., 2010). Second, the relatively high ACE2 
expression in nasal specimens and the parallel high infectivity of 
the HNE cultures suggests the nasal cavity is a fertile site for early 
SARS-CoV-2 infection. Nasal infection likely is dominated by cili-
ated cells in the superficial epithelium, not nasal submucosal 
glands. Third, the nose is exposed to high but variable loads of 
environmental agents, producing a spectrum of innate defense 
responses. Hence, a portion of the variability of the clinical syn-
drome of COVID-19 might be affected by environmentally driven 
variance of nasal infectivity (Wu et al., 2020b).
Another aspect of the variability of the COVID-19 syndrome is 

the variable incidence and severity of lower lung disease. It is un-
likely SARS-CoV-2 is transmitted to the lung by hematogenous 
spread, as demonstrated by the absence of infection of MVE 
cells and by previous reports that indicate airway cultures are 
difficult to infect from the basolateral surface (Sims et al., 2005; 
Wö lfel et al., 2020). Theoretically, infection could be transmitted 
directly to lower lung surfaces by microaerosol inhalation with 
deposition on and infection of alveolar surfaces mediated in 
part by the high ACE2 binding affinity reported for SARS-CoV-
2 (Shang et al., 2020; Wrapp et al., 2020). However, given the 
low amounts of ACE2 expression in alveolar cells in health, the 
correlated poor infectivity in vitro, and the absence of a homoge-

neous pattern radiographically, the importance of this route re-
mains unclear (Santarpia et al., 2020).
In contrast, it is well-known that an oral-lung aspiration axis is 

a key contributor to many lower airways infectious diseases 
(Dickson et al., 2016; Esther et al., 2019; Gaeckle et al., 2020; 
Odani et al., 2019; Phillips et al., 2015). Nasal secretions are 
swept from the nasal surface rostrally by mucociliary clearance 
and accumulate in the oral cavity at a rate of �0.5 mL/h where 
they are admixed with oropharyngeal or tonsillar fluid (Eichner 
et al., 1983; Pandya and Tiwari, 2006). Especially at night, it is 
predicted that a bolus of relatively high titer virus is aspirated 
into the deep lung, either via microaspiration or as part of gas-
tro-esophageal reflex-associated aspiration, sufficient to 
exceed the threshold PFU/unit surface area needed to initiate 
infection (Amberson, 1954; Gleeson et al., 1997; Huxley et al., 
1978). Note, our data that tracheas exhibited significant viral 
infection in vivo suggest that small-volume microaspiration could 
also seed this site. Tracheal-produced virus could then also 
accumulate in the oropharynx via mucus clearance for subse-
quent aspiration into the deep lung (Quirouette et al., 2020). 
Oropharyngeal aspirates also contain enzymes and/or inflam-



is consistent with recent studies (Hoffmann et al., 2020; Walls

et al., 2020), suggesting that existence of common neutralizing

epitopes between the two CoVs. Interestingly, convalescent

COVID-19 sera failed to cross-neutralize SARS-CoV in vitro, sug-

gesting cross-neutralizing antibodies might be rare after SARS-

CoV-2 infection. The location of these epitopes is unknown. The

nLuc recombinant viruses described herein will be powerful re-

agents for defining the antigenic relationships between the Sarbo-

coviruses, the kinetics and durability of neutralizing antibodies af-

ter natural infection, and the breadth of therapeutic neutralizing

antibodies and vaccine countermeasures (Wang et al., 2019).

In summary, our studies have quantitated differences in ACE2

receptor expression and SARS-CoV-2 infectivity in the nose

(high) versus the peripheral lung (low). These studies should pro-

vide valuable reference data for future animal model develop-

ment and expand the pool of tissues, e.g., nasal, for future study

of disease pathogenesis and therapy. Although speculative, if

the nasal cavity is the initial site mediating seeding of the lung

via aspiration, these studies argue for the widespread use of

masks to prevent aerosol, large droplet, and/or mechanical

exposure to the nasal passages. Complementary therapeutic

strategies that reduce viral titer in the nose early in the disease,

e.g., nasal lavages, topical antivirals, or immune modulation,

might be beneficial. Finally, our studies provide key reagents

and strategies to identify type-specific and highly conserved

neutralizing antibodies that can be assessed most easily in the

nasal cavity as well as in the blood and lower airway secretions.
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IL-1b, was associated in vitro with increased ACE2 expression 
(Chen et al., 2019). The clinical outcome of increased ACE2 
expression in CF is not yet known. The simple prediction is 
that increased ACE2 expression might be associated with 
more frequent or severe SARS-CoV-2 disease in CF populations. 
However, increased ACE2 expression is reported to be associ-
ated with improved lung function by negatively regulating ACE 
and the angiotensin II and the angiotensin II type 1a receptor 
(AT1a) in models of alveolar damage (pulmonary edema) and 
bacterial infection (Imai et al., 2005; Jia, 2016; Keeler et al., 
2018; Kuba et al., 2005; Sodhi et al., 2019). Consequently, CF 
subjects might exhibit reduced severity of disease once ac-
quired. Data describing outcomes of COVID-19 in the CF popu-
lations should emerge soon (Colombo et al., 2020).

Our autopsy studies also provide early insights into the vari-
able nature of the severity and pathogenesis related to post-
COVID-19 lung health or function (Atri et al., 2020; Kollias 
et al., 2020; Magro et al., 2020). Our study has identified another 
feature of COVID-19, i.e., the accumulation of apparently aber-
rantly secreted MUC5B in the alveolar region. Accumulation of 
MUC5B in the peripheral (alveolar) lung is characteristic of sub-
jects who develop IPF, and polymorphisms in the MUC5B pro-
moter associated with IPF have been reported (Evans et al., 
2016). Future studies of the long-term natural history of SARS-
CoV-2 survivors, in combination with studies delineating the 
cell types responsible for MUC5B secretion (AT2 versus airway 
cells) and genetics, e.g., MUC5B polymorphisms, might aid in 
understanding the long-term favorable versus fibrotic outcomes 
of COVID-19 disease (Chan et al., 2003; Rogers et al., 2018).

Our study also provides a SARS-CoV-2 infectious full-length 
cDNA clone for the field. Several strategies have been developed 
to construct stable coronavirus molecular clones, including the 
bacterial artificial chromosome (BAC) (Almazá n et al., 2000; 
Gonzá lez et al., 2002) and vaccinia viral vector systems (Casais 
et al., 2001). In contrast, our in vitro ligation method solves the 
stability issue by splitting unstable regions and cloning the frag-
mented genome into separate vectors, obviating the presence of 
a full-length genome (Yount et al., 2000). Our in vitro ligation 
strategy has generated reverse genetic systems for at least 13 
human and animal coronaviruses and produced hundreds of 
mutant recombinant viruses (Beall et al., 2016; Menachery 
et al., 2015; Scobey et al., 2013; Xie et al., 2020; Yount et al., 
2003). In contrast to other reports (Thao et al., 2020), reporter re-
combinant SARS-CoV-2 viruses generated herein replicated to 
normal WT amounts in continuous cell lines, allowing for robust 
ex vivo studies in primary cultures.

Using this infectious clone, we generated a high-throughput 
luciferase reporter SARS-CoV-2 assay for evaluation of viral 
nAbs. In line with previous reports (Tian et al., 2020; Wrapp 
et al., 2020), our data show that several SARS-CoV RBD-binding 
nAbs fail to neutralize SARS-CoV-2, suggesting distant antigenic-
ity within the RBD domains between the two viruses. Although 
more samples are needed, early convalescent sera demonstrated 
�1.5 log variation in neutralizing titers at �day 30 after infection, 
demonstrating a need to fully understand the kinetics, magnitude, 
and durability of the neutralizing antibody response after a primary 
SARS-CoV-2 infection. The detection of low-level SARS-CoV-2 
cross-neutralizing antibodies in 2003 SARS-CoV serum 
samples
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Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-

effects models using lme4. J. Stat. Softw. 67, 1–48.

Beall, A., Yount, B., Lin, C.M., Hou, Y., Wang, Q., Saif, L., and Baric, R. (2016).

Characterization of a pathogenic full-length cDNA clone and transmission

model for porcine epidemic diarrhea virus strain PC22A. MBio 7, e01451–e15.

Booth, T.F., Kournikakis, B., Bastien, N., Ho, J., Kobasa, D., Stadnyk, L., Li, Y.,

Spence, M., Paton, S., Henry, B., et al. (2005). Detection of airborne severe

acute respiratory syndrome (SARS) coronavirus and environmental contami-

nation in SARS outbreak units. J. Infect. Dis. 191, 1472–1477.

Boucher, R.C. (2019). Muco-obstructive lung diseases. N. Engl. J. Med. 380,

1941–1953.

Bove, P.F., Grubb, B.R., Okada, S.F., Ribeiro, C.M., Rogers, T.D., Randell,

S.H., O’Neal, W.K., and Boucher, R.C. (2010). Human alveolar type II cells

secrete and absorb liquid in response to local nucleotide signaling. J. Biol.

Chem. 285, 34939–34949.

Brann, D., Tsukahara, T., Weinreb, C., Logan, D.W., and Datta, S.R. (2020).

Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium

suggests mechanisms underlying anosmia in COVID-19 patients. bioRxiv.

https://doi.org/10.1101/2020.03.25.009084.

Carsana, L., Sonzogni, A., Nasr, A., Rossi, R., Pellegrinelli, A., Zerbi, P., Rech,

R., Colombo, R., Antinori, S., Corbellino, M., et al. (2020). Pulmonary post-mor-

tem findings in a large series of COVID-19 cases from Northern Italy. medRxiv.

https://doi.org/10.1101/2020.04.19.20054262.

Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., and Britton, P. (2001).

Reverse genetics system for the avian coronavirus infectious bronchitis virus.

J. Virol. 75, 12359–12369.

CDC COVID-19 Response Team (2020). Preliminary estimates of the preva-

lence of selected underlying health conditions among patients with coronavi-

rus disease 2019 United States, February 12-March 28, 2020. MMWR Morb.

Mortal. Wkly. Rep. 69, 382–386.

Chan, K.S., Zheng, J.P., Mok, Y.W., Li, Y.M., Liu, Y.N., Chu, C.M., and Ip, M.S.

(2003). SARS: prognosis, outcome and sequelae. Respirology 8 (Suppl ),

S36–S40.

Chen, G., Sun, L., Kato, T., Okuda, K., Martino, M.B., Abzhanova, A., Lin, J.M.,

Gilmore, R.C., Batson, B.D., O’Neal, Y.K., et al. (2019). IL-1b dominates the

promucin secretory cytokine profile in cystic fibrosis. J. Clin. Invest. 129,

4433–4450.

Cockrell, A.S., Johnson, J.C., Moore, I.N., Liu, D.X., Bock, K.W., Douglas,

M.G., Graham, R.L., Solomon, J., Torzewski, L., Bartos, C., et al. (2018). A

https://doi.org/10.1016/j.cell.2020.05.042
https://doi.org/10.1016/j.cell.2020.05.042
https://doi.org/10.1128/JVI.00027-18
https://doi.org/10.1101/2020.04.07.030742
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref3
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref3
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref3
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref3
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref4
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref4
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref5
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref5
https://doi.org/10.1016/j.jacbts.2020.04.002
https://doi.org/10.1016/j.jacbts.2020.04.002
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref7
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref7
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref8
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref8
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref8
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref9
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref9
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref9
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref9
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref10
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref10
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref11
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref11
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref11
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref11
https://doi.org/10.1101/2020.03.25.009084
https://doi.org/10.1101/2020.04.19.20054262
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref14
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref14
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref14
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref15
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref15
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref15
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref15
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref16
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref16
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref16
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref16
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref17
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref17
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref17
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref17
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref18
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref18


Guan, W.J., Liang, W.H., Zhao, Y., Liang, H.R., Chen, Z.S., Li, Y.M., Liu, X.Q.,

Chen, R.C., Tang, C.L., Wang, T., et al.; China Medical Treatment Expert

Group for COVID-19 (2020). Comorbidity and its impact on 1590 patients

with COVID-19 in China: a nationwide analysis. Eur. Respir. J. 55, 2000547.

https://doi.org/10.1183/13993003.00547-2020.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erich-
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Gonzá lez, J.M., Pé nzes, Z., Almazá n, F., Calvo, E., and Enjuanes, L. (2002). 
Stabilization of a full-length infectious cDNA clone of transmissible gastroen-
teritis coronavirus by insertion of an intron. J. Virol. 76, 4655–4661.

Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gu-

lyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., 
et al.; Coronaviridae Study Group of the International Committee on Taxonomy 
of Viruses (2020). The species Severe acute respiratory syndrome-related co-
ronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 
5, 536–544.

http://refhub.elsevier.com/S0092-8674(20)30675-9/sref18
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref18
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref18
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref19
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref19
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref19
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref20
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref20
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref20
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref20
https://doi.org/10.1101/2019.12.21.884759
https://doi.org/10.1101/2019.12.21.884759
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref22
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref22
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref23
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref23
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref23
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref23
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref24
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref24
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref24
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref25
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref25
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref25
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref25
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref26
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref26
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref26
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref26
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref27
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref27
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref27
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref27
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref29
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref29
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref29
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref29
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref28
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref28
https://doi.org/10.4187/respcare.07332
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref31
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref31
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref31
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref31
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref32
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref32
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref32
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref32
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref33
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref33
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref34
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref34
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref34
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref35
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref35
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref35
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref35
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref35
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref35
https://doi.org/10.1183/13993003.00547-2020
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref37
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref37
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref37
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref37
http://cran.r-project.org/web/packages/multcomp/index.html
http://cran.r-project.org/web/packages/multcomp/index.html
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref38
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref38
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref38
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref39
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref39
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref39
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref40
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref40
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref40
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref41
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref41
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref42
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref42
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref43
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref43
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref43
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref44
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref44
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref44
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref45
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref45
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref45
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref45
https://doi.org/10.1111/bjh.16727
https://doi.org/10.1111/bjh.16727
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref47
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref47
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref47
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref47
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref48
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref48
https://doi.org/10.1183/13993003.00688-2020
https://doi.org/10.1038/s41586-020-2271-3
https://doi.org/10.1016/j.trsl.2020.04.007
https://doi.org/10.1128/mBio.00176-20
https://doi.org/10.1128/mBio.00176-20
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref54
http://refhub.elsevier.com/S0092-8674(20)30675-9/sref54


Rockx, B., Kuiken, T., Herfst, S., Bestebroer, T., Lamers, M.M., OudeMunnink,

B.B., de Meulder, D., van Amerongen, G., van den Brand, J., Okba, N.M.A.,

et al. (2020). Comparative pathogenesis of COVID-19, MERS, and SARS in a

nonhuman primate model. Science, eabb7314. https://doi.org/10.1126/sci-

ence.abb7314.

Rogers, A.J., Solus, J.F., Hunninghake, G.M., Baron, R.M., Meyer, N.J., Janz,

D.R., Schwartz, D.A., May, A.K., Lawson,W.E., Blackwell, T.S., andWare, L.B.

(2018). MUC5B promoter polymorphism and development of acute respiratory

distress syndrome. Am. J. Respir. Crit. Care Med. 198, 1342–1345.

Sajuthi, S.P., DeFord, P., Jackson, N.D., Montgomery, M.T., Everman, J.L.,

Rios, C.L., Pruesse, E., Nolin, J.D., Plender, E.G., Wechsler, M.E., et al.

(2020). Type 2 and interferon inflammation strongly regulate SARS-CoV-2

related gene expression in the airway epithelium. bioRxiv. https://doi.org/10.

1101/2020.04.09.034454.

Santarpia, J.L., Rivera, D.N., Herrera, V., Morwitzer, M.J., Creager, H., Santar-

pia, G.W., Crown, K.K., Brett-Major, D., Schnaubelt, E., Broadhurst, M.J., et al.

(2020). Transmission potential of SARS-CoV-2 in viral shedding observed at

the University of Nebraska Medical Center. medRxiv. https://doi.org/10.

1101/2020.03.23.20039446.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch,

T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an

open-source platform for biological-image analysis. Nat. Methods 9, 676–682.

Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Men-

achery, V.D., Graham, R.L., Swanstrom, J., Bove, P.F., Kim, J.D., et al. (2013).

Reverse genetics with a full-length infectious cDNA of the Middle East respira-

tory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 110, 16157–16162.

Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A.,

and Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Na-

ture 581, 221–224. https://doi.org/10.1038/s41586-020-2179-y.

Sims, A.C., Baric, R.S., Yount, B., Burkett, S.E., Collins, P.L., and Pickles, R.J.

(2005). Severe acute respiratory syndrome coronavirus infection of human cili-

ated airway epithelia: role of ciliated cells in viral spread in the conducting air-

ways of the lungs. J. Virol. 79, 15511–15524.

Sodhi, C.P., Nguyen, J., Yamaguchi, Y., Werts, A.D., Lu, P., Ladd, M.R., Ful-

ton, W.B., Kovler, M.L., Wang, S., Prindle, T., Jr., et al. (2019). A dynamic vari-

ation of pulmonary ACE2 is required to modulate neutrophilic inflammation in

response to Pseudomonas aeruginosa lung infection in mice. J. Immunol. 203,

3000–3012.

Speen, A.M., Hoffman, J.R., Kim, H.H., Escobar, Y.N., Nipp, G.E., Rebuli, M.E.,

Porter, N.A., and Jaspers, I. (2019). Small molecule antipsychotic aripiprazole

potentiates ozone-induced inflammation in airway epithelium. Chem. Res.

Toxicol. 32, 1997–2005.

Sungnak,W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., Ta-
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal human MUC5B Santa Cruz RRID: AB_2282256

Mouse monoclonal human MUC5AC Invitrogen RRID: AB_10978001

Rabbit polyclonal SARS coronavirus nucleocapsid Invitrogen RRID: AB_1087200

Mouse monoclonal anti-acetylated tubulin Sigma-Aldrich RRID: AB_609894

Rabbit polyclonal prosurfactant protein C Sigma-Aldrich RRID: AB_91588

Goat polyclonal AGER R&D Systems RRID: AB_354628

Rat monoclonal anti-tubulin Millipore RRID: AB_2210391

Goat polyclonal anti-GFP AbCam RRID: AB_305643

Rabbit polyclonal anti-GFP AbCam RRID: AB_305564

Alexa Fluor phalloidin 647 Invitrogen RRID: AB_2620155

Alexa Fluor phalloidin 555 Invitrogen Cat#A34055

Hoechst 33342 Invitrogen Cat#H3570

Goat anti-CCSP Sigma-Aldrich Cat#ABS1673

Alexa Fluor 488-AffiniPure Donkey Anti-Goat IgG (H+L)

(min X Ck,GP,Sy Hms,Hrs,Hu,Ms,Rb,Rat Sr Prot) antibody

Jackson ImmunoResearch RRID: AB_2336933

Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 555

Invitrogen RRID: AB_162543

Donkey anti-Rat IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 594

Invitrogen RRID: AB_2535795

Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

Invitrogen RRID: AB_162542

Alexa Fluor 488-AffiniPure Donkey Anti-Rabbit IgG

(H+L) antibody

Jackson ImmunoResearch RRID: AB_2313584

Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 555

Invitrogen RRID: AB_2536180

Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary

Antibody, Alexa Fluor 647

Thermo Fisher Scientific RRID: AB_2535864

S230 UNC protein core facility N/A

S230.15 UNC protein core facility N/A

S227.14 UNC protein core facility N/A

S227.9 UNC protein core facility N/A

MERS-27 UNC protein core facility N/A

m336 UNC protein core facility N/A

EDE1-C10 UNC protein core facility N/A

anti-SARS-CoV N protein Invitrogen Cat#PA1-41098

Bacterial and Virus Strains

SARS-CoV-2 WA1 isolate Natalie J. Thornburg, CDC GenBank: MT020880

icSARS-CoV-2-WT This paper GenBank: MT461669

icSARS-CoV-2-GFP This paper GenBank: MT461670

icSARS-CoV-2-nLuc-GFP This paper GenBank: MT461671

Biological Samples

Human nasal, tonsil, and lung samples from CF and

non-CF subjects

Marsico Lung Institute, UNC See Table S1 for a list of donors

Human nasal and lung samples from healthy volunteers NHLBI See Table S1 for a list of donors

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human lung histology sections from COVID-19 subjects University of New Mexico,

New York Presbyterian Hospital

See STAR Methods

SARS patient serum samples (Toronto) University Health Network,

MaRS Center, Canada

IRB#:UHN REB 03-0250

COVID-19 serum samples UNC Hospital IRB#:20-1141

Mouse serum anti SARS-CoV-2 spike This paper N/A

Mouse serum anti SARS-CoV-2 nucleocapsid This paper N/A

Chemicals, Peptides, and Recombinant Proteins

Recombinant human IL1b protein R&D Systems Cat#201-LB-005

Recombinant human IL13 protein R&D Systems Cat#213-ILB-005

Recombinant human IFNb protein R&D Systems Cat#8499-IF-010

Hydrocortisone Sigma Cat#H0888

EGF Invitrogen Cat#PHG0313

Insulin Sigma Cat#I5500

Amphotericin B Fisher Scientific Cat#BP264550

Gentamincin GIBCO Cat#15710-064

Cholera toxin Sigma Cat#C8052

Y-27632 Enzo life Science Cat#ALX-270-333-M025

TRIzol Reagent ThermoFisher Cat#15596026

Critical Commercial Assays

Direct-zol RNA Miniprep ZYMO Research Cat#R2051

iScript� Reverse Transcription Supermix for RT-qPCR BIO-RAD Cat#1708840

SsoAdvanced Universal Probes Supermix BIO-RAD Cat#1725280

RNAScope Multiplex Fluorescent Reagent Kit v2 ACD Cat#323100

RNAScope 2.5 HD Duplex Reagent Kit ACD Cat#322430

RNAScope 2.5 HD Reagent Kit-RED ACD Cat#322350

RNAScope probe FOXJ1 (channel 2) ACD Cat#476351-C2

RNAScope probe MUC5B (channel 2) ACD Cat#449888-C2

RNAScope probe ACE2 (channel 1) ACD Cat#848151

RNAScope probe ACE2 (channel 2) ACD Cat#848151-C2

RNAScope probe TMPRSS2 (channel 1) ACD Cat#470341

RNAScope probe SARS-CoV-2, S gene encoding the

spike protein (channel 1)

ACD Cat#848561

RNAScope probe SARS-CoV-2, Antisense strand of

the S gene (channel 1)

ACD Cat#845701

RNAScope probe SFTPC (channel 2) ACD Cat#452561-C2

RNAScope probe HOPX (channel 1) ACD Cat#423001

Vector� TrueVIEW� Autofluorescence Quenching Kit Vector Laboratories Cat#SP-8400

Taqman probe TBP Fisher Scientific Cat#Hs99999910_m1

Taqman probe GAPDH Fisher Scientific Cat#Hs02758991_g1

Taqman probe ACE2 Fisher Scientific Cat#Hs01085333_m1

Taqman probe TMPRSS2 Fisher Scientific Cat#Hs01122322_m1

Nano-Glo Luciferase Assay Promega Cat#N1130

QIAprep Spin Mini-prep Kit QIAGEN Cat#27106

ExpiFectamine 293 transfection kit Thermo Cat#A14526

NorthernMax-Gly Kit Invitrogen Cat#AM1946

QIAquick Gel Extraction kit QIAGEN Cat#28706

mMESSAGE mMACHINE T7 transcription kit ThermoFisher Cat#AM1344

(Continued on next page)
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Chemiluminescent Nucleic Acid Detection Module ThermoFisher Cat#89880

Oligotex mRNA Mini Kit QIAGEN Cat#70022

Deposited Data

icSARS-CoV-2 WT genomic sequence GenBank MT461669

icSARS-CoV-2-GFP genomic sequence GenBank MT461670

icSARS-CoV-2-nLuc-GFP genomic sequence GenBank MT461671

Experimental Models: Cell Lines

Simian kidney Vero ATCC Cat#CCL81

Simian kidney Vero E6 ATCC Cat#CRL1586

LLC-MK ATCC Cat#CCL-7

UNCNN2TS Marsico Lung Institute, UNC N/A

Primary nasal cells Marsico Lung Institute, UNC N/A

Human bronchial epithelium Marsico Lung Institute, UNC N/A

Human alveolar type II pneumocytes Marsico Lung Institute, UNC N/A

Human primary lung microvascular endothelial cells Marsico Lung Institute, UNC N/A

Human primary lung fibroblasts Marsico Lung Institute, UNC N/A

Experimental Models: Organisms/Strains

Mouse: BALB/c Jackson Labs Cat#000651

Oligonucleotides

Leader forward primer: 50- GTTTATACCTTCCCAGGT

AACAAACC �30
This paper N/A

M gene reverse primer: 50- AAGAAGCAATGAAGTA

GCTGAGCC �30
This paper N/A

N gene primer: 50-GTAGAAATACCATCTTGGACT

GAGATC �30
This paper N/A

RT-PCR primer: 50-GCTTCTGGTAATCTATTACTAG

ATAAACG-30
This paper N/A

RT-PCR primer: 50- AAGACATCAGCATACTCCTG

ATTAGG �30
This paper N/A

biotin-labeled oligomer: 50- BiodT/GGCTCTGTTGGGA

ATGTTTTGTATGCG/BiodT-30
This paper N/A

Recombinant DNA

7 plasmids of icSARS-CoV-2 WT This paper N/A

1 plasmid encoding icSARS-CoV-2-nLuc-GFP reporter This paper N/A

1 plasmid encoding icSARS-CoV-2-GFP reporter This paper N/A

Software and Algorithms

QuantStudio 6 Flex System ThermoFisher Scientific Cat#4485697

QuantStudio Software v1.3 ThermoFisher Scientific https://thermofisher.com

GraphPad Prism 8 GraphPad https://graphpad.com

Olyvia V3.1.1 Olympus https://olympus-lifescience.com

Adobe Photoshop Adobe http://www.adobe.com/nl/products/

photoshop.html

R version 3.5.1 R Foundation https://www.r-project.org/

Other

T4 DNA Ligase NEB Cat#M0202S

BsmBI NEB Cat#R0580

SacI NEB Cat#R0156S

PrimeSTAR GXL HiFi DNA polymerase TaKaRa Cat#RF220Q

https://thermofisher.com
https://graphpad.com
https://olympus-lifescience.com
http://www.adobe.com/nl/products/photoshop.html
http://www.adobe.com/nl/products/photoshop.html
https://www.r-project.org/


RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ralph S. 
Baric (rbaric@email.unc.edu).

Materials Availability
Material and reagents generated in this study will be made available upon installment of a material transfer agreement (MTA).

Data and Code Availability
Genomic sequences of recombinant viruses icSARS-CoV-2-WT, icSARS-CoV-2-GFP and icSARS-CoV-2-nLuc-GFP, which were 
generated in this study, have been deposited to GenBank (Accession # MT461669 to MT461671).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Excess surgical pathology tissues were obtained from the University of North Carolina (UNC) Tissue Procurement and Cell Culture 
Core under protocol #03-1396 approved by the UNC Biomedical IRB. Informed consent was obtained from tissue donors or autho-
rized representatives. Cystic fibrosis lung tissue was obtained from donors undergoing transplantation, while human lungs from 
previously healthy individuals unsuitable for transplantation were obtained from Carolina Donor Services (Durham, NC), the National 
Disease Research Interchange (Philadelphia, PA), or the International Institute for Advancement of Medicine (Edison, NJ). Upper 
airway tissues were obtained from subjects undergoing elective surgeries. Excised tissue specimens were dissected and fixed in 
10% neutral buffered formalin for 48 h followed by paraffin-embedding. The paraffin blocks were cut to produce 5 mm serial sections 
for RNA-ISH and immunohistochemistry. For qRT-PCR for ACE2 and TMPRSS2 expression in nasal and bronchial epithelial cells, 
nasal and bronchial epithelial cells were obtained from matched healthy volunteers by nasal scraping and bronchoscopic brush-
biopsy under the National Heart, Lung, and Blood Institute IRB-approved protocol #07-H-0142. For single cell-RNA in situ hybridi-
zation (scRNA-ISH), human bronchial epithelial cells were obtained from the left main bronchus of healthy non-smoker volunteers by 
bronchoscopic brush-biopsy under the UNC Biomedical IRB-approved protocol #91-0679. Nasal surface epithelial cells were iso-
lated from the resected nasal tissues as previously described (Fulcher and Randell, 2013; Okuda et al., 2019). After the isolation 
of nasal surface epithelial cells, the remaining nasal tissues were micro-dissected to isolate submucosal glands under the light mi-

croscope. Donor demographics was shown in Tables S1 and S2.
Tissue blocks or cut sections obtained from four COVID-19 autopsy lungs were obtained from Drs. Ross. E. Zumwalt (University of 

New Mexico) and Steven Salvatore and Alain Borczuk (New York Presbyterian Hospital). Donor demographics were described 
as below.

Donor 1. 40-year-old, male. Medical history: Diabetes mellitus. Clinical course: This donor had upper respiratory infection (URI) 
symptoms three days before he was found dead at home. No intubation was conducted. Postmortem testing of the lung was positive 
for SARS-CoV-2.

Donor 2. 64-year-old, male. Medical history: Diabetes mellitus, diabetic nephropathy, hepatitis C, heart failure, and coronary artery 
disease. Clinical course: This donor was transferred to ER because of fever and respiratory distress. Nasal swab was positive for 
SARS-CoV-2. He died five h after urgent care. No intubation was conducted.

Donor 3. 95-year-old, female. Medical history: Hypertension, hyperlipidemia, Alzheimer’s disease. Clinical course: This donor was 
transferred to ER because of respiratory distress. Nasal swab was positive for SARS-CoV-2. She died 48 h after urgent care. No intu-
bation was conducted.

Donor 4. 69-year-old, male. Medical history: acute myeloid leukemia, type 2 diabetes mellitus. Clinical course: This donor was 
admitted to the hospital because of respiratory distress eight days after initial URI symptoms and diagnosis of SARS-CoV-2. He 
died five days post admission. No intubation was conducted.

Primary Cell Culture
Primary human nasal epithelial cells (HNE) were collected from healthy volunteers by curettage under UNC Biomedical IRB-approved 
protocols (#11-1363 and #98-1015) after informed consent as previously described (Kesic et al., 2011; Knowles et al., 2014). Briefly, 
superficial scrape biopsies were harvested from the inferior nasal turbinates under direct vision through a 9 mm reusable polypro-
pylene nasal speculum (Model 22009) on an operating otoscope with speculum (Model 21700). Both nostrils were scraped 5 times 
without anesthesia using a sterile, plastic nasal curette (Arlington Scientific). Nasal cells were expanded using the conditionally re-
programmed cell (CRC) method (Gentzsch et al., 2017) or in Pneumacult EX Plus media (Stem Cell Technologies) (Speen et al., 2019) 
and then cultured on porous Transwell (Corning) supports in Pneumacult air liquid interface (ALI) media (Stem Cell Technologies). 
Human bronchial epithelial [large airway epithelial (LAE)] and bronchiolar [small airway epithelial (SAE)] cells, human alveolar type 
II pneumocytes (AT2), and human primary lung microvascular endothelial cells (MVE) and fibroblasts (FB) were isolated from freshly

mailto:rbaric@email.unc.edu


excised normal human lungs obtained from transplant donors with lungs unsuitable for transplant under IRB-approved protocol (#03-

1396), as previously described (Fulcher and Randell, 2013; Okuda et al., 2019).

Cell Lines
Simian kidney cell lines Vero (ATCC # CCL81), Vero E6 (ATCC # CRL1586), and LLC-MK (ATCC# CCL-7) were purchased from ATCC

and preserved in our laboratory. The Vero-furin cell line was reported previously (Mukherjee et al., 2016). LLC-MK cells expressing

TMPRSS2 were generated in our laboratory. A novel immortalized nasal cell line (UNCNN2TS) was created by lentiviral overexpres-

sion of Bmi-1 and hTERT (Fulcher et al., 2009) in primary nasal cells, and subsequent lentiviral addition of SV40 T antigen

(pBSSVD2005 was a gift from David Ron, Addgene plasmid # 21826). UNCNN2T cells are grown and infected in EpiX media

(Propagenix).

Virus strains
Clinical SARS-CoV-2 isolate WA1 strain was provided by Dr. Natalie J. Thornburg at the U.S. Centers for Disease Control and Pre-

ventive (CDC). The virus was isolated from the first US COVID-19 patient identified in Washington state (GenBank Accession#:

MT020880). Recombinant CoVs icSARS-CoV-Urbani, icSARS-CoV-GFP, icSARS-CoV-nLuc and icMERS-CoV-nLuc were gener-

ated in our laboratory as described previously (Scobey et al., 2013; Yount et al., 2003). Briefly, the strategy to synthesize full-length

cDNA clones for SARS-CoV-Urbani and MERS-CoV was identical to the method reported herein, but with different restriction sites

and junctions. The GFP and nLuc reporters were inserted into the accessory ORF7a of the icSARS-CoV-Urbani clone, whereas the

nLuc reporter gene was introduced into the accessory ORF5a of the icMERS-CoV clone. Virus stocks were propagated on Vero E6

cells in minimal essential medium containing 10% fetal bovine serum (HyClone) and supplemented with penicillin/kanamycin

(Gibico). Virus plaques were visualized by neutral red staining at two days post-infection. The UNC Institutional Biosecurity Commit-

tee and the National Institute of Allergy and Infectious Disease (NIAID) have approved the SARS-CoV-2 molecular clone project. All

viral infections were performed under biosafety level 3 (BSL-3) conditions at negative pressure, and Tyvek suits connected with per-

sonal powered-air purifying respirators.

Human serum samples
SARS serum samples were obtained fromSARS convalescent patients fromUniversity Health Network, MaRSCenter, Toronto, Can-

ada that had a confirmed SARS infection under IRB-approved protocol (#UHN REB 03-0250). COVID-19 serum samples were also

provided as coded material and were deemed ‘‘not human subject research’’ by the UNC School of Medicine Biomedical IRB

(#20-1141).

METHOD DETAILS

Primary human cell culture and infection
Nasal cells were expanded using the conditionally reprogrammed cell (CRC)method (Gentzsch et al., 2017) or in Pneumacult EX Plus

media (StemCell Technologies) (Speen et al., 2019) and then cultured on porous Transwell (Corning) supports in Pneumacult air liquid

interface (ALI) media (Stem Cell Technologies). Human LAE and SAE cells were cultured as previously described (Fulcher and Ran-

dell, 2013; Okuda et al., 2019). Briefly, Isolated LAE and SAE cells were co-cultured with mitomycin-treated 3T3 J2 cells on collagen-

coated tissue culture plastic dishes in DMEM media supplemented with 10 mM Y-27632 (Enzo Life Science). At 70%–90% conflu-

ence, LAE and SAE cells were passaged and sub-cultured for expansion. P2 LAE and SAE cells were transferred to human placental

type IV collagen-coated, 0.4 mmpore size Millicell inserts (Millipore, PICM01250). The LAE and SAE cells were seeded at a density of

2.83 105 cells/cm2 and cultured in UNC ALI media. Upon confluence, cells were maintained at an ALI by removing apical media and

providing UNC ALI media to the basal compartment only. Medium was replaced in the basal compartment twice a week, and the

apical surfaces were washed with PBS once a week. After 28 days, LAE and SAE cells were utilized for SARS-CoV-2 recombinant

viruses infection. Human type II pneumocytes (AT2) were prepared and cultured on porous supports as previously described (Bove

et al., 2010). The AT2 cells are grown in DMEM with P/S and 10% FBS and switched to 4% FBS 24 h prior to infection. Cells were

studied within three days and after five days, as they transdifferentiate into type I pneumocyte (AT1)-like cells. For serum-free and

feeder-free AT2 cell cultures (mixed AT1/AT2 culture), human lung pieces (�2 gm) were washed twice with PBS containing 1% Anti-

biotic-Antimycotic and cut into small pieces. Visible small airways and blood vessels were carefully removed to avoid clogging. Then

samples were digested with 30mL of enzymemixture (collagenase type I: 1.68mg/mL, dispase: 5U/mL, DNase: 10 U/mL) at 37�C for

45 min with rotation. The cells were filtered through a 100 mm strainer and rinsed with 15 mL PBS through the strainer. The super-

natant was removed after centrifugation at 450x g for 10 min and the cell pellet was resuspended in red blood cell lysis buffer for

five minutes, washed with DMEM/F12 containing 10% FBS and filtered through a 40 mm strainer. To purify human AT2 cells, approx-

imately twomillion total lung cells were resuspended in SFmedium and incubated with Human TruStain FcX (BioLegend) followed by

incubation with HTII-280 antibody (Terrace Biotech). The cells were washed with PBS and then incubated with anti-mouse IgM mi-

crobeads. The cells were loaded into LS column (Miltenyi Biotec) and labeled cells collectedmagnetically. HTII-280+ human AT2 cells

(1-33 103) were resuspended in culture medium. Serum-free feeder free medium and AT2 differentiation medium will be described

elsewhere (S.V. and PRT et al., currently under revision in Cell Stem Cell). Culture plates were coated with Cultrex reduced growth



factor basement membrane extract, Type R1 and cultured for five days followed by changing medium to AT2 differentiation medium 
for additional five days.

Human primary lung microvascular endothelial cells (MVE) and fibroblasts (FB) were grown as previously described (Scobey et al., 
2013). For MVE cells, peripheral lung tissue minus the pleura was minced, digested with dispase/elastase, and cells were grown in 
EGM-2 media plus FBS (Lonza). Two or three rounds of CD31 bead purification (Dynabeads; Life Technologies) resulted in > 95%
CD31-positive cells by flow cytometry that were used between passages 5 and 10. FBs were obtained by finely mincing distal human 
lung tissue and plating on scratched type 1/3 collagen-coated dishes in Dulbecco’s modified Eagle medium with high glucose 
(DMEMH) media plus 10% FBS, antibiotics, and antimycotics. Cells were released using trypsin/EDTA and subcultured in DMEMH, 
10% FBS and P/S. The subcultured cells were elongated, spindly and negative for CD31 and pan-cytokeratin by flow cytometry and 
immunofluorescence, respectively.

icSARS-CoV-2-GFP virus infections were performed using well differentiated air-liquid interface (ALI) cultures of five donor spec-
imens of human nasal epithelial (HNE) and large airway epithelial (LAE) cells using an MOI of three. Small airway epithelial (SAE) cell 
ALI cultures were created as previously described (Okuda et al., 2019). Paired LAE / SAE cells were inoculated with a SARS-CoV-2 
clinical isolate, icSARS-CoV-2-WT, and icSARS-CoV-2-GFP, as well as wild-type icSARS-CoV-Urbani and icSARS-CoV-GFP on 
LAE, using an MOI of 0.5 for each virus. Transwell-cultured primary cells were inoculated with 200ul of virus via the apical surface 
and allowed to incubate at 37�C for two h. Following incubation, virus was removed, and cells were washed twice with 500ul 
PBS. Cells were returned to 37�C for the remainder of the experiment and observed for fluorescent signal, when appropriate, every 
12-24 h. 100ul PBS was added to the apical surface of each culture and allowed to incubate for 10 min at 37�C in order to obtain an 
apical wash sample, at time points for analysis of viral replication by plaque assay. At the last time point, cells were lysed with 500ul 
TRIzol reagent (Invitrogen) to obtain total final RNA for analysis.
Primary human bronchial epithelial cell culture and cytokines exposure
Primary human LAE cells from normal donors (obtained from donors without previously known pulmonary diseases) were cultured on 
the human placenta collagen IV (Sigma Cat#C-7521) coated transwell (Corning Cat#3460) under air-liquid interface (ALI) condition. 
The apical surface was washed with PBS, and ALI medium (Fulcher et al., 2009) was replaced only in the basal compartment two-

three times per week, and cells were cultured under ALI conditions for four weeks to allow full differentiation. Exposure with recom-

binant human cytokines was administrated started at the 5th week after ALI culture. All recombinant human cytokines (IL1b at 10 ng/
mL, IL13 at 10ng/mL, and IFNb at 10ng/m of final concentration in ALI media) were added to basolateral side of ALI media, and media 
were changed after three days supplied with freshly diluted cytokines. Cells were collected at day five – day seven for RNA isolation.

Whole-mount immunostaining and imaging
Well-differentiated mock or icSARS-CoV-2-GFP-infected LAE ALI cultures were fixed twice for 10 min in 4% formaldehyde in PBS 
and washed and stored in PBS. The GFP signal was enhanced by staining with anti-GFP antibody (Abcam ab6556; 0.5 ug/mL), a 
Venezuelan equine encephalitis virus (VEEV)-like replicon particle-immunized mouse antiserum against SARS-CoV-2 N protein 
(1:4000 dilution) and polyclonal rabbit anti-SARS-CoV N protein (Invitrogen PA1-41098, 0.5 ug/mL) using species-specific secondary 
antibodies as previously described (Ghosh et al., 2018). The cultures were also imaged for a-tubulin (Millipore MAB1864; 3ug/mL), 
MUC5AC (ThermoScientific 45M1; 4 ug/mL), MUC5B [polyclonal rabbit against a MUC5B peptide (MAN5BII), 1:1000] (Thornton 
et al., 2000), and CCSP (Sigma 07-623; 1:2000) as indicated. Filamentous actin was localized with phalloidin (Invitrogen A22287), 
and DNA with Hoechst 33342 (Invitrogen). An Olympus FV3000RS confocal microscope in Galvo scan mode was used to acquire 
5-channel Z stacks by 2-phase sequential scan. Representative stacks were acquired with a 60X oil objective (xyz = 212um x 
212um x �25um), and are shown as Z-projections or single-slice, XZ cross sections to distinguish individual cell features and to char-
acterize the infected cell types. A 20X objective was used to acquire 2D, single-channel, apical snapshots of nine fields (636 um 3 
636 um; combined area = 3.64mm2), selected in evenly spaced grids across each sham infected donor culture, and ImageJ was used 
to measure the relative apical culture surface covered by multiciliated cells.

Immunohistochemistry
Immunohistochemical staining was performed on COVID-19 autopsy lung sections according to a protocol as previously described 
(Okuda et al., 2019). Briefly, paraffin-embedded sections were baked at 60c�C for 2–4chours, and deparaffinized with xylene (2 
changes 3 5 min) and graded ethanol (100% 2 3 5 min, 95% 1 3 5 min, 70% 1 3 5 min). After rehydration, antigen retrieval was 
performed by boiling the slides in 0.1cM sodium citrate pH 6.0 (3 cycles with microwave settings: 100% power for 6.5cmin, 60%
for 6cmin, and 60% for 6cmin, refilling the Coplin jars with distilled water after each cycle). After cooling and rinsing with distilled wa-

ter, quenching of endogenous peroxidase was performed with 0.5% hydrogen peroxide in methanol for 15cmin, slides washed in 
PBS, and blocked with 4% normal donkey serum, for an h at RT. Primary antibody (MUC5AC: 45M1, 1:1000, MUC5B: H300, 
1:1000, SARS-CoV-2 nucleocapsid: 1:500, Anti-SARS mouse antiserum: 1:4000, Acetylated-a-tubulin: 1:1000, AGER: 1:400) 
were diluted in 4% normal donkey serum in PBST and incubated over night at 4c�C. Mouse and rabbit gamma globulin was used 
as an isotype control at the same concentration as the primary antibody. Sections were washed in PBST and secondary antibodies 
(biotinylated donkey anti-rabbit IgG, at 1:200 dilution in 4% normal donkey serum in PBST for chromogenic DAB staining for MUC5B, 
Alexa Fluor 488 donkey anti-rabbit IgG, at 1:1000 dilution and Alexa Fluor 594 donkey anti-mouse IgG, at 1:1000 dilution for fluores-
cent staining) were applied for 60cmin at RT. After washing in PBST, the Vector� TrueVIEW Autofluorescence Quenching Kit (Vector



laboratories) was used to reduce background staining, and glass coverslips were placed over tissue sections with the ProLong Gold

Antifade Reagent with DAPI (Invitrogen) for fluorescent staining. For chromogenic DAB staining, slides were incubated with avidin-

peroxidase complex according to the manufacturer’s instructions (Vectastain kit, Vector laboratories), washed, incubated with the

chromogenic substrate (Immpact Novared, Vector laboratories) and counterstained with Fast Red. Coverslipped slides were

scanned and digitized using an Olympus VS120 whole slide scanner microscope with a 40X/60X 0.95 NA objective and Olympus

confocal microscope with a 40X 0.6 NA or 60X 1.4 NA objective.

Cell dissociation for single cell-RNA in situ hybridization (scRNA-ISH)
Fresh bronchoscopically brush-biopsied human main bronchial epithelial cells, nasal surface epithelial and submucosal gland cells

isolated from the resected nasal tissues were incubated with Accutase solution for 30 min at 37�C. The Accutase-treated cells were

centrifuged (450 g, 2 min, 4�C) and then incubated with 10 mL HBSS (Ca+, Mg+) buffer containing DNase I (0.1 mg/mL) (Roche

#10104159001) and collagenase IV (1 mg/mL) (GIBCO #17104-019) for 10 min and 30 min for bronchial/nasal surface epithelial

cell and nasal submucosal gland cell isolation, respectively at 37�C with intermittent agitation. Nasal submucosal glands were mi-

cro-dissected from the nasal tissues under microscopy. The tissues were centrifuged (450 g, 2 min, 4�C) and then incubated with

10 mL HBSS (Ca+, Mg+) buffer containing DNase I (0.1 mg/mL) and collagenase IV (1 mg/mL) for 30 min at 37�C with intermittent

agitation followed by additional incubation with Trypsin-EDTA (Final concentration: 0.125%, GIBCO #25200-056) for 20 min at

37�C. After incubation, enzymes were inactivated by adding 500 mL fetal bovine serum. Dissociated cells were filtered through a

40-mm cell strainer, centrifuged (450 g, 2 min, 4�C) and resuspended in PBS, adjusted to 105 cells/mL. Cell viability was examined

by trypan blue dye exclusion. Single cell suspension was cytocentrifuged (55 g, 4 min, StatSpin CytoFuge2, Beckman Coulter) and

fixed in 10%NBF for 30 min at room temperature. The cytocentrifuged cells were washed with PBS three times and then dehydrated

with graded ethanol (50% 1 min, 70% 1 min, 100% 1 min). The slides were stored in 100% ethanol at �20�C until future use for

scRNA-ISH.

RNA in situ hybridization
RNA-ISH was performed on cytocentrifuged single cells using the RNAscope Multiplex Fluorescent Assay v2, and on paraffin-

embedded 5 mm tissue sections using the RNAscope 2.5 HD Reagent Kit and RNAscope 2.5 HD Duplex Reagent Kit according

to the manufacturer’s instructions (Advanced Cell Diagnostics). Cytospin slides were rehydrated with graded ethanol (100%

1min, 70% 1min, 50% 1min), permeabilized with PBS + 0.1% Tween 20 (PBST) at RT for 10 min, incubated with hydrogen peroxide

(Advanced Cell Diagnostics) at RT for 10 min, followed by incubation with 1:15 diluted protease III at RT for 10 min. Tissue sections

were deparaffinized with xylene (2 changes 3 5 min) and 100% ethanol (2 changes 3 1 min), and then incubated with hydrogen

peroxide for 10 min, followed by target retrieval in boiling water for 15 min, and incubation with Protease Plus (Advanced Cell Diag-

nostics) for 15 min at 40�C. Slides were hybridized with custom probes at 40�C for 2 h, and signals were amplified according to the

manufacturer’s instructions. The stained sections were scanned and digitized using an Olympus VS120 light or fluorescent micro-

scope with a 40X 1.35 NA objective and Olympus confocal microscope with a 40X 0.6 NA or 60X 1.4 NA objective.

Calculation of frequency of ACE2 and TMPRSS2-positive cells in distinct anatomical airway regions as identified by
scRNA-seq
Normalized log-transformed count+1 gene x cell matrix and meta-data were downloaded from https://www.genomique.eu/

cellbrowser/HCA/, which represent 77,969 cells that passed quality control. Expression of ACE2 and TMPRSS2 were extracted

from the matrix, and the number of cells with log normalized count > 0 were calculated.

RNA isolation and gene expression analysis by Taqman Assays
For qRT-PCR for ACE2 and TMPRSS2 expression in different airway regions, surface epithelial cells were isolated from freshly

excised normal human lungs obtained from transplant donors by gentle scraping with a convex scalpel blade into F12 medium,

excluding submucosal glands. Following centrifugation (450 g, 5 min, 4�C), the pelleted epithelial cells were resuspended in 1 mL

of TRI Reagent (Sigma). Micro-dissected small airways and peripheral lung parenchyma were homogenized in 1 mL of TRI Reagent

using a tissue homogenizer (Bertin Technologies). Debris was pelleted from the TRI Reagent by centrifugation, and the supernatant

was used for RNA analysis.

The HBE cells growing on the transwell membrane were collected by excision of the whole membrane together with the cells using

razor blade and lysed in TRI Reagent at 37�C shaker for 30min. Total RNAwas purified from the TRI Reagent lysates using the Direct-

Zol RNAminiprep Kit (Zymo Research, cat#R2051), and examined by NanoDropOne Spectrophotometer (ThermoFisher) for its qual-

ity and quantity. 1 mg of total RNA was reverse transcribed to cDNA by iScript Reverse Transcription Supermix (BioRad,

Cat#1708840) at 42�C for one h. Quantitative RT-PCR was performed using Taqman probes (Applied BioSystems) with SsoAd-

vanced Universal Probes Supermix (Bio-Rad, cat#1725280) on QuantStudio6 Real-time PCR machine (Applied Biosystem). The

house-keeping gene used for normalization of gene expression for in vitro cultured HBE was TATA-binding protein (TBP) gene.

See Key Resources Table for detailed information about primers/probes.

https://www.genomique.eu/cellbrowser/HCA/
https://www.genomique.eu/cellbrowser/HCA/


Assembly of SARS-CoV-2 WT and reporter cDNA constructs
Seven cDNA fragments covering the entire SARS-CoV-2 WA1 genome were amplified by RT-PCR using PrimeSTAR GXL HiFi DNA 
polymerase (TaKaRa). Junctions between each fragment contain non-palindromic sites BsaI (GGTCTCN̂NNNN) or BsmBI 
(CGTCTCN̂NNNN) with unique four-nucleotide cohesive ends. Fragment E and F contains two BsmBI sites at both termini, while 
other fragments harbor BsaI sites at the junction. Four-nucleotide cohesive ends of each fragment are indicated in Figure 1A. To 
assist the transcription of full-length viral RNA, we introduced a T7 promoter sequence into the upstream of fragment A, as well 
as a 25nt poly-A tail into the downstream of the fragment G. Each fragment was cloned into high-copy vector pUC57 and verified 
by Sanger sequencing. A silent mutation T15102A was introduced into a conserved region in nsp12 in plasmid D as a genetic marker. 
To enhance the efficiency of recovering SARS-CoV-2 virus in the cell culture, a sgRNA-N construct, encoding a 75nt leader 
sequence, N gene, 30UTR, and a 25nt poly-A tail, was assembled under the control of a T7 promoter. Two reporter viruses, one con-
taining GFP and the other harboring, a GFP-fused nLuc gene, were generated by replacing the ORF7 gene with the reporter genes. 
Generation of full-length RNA transcript and recovery of recombinant viruses
Seven genomic cDNA fragments were digested with appropriate endonucleases, resolved on 0.8% agarose gels, excised and pu-
rified using a QIAquick Gel Extraction kit (QIAGEN). A full-length genomic cDNA was obtained by ligating seven fragments in an equal 
molar ratio with T4 DNA ligase (NEB). We then purified the ligated cDNA with chloroform and precipitated it in isopropanol. The full-
length viral RNA or SARS-CoV-2 sgRNA-N were synthesized using the T7 mMESSAGE mMACHINE T7 transcription kit (Thermo 
Fisher) at 30�C for 4 h. The full-length SARS-CoV-2 transcript and sgRNA-N were mixed and electroporated into 8 3 106 of Vero 
E6 cells. The cells were cultured as usual in the medium for two to three days.

PCR of leader-containing sgRNAs
Viral replication in the electroporated cells was evaluated by amplification of leader sequence-containing sgRNAs. A forward primer 
targeting the leader sequence (50- GTTTATACCTTCCCAGGTAACAAACC �30) was paired with a reverse primer targeting M gene (50-
AAGAAGCAATGAAGTAGCTGAGCC �30) or N gene (50- GTAGAAATACCATCTTGGACTGAGATC �30).

Identification of the genetic marker
To confirm that the introduced T15102A mutation exists in the recombinant viruses, viral RNA was extracted using TRI Reagent 
(Thermo Fisher). A 1579 bp fragment in nsp12 of each virus was amplified by RT-PCR using primer pair 50- GCTTCTGGTAATCTAT 
TACTAGATAAACG-30 and 50- AAGACATCAGCATACTCCTGATTAGG �30. The fragment was subjected to Sanger sequencing or di-
gested with SacI enzyme (NEB).

Northern Blot Analysis
Vero E6 cells were infected with SARS-CoV-2 isolate, icSARS-CoV-2-WT, icSARS-CoV-2-GFP or icSARS-CoV-2-GFP-nLuc at an 
MOI of 1. At 24 h post-infection, we extracted the total cellular RNA using TRIzol Reagent (Thermo Fisher). Poly A-containing 
messenger RNA was isolated from the total RNA using an Oligotex mRNA Mini Kit (QIAGEN). Messenger RNA (0.6-0.7 mg) was sepa-
rated on an agarose gel and transferred to BrightStar-Plus membrane using a NorthernMax-Gly Kit (Invitrogen). Blots were hybridized 
with a biotin-labeled oligomer (50- BiodT/GGCTCTGTTGGGAATGTTTTGTATGCG/BiodT-30), then detected using a Chemilumines-

cent Nucleic Acid Detection Module (Thermo Fisher) using the iBright Western Blot Imaging System (Thermo Fisher).

Generation of SAR-CoV-2 S protein-immunized mouse serum
The SAR-CoV-2 S and N genes was cloned into pVR21 3526 to generate virus replicon particles (VRPs), as previously described (Ag-
nihothram et al., 2018). Briefly, SARS-CoV-2 S or N genes were inserted into pVR21, a vector encoding the genome of a VEEV strain 
3526. The SARS-CoV-2-S-pVR21 construct, a plasmid containing the VEEV envelope glycoproteins, and a plasmid encoding the 
VEEV capsid protein were used to generate T7 RNA transcripts. The RNA transcripts were then electroporated into BHK cells. 
VRPs were harvested 48 h later and purified via high-speed ultra-centrifugation. Two groups of 10-week-old BALB/c mice (Jackson 
Labs) were then inoculated with the VRPs via footpad injection then boosted with the same dose once four weeks later. Serum sam-

ples were collected at 2 weeks post-boosting and were mixed together.

Monoclonal antibody large-scale production
SARS-specific S230, S230.15, S227.14, S227.9 IgG, MERS-specific MERS-27, m336 IgG, and a Dengue-specific EDE1-C10 IgG 
antibody variable heavy and light chain genes were obtained, codon-optimized for human mammalian cell expression, and cloned 
into heavy and light-chain variable-gene-expressing plasmids encoding a human IgG1 Fc region as described previously (Martinez 
et al., 2020). One hundred mg of each variable heavy and light chain plasmids were co-transfected using an ExpiFectamine 293 trans-
fection kit in Expi293F (Thermo) cells at 2.5 million cells/mL in 1L flasks in suspension. Transfected cell supernatants were harvested 
two days later, and the soluble antibody was purified using Pierce protein A beads (Thermo) followed by fast protein liquid chroma-

tography (FPLC). MAbs were buffer exchanged with sterile 1XPBS. Purified mAbs were quality controlled by western blotting and 
Coomassie blue staining to confirm mAb purity.



MERS-CoV, SARS-CoV, and SARS-CoV-2 neutralization assays
Recombinant viruses icMERS-CoV-nLuc, icSARS-CoV-nLuc, and icSARS-CoV-2-nLuc-GFPwere tittered in Vero E6 cells to obtain a

relative light units (RLU) signal of at least 20X the cell only control background. Vero E6 cells were plated at 20,000 cells per well the

day prior in clear bottom black-walled 96-well plates (Corning 3904). Neutralizing antibody serum samples were tested at a starting

dilution of 1:20 andmAb samples were tested at a starting dilution 50 mg/mL andwere serially diluted 4-fold up to eight dilution spots.

icMERS-CoV-nLuc, icSARS-CoV-nLuc, and icSARS-CoV-2-nLuc-GFP viruses were diluted and were mixed with serially diluted an-

tibodies. Antibody-virus complexes were incubated at 37�Cwith 5%CO2 for 1 h. Following incubation, growth media was removed,

and virus-antibody dilution complexeswere added to the cells in duplicate. Virus-only controls and cell-only controls were included in

each neutralization assay plate. Following infection, plates were incubated at 37�C with 5% CO2 for 48 h. After the 48 h incubation,

cells were lysed, and luciferase activity was measured via Nano-Glo Luciferase Assay System (Promega) according to the manufac-

turer specifications. MERS-CoV, SARS-CoV, and SARS-CoV-2 neutralization titers were defined as the sample dilution at which a

50% reduction in RLU was observed relative to the average of the virus control wells.

QUANTIFICATION AND STATISTICAL ANALYSIS

For comparison of gene expression in response to cytokine exposure versus control (PBS) with one culture per code in each group,

we performedWilcoxon matched-pairs signed rank test by Graphpad Prism 8 built in function. For comparison of gene expression in

response to cytokine exposure versus control (PBS) with more than one culture per code in each group, the linear mixed-effect

models analysis were performed. The relative mRNA expression from Taqman assays were analyzed with linear mixed-effect models

using the R package Ime4 (Bates et al., 2015), with treatment as fixed effect and code as random-effect factors. Statistical signifi-

cance were evaluated with the R lmerTest package (Kuznetsova et al., 2017), using the Satterthwarte’s degrees of freedommethod.

Multiple post hoc comparisons of subgroups were performed using the R multcomp package (Hothorn et al., 2006). For cell count

data, generalized linear mixed-effect models (glmer) with Poisson distribution was used. Wilcoxon rank sum test was used to deter-

mine the statistical significance between unpaired two groups in Figures 2D, 2F, 2H, and 6 Bvi using Graphpad Prism 8. One-way

ANOVA followed by Tukey test was used to determine the statistical significance between groups in Figure 6Bv using Graphpad

Prism 8. The ‘‘n’’ numbers for each experiment are provided in the text and figures. p < 0.05 was considered statistically significant.

Co-localization of ACE2 mRNA with marker-genes and quantification
RNA-ISH was performed on cytocentrifuged single cells using RNAscope Multiplex Fluorescent Assay v2, as described above, to

assess colocalization of ACE2mRNA and airway epithelial cell markers, including FOXJ1 (ciliated cells) andMUC5B (secretory cells).

ACE2 probe (channel 1) was combined with each of airway epithelial cell marker (channel 2). The stained cytospin slides were

scanned and digitized using an Olympus VS120 whole slide scanner microscope with a 40X 0.9 numerical aperture objective. Using

Fiji software (Schindelin et al., 2012), quantification for colocalization was performed in the scanned images by an investigator blinded

to slide identification. To calculate the occurrence of ACE2+ cells in preparations, ACE2+ cells and total cells were manually counted,

and the frequency calculated. For quantitative co-localization analysis of ACE2 with airway epithelial marker-defined cells, the num-

ber of visible ACE2 signals (dots) was manually counted in each airway epithelial cell-marker-positive cell. The ACE2+ signals were

quantitated in 200 FOXJ1+ or MUC5B+ cells per subject. One ormore dot signals defined an ACE2+ positive cell, while airway-epithe-

lial-marker-positive cells were defined as cells expressing 10 or more dot signals for the epithelial marker.

Quantification of ACE2 and TMPRSS2 gene expression in tonsillar surface epithelium
Human tonsil tissue sections were analyzed for ACE2 and TMPRSS2 expression using RNA-ISH. Tonsillar surface epithelial regions

with positive RNA ISH signals (4 to 8 regions per donor) were selected for quantification. Signal counts were normalized to the number

of cells as determined by DAPI nuclear stain in each region. For quantification, the stratified epithelial layer was divided into two

layers: 1) surface (flattened epithelial) layer and 2) basal (cuboidal epithelial) layer.



Figure S1. Additional information for the SARS-CoV-2 infectious cDNA clone, related to Figure 1

(A) Electrophoresis of seven restriction enzyme-digested infectious cDNA clone plasmids. Plasmid A was digested with NotI and BsaI; plasmids B, C, and Dwere

digested with BsaI; plasmids E and F were digested with BsmBI; plasmid G was digested with SalI and BsaI.

(B) Amplification SARS-CoV-2 sgRNAs using primers targeting sgRNA-5 (M) and�9 (N). Cellular RNA samples were collected from Vero-E6 cells electroporated

with viral RNA transcripts at 20 h. Mock cells were electroporated with SARS-CoV-2 sgRNA-9 alone.

(C) Alignment of sequences containing the T #15102 in nsp12 gene among 9 different group 2b CoVs.

Supplemental Figures



Figure S2. Cytopathic Effect of Cells Infected with icSARS-CoV-GFP Virus, related to Figure 2
(A) Infected Vero cells supplemented with different concentrations of trypsin.

(B) Infected Vero or Vero-furin cells.

(C) Infected LLC-MK or LLC-MK-TMPRSS2 cells.

All scale bars, 200 mm.



Figure S3. ACE2 and TMPRSS2 expression in human tonsillar epithelium and nasal surface epithelium and submucosal glands, related to

Figure 4

(A) Tonsillar surface squamous epithelium stained with (i) H&E staining and (ii) dual-color-fluorescence RNA-ISH showing TMPRSS2 (green) and ACE2 (red) along

with nuclear staining (blue). Scale bars, 50 um. (iii) Enlarged images of (ii) showing surface (iii) and basal (iv) expression; scale bars, 20um. Images are repre-

sentative from N = 3 tonsils, N = 4-8 regions per tonsil. (v) Signal dots for ACE2 and TMPRSS2 mRNAs were counted and normalized to the number of cells in

surface and basal layer of tonsillar surface epithelium as described in the STAR Methods. Each bar represents the average of N = 4-8 regions for each tonsil

studied. Data are presented in mean ± SD.

(B) Frequency of FOXJ1- orMUC5B-positive cells identified by RNA-ISH among total nasal surface epithelial cells isolated. A total of 1,000 cells were analyzed for

FOXJ1 or MUC5B expression per donor. N = 3.

(C) Cytospins of nasal submucosal glands cells probed by dual-color-immunofluorescent RNA-ISH. (i) shows lack of ACE2 inMUC5B-positve nasal gland cells,

while (ii) depicts occasional co-expression of TMPRSS2 in a subset ofMUC5B-positive cells. Scale bars, 20 mm. (iii) Frequency of detection ofACE2 or TMPRSS2

positive cells in MUC5B positive cells from nasal glands. N = 1 gland preparation, a total of 200 MUC5B positive cells were counted.



Figure S4. Additional data of SARS-CoV and SARS-CoV-2 infected primary human cells, related to Figure 6

(A) Representative whole-mount extended focus views of icSARS-CoV-2-GFP-infected (i) HNE and LAE cell cultures. Red = filamentous actin (phalloidin), White =

a-tubulin (multiciliated cells), Blue = nuclei (Hoechst 33342). Green = GFP (left). Green = SARS-CoV-2 Nucleocapsid (right). Yellow = MUC5AC (left). Yellow =

MUC5B (right); (ii) LAE and SAE cell cultures. Yellow = filamentous actin (phalloidin), White = a-tubulin (multiciliated cells), Blue = nuclei (Hoechst 33342). Green =

GFP (virus). Red = CCSP. Scale bars, 50 mm.

(B) Merged of GFP and bright field mages taken from AT1 and AT2 cells infected with icSARS-CoV-2-GFP at 48 h. The AT-1 cells are present inside the enclosed

areas. Bar = 100 mm.

(C) GFP signals of icSARS2-GFP-infected HNEs collected from five different donors at 72 hpi, MOI = 3.

(D) (i) Fluorescent signals of the two viruses in LAE (ii) Growth curves of three SARS-CoV-2 viruses in LAE from the same donor. Scale bar, 200 mm. (iii) Growth

curves of two SARS-Urbani viruses in LAE. Data are presented in mean ± SD. All the infections in this figure were in MOI = 0.5.



Figure S5. SARS-CoV-2 infection in SARS-CoV-2 autopsy lungs, related to Figure 7

(A) Sections from of a second region of an autopsy lung with SARS-CoV-2 infection were stained by hematoxylin and eosin (H&E) (i) and probed for SARS-CoV-2

by RNA in situ hybridization (ISH) (ii, iii, and iv). Related to Figure 7A.

(B) Frequency of acetylated alpha tubulin, MUC5AC, or MUC5B colocalization with SARS-CoV-2 positive cells in the trachea from a SARS-CoV-2 autopsy. A total

of 200 randomly selected SARS-CoV-2 positive cells were analyzed for each dual staining condition. Related to Figure 7B ii, iii, iv.

(C) Absence of SARS-CoV-2 infection in submucosal glands (SMG). (i-ii) H&E staining (i) and RNA-ISH (ii) for SARS-CoV-2 (red) in a large cartilaginous airway of

one autopsy lung. SARS-CoV-2 is only present in the surface epithelium near the lumen, not in SMG. (iii-iv) H&E (iii) and dual-immunofluorescence staining using

acetylated alpha tubulin (red) and anti-SARS-CoV-2 rabbit polyclonal antibody (green) (iv) from the trachea of a separate autopsy. Related to Figure 7B and S5Di.

(D) Regional distribution of SARS-CoV-2 RNA from trachea to alveoli identified by RNA-ISH in one SARS-2-CoV autopsy lung (in i and ii, viral staining is red; in iii,

viral staining is turquoise). RNA-ISH dual color images demonstrate SARS-CoV-2 RNA and SFTPC mRNA (alveolar type 2 cell marker) localization in alveoli of a

SARS-CoV-2 autopsy lung. SARS-CoV-2 (turquoise) was identified in a SFTPC (red)-positive (iii, arrow) and a SFTPC-negative cell (iv, arrowhead); Scale bars,

2mm (A); 100 mm (C); 20 mm (D).
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