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The expanding Coronavirus Disease 2019 (COVID-19) pan-
demic, caused by Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2), has had an unprecedented impact 
on modern human civilization, resulting in over 1.1 million 
deaths globally. Pandemic spread of the virus in naïve popu-
lations may select for mutations that alter pathogenesis, vir-
ulence and/or transmissibility. Despite the presence of a CoV 
proof-reading function in viral replication (1, 2), recent re-
ports identified an emergent D614G substitution in the spike 
glycoprotein of SARS-CoV-2 strains that is now the most prev-
alent form globally. Patients infected with the D614G variant 
are associated with higher upper respiratory tract viral loads 
than seen with the ancestral strain, but not altered disease 
severity (3, 4). SARS-CoV-2 S pseudotyped viruses encoding 
the D614G substitution were reported to exhibit increased in-
fectivity in continuous cell lines and increased sensitivity to 
neutralization (4, 5). Structural analyses also revealed that 
the receptor binding domains (RBD) in the G614-form S pro-
tein occupy a higher percentage in the open conformation 
than the D614-form, implying an improved ability to bind to 
the receptor angiotensin-converting enzyme 2 (ACE2) (6, 7). 
However, the D614G substitution has yet to be evaluated in 
the authentic SARS-CoV-2 infection models, and its functions 
in viral replication, pathogenesis and transmissibility remain 
unclear. 

To address these questions, we generated an isogenic 
SARS-CoV-2 variant containing only the D614G substitution 
in the S glycoprotein, along with a second variant that con-
tained the nanoLuciferease (nLuc) gene in place of accessory 
gene 7a (Fig. 1A), using a D614-form SARS-CoV-2 strain WA1 
as the backbone (8). To examine whether the D614G substi-
tution enhances authentic SARS-CoV-2 entry, four suscepti-
ble cell lines were infected with the ancestral wild-type (WT)-
nLuc and D614G-nLuc viruses and maintained in the medium 
containing neutralizing antibodies to limit viral spreading. 
Luciferase signals representing initial entry events were 
measured at 8h post infection (Fig. 1B). In accord with pseu-
dovirus studies (4, 9), the D614G-nLuc infection resulted in a 
3.7 to 8.2-fold higher transgene expression as compared with 
WT-nLuc virus in different cell lines. Growth curves compar-
ing WT and D614G viruses were performed in those cell lines 
(Fig. 1C). Although the D614G variant showed similar or 
slightly higher titers at the early time point (8h), its peak ti-
ters were ~0.5 logs lower than the ancestral WT virus in Vero-
E6 and A549-ACE2 cell lines but not in Vero-81 and Huh7. 

To evaluate the replication of SARS-CoV-2 D614G variant 
in the human respiratory tract, we compared the multi-step 
growth kinetics (MOI = 0.1) of the WT and D614G viruses in 
ex vivo primary human nasal epithelial (HNE) cells from five 
donors, large (proximal) airway epithelial (LAE) cells from 
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four donors, and distal lung small airway epithelial (SAE) 
cells from three donors. Cultures from the same donor were 
infected with either WT or D614G virus in triplicate (Fig. 1, D 
to F, and fig. S1, A and B). Both viruses infect mainly ciliated 
cells in the primary pulmonary cultures (fig. S1C). Paired t-
test analysis suggests the D614G-infected HNE at 24, 48 and 
72 hours, and LAE cultures at 48 hours exhibited statistically 
higher titers than those infected with the WT virus. This en-
hanced replication was not observed at any timepoints in dis-
tal lung SAE cultures derived from three donors. To further 
compare replication fitness between the two variants, com-
petition assays were performed in LAE cultures by infecting 
simultaneously with both viruses (Fig. 1G). After three con-
tinuous passages at 72h intervals, the D614G variant became 
dominant in the cultures regardless of whether the WT virus 
was at a 1:1 or 10:1 ratio over the isogenic D614G mutant (Fig. 
1, H and I). Taken together, these data suggest the D614G 
substitution enhances SARS-CoV-2 replication fitness in the 
primary epithelial cells, with an advantage in the upper res-
piratory tract epithelial cells in nasal and large (proximal) 
airway epithelia that express higher levels of hACE2 receptor 
(8). 

Next, scanning and transmission electron microscopy 
(SEM and TEM) were performed to visualize virions present 
on the surface of primary human airway cell cultures. No sig-
nificant differences in virion morphology were detected (Fig. 
2, A and B). The number of spike proteins on individual virion 
projections was not significantly different between the two 
viruses in the EM images (Fig. 2C). Western blot analysis also 
shows similar spike to nucleocapsid ratios between the two 
viruses in samples collected from multiple HNE cultures (Fig. 
2, D and E). Differences in spike cleavage were also not ob-
served between the two viruses (Fig. 2, D and F). Further, we 
evaluated the neutralization properties of convalescent hu-
man serum samples (n=25) using the nLuc-expressing recom-
binant SARS-CoV-2 encoding either WT or D614G spike (Fig. 
2, G and H). The samples show similar half-maximal inhibi-
tory dilution (ID50) values against both viruses. Similarly, six 
RBD-binding, SARS-CoV-2 neutralizing monoclonal antibod-
ies showed no significant difference at half-maximal inhibi-
tory concentration (IC50) values against both viruses (Fig. 2, I 
and J). Together, these data suggest that the D614G substitu-
tion doesn’t alter significantly SARS-CoV-2 morphology, 
spike cleavage pattern and in vitro neutralization properties 
in the context of live virus. 

To evaluate the role of the D614G substitution in viral 
pathogenesis, hACE2 transgenic mice and Syrian hamsters 
were infected with equal plaque-forming units (PFU) of WT 
or D614G viruses. SARS-CoV-2 infection in hACE2 mice ex-
hibited a mild disease phenotype, characterized by high viral 
titers in lung and brain tissues, but minimum weight loss and 
undetectable nasal titers (10). Two groups of hACE2 mice 

infected with WT or D614G viruses exhibited undetectable vi-
ral titers in nasal turbinates and similar lung viral titers at 
day 2 and 5 post infection. One mouse (1/5) from both groups 
exhibited detectible viral titers in the brain (Fig. 3A). Histo-
pathological analyses reveal similar levels of lesions and 
SARS-CoV-2-infected cells in the mouse lung tissue harvested 
at day 2 post infection (Fig. 3B). With respect to hamster stud-
ies, lung and nasal turbinate tissues collected at day 3 and 6 
pi exhibited similar viral titers in each group (Fig. 4, A and 
B). However, the D614G-infected hamsters lost slightly more 
body weight than those infected with the WT virus (Fig. 4C). 
Immunohistochemistry (IHC) shows similar levels of viral 
antigen staining in the hamster lung tissue collected at day 3, 
6 and 9 from both groups (Fig. 4, D and Fi). Histopathological 
examination revealed similar severe pulmonary lesions with 
inflammatory cell infiltration in the alveolar walls and air 
spaces, pulmonary edema, and alveolar hemorrhage in both 
of the hamsters on day 3, extended across larger areas on day 
6, and then exhibiting partial resolution by day 9 (Fig. 4E). 
There was no significant difference in the size of the lung le-
sions (Fig. 4Fii) and the histological severity (Fig. 4Fiii). To 
evaluate the roles of the D614G variant replication fitness in 
vivo, we performed a competition assay in four independent 
lines of hamsters. Each hamster was infected with 1000 PFU 
of a mixture containing a 1:1 ratio of both viruses (fig. S2B). 
After three continuous passages in naïve animals at 3-day in-
tervals, we observed the D614G became dominant in the lung 
tissues of animals after the 1st passage of all groups (fig. S2, C 
and D), consistent with the phenotype of enhanced fitness of 
the D614G virus noted in the human LAE competition assay. 
These studies indicate that the D614G substitution contrib-
utes to marginal enhancement of SARS-CoV-2 pathogenesis 
in hamsters, but not in hACE2 mice, and to improved com-
petitive fitness in the hamster model. 

To evaluate the impact of the D614G substitution in SARS-
CoV-2 respiratory transmissibility, we set up eight pairs of 
hamsters for each virus similar to previously studies (11, 12). 
Each pair comprised a naïve hamster adjacent to a cage with 
an infected animal 1 day after infection (fig. S2, E and F). Viral 
titers in the nasal wash samples from all animals were mon-
itored. Both WT and D614G viruses were transmitted effi-
ciently to naive hamsters evident by positive nasal wash 
samples detected in all exposed animals at day 4 (Fig. 4G). 
The infected groups at all three timepoints and the exposure 
groups at day 4 and 6 exhibited similar viral titers between 
the two viruses. However, five of eight hamsters exposed to 
the D614G-infected group showed infection and detectable 
viral shedding at day 2 while those exposed to the WT-
infected group had no infection and viral shedding (p = 
0.0256, Fisher exact test), supporting the hypothesis that the 
D614G variant transmits significantly faster than the WT vi-
rus between hamsters. 
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Emerging viruses, like CoVs, Alphaviruses, and Filo-
viruses, have undergone sequential rounds of evolution while 
adapting to the new human hosts in epidemic or pandemic 
settings (13–15). Among CoVs, mutations in the spike glyco-
protein have been associated with altered pathogenesis, re-
ceptor usage, and neutralization (16–19), potentially 
challenging the development of vaccine and therapeutic an-
tibodies that are urgently needed at present. The emergent 
D614G mutation in the spike gene of SARS-CoV-2 strains has 
raised significant concerns about potential enhancements in 
transmissibility, antigenicity, and/or pathogenesis. Using au-
thentic SARS-CoV-2 isogenic variants, we show the role of the 
D614G substitution in enhancing viral infectivity in immor-
talized cell lines, growth, and fitness in primary human air-
way epithelial cells and hamsters, yet, it marginally alters 
viral pathogenesis in hamster and hACE2 mouse models. Im-
portantly, we demonstrate that the D614G variant transmits 
significantly faster between hamsters through aerosol and 
droplets. 

Recent studies indicate that D614G alters spike trimer hy-
drogen-bond interactions, reorienting the RBD into an “up” 
conformation, increasing ACE2 receptor binding and infec-
tivity (7, 20). Consistent with previous pseudotype virus stud-
ies (4, 9, 21, 22), our data show that the D614G recombinant 
virus enters immortalized cell lines more efficiently than the 
WT virus. However, we didn’t observe the enhancement of 
viral titers in continuous replication kinetics, suggesting the 
variable ACE2 and protease levels between different cell lines 
and the virion thermostability may also affect to the D614G 
replication in vitro. Importantly, the efficient replication and 
fitness in our ex vivo models suggest that SARS-CoV-2 D614G 
isogenic virus displays a significant advantage in epithelial 
cells in the nose and upper respiratory tract. These data sup-
port the role of the nasal epithelium and the D614G substitu-
tion in enhanced infectivity and transmission in human 
populations (3). 

Patients infected with the D614G virus have not been con-
clusively linked to increased disease severity (3, 4). In this 
study, we evaluated the pathogenesis of the D614G variants 
in both hACE2 mouse and hamster models. Equivalent virus 
titers were measured in the lungs and nasal turbinates of all 
time points, and similar severity of lesions were observed in 
the histopathological samples, suggesting the D614G substi-
tution doesn’t significantly enhance the SARS-CoV-2 patho-
genesis in both animal models, although this phenotype 
needs to be confirmed in both sexes of animals in future stud-
ies. However, the increased weight loss and improved in vivo 
replication fitness in hamsters suggest the D614G variant 
may cause marginally enhanced disease outcomes. Although 
complicated by the presence of other mutations in the spike, 
these differences may become more evident in a lethal SARS-
CoV-2 infection model in young, adult or aged mice in future 

studies (23). In the hamster transmission study, the D614G 
isogenic transmitted significantly faster to adjacent animals 
early in infection, showing that the substitution preserved ef-
ficient transmission in vivo. As SARS-CoV-2 replicates prefer-
entially in the nasal and olfactory epithelium, depending on 
differences in ACE2 and TMPRSS2 cell type expression pat-
terns across species (8, 24, 25), these data are consistent with 
a model of increased replication in the nasal epithelium and 
large airway epithelium, leading to enhanced virus growth 
compared with the ancestral virus and more efficient trans-
missibility. Potential reasons for this phenotype could be that 
the D614G variant exhibits lower minimum infectious dose to 
animals and/or to subtle variations in virion stability in 
small/large droplets, which requires further mechanistic 
studies in the future. 

Using pseudotype viruses, the D614G substitution has 
been suggested to increase proteolytic cleavage and S glyco-
protein incorporation into virions, reduce S1 loss and pro-
mote enhanced infectivity in vitro (4, 9, 21). In the backdrop 
of a full complement of SARS-CoV-2 structural proteins, our 
study demonstrated no obvious differences in proteolytic pro-
cessing or S incorporation into isogenic virions encoding the 
D614G mutations, perhaps reflecting differences in S trimer 
incorporation and presentation between authentic and pseu-
otyped viruses; the latter lack a full component of virion pro-
teins. The effect of the D614G variant on vaccine efficacy has 
been of major concern. Consistent with previous studies (5, 
22), we showed overall equivalent sensitivity of the both lu-
ciferase reporter viruses to the 25 convalescent human sera 
and 6 RBD-binding mAbs, suggesting the D614G substitution 
does not significantly shift SARS-CoV-2 neutralization prop-
erties. Some sera and mAbs, such as serum #1 and 
REGN10987, displayed slightly different neutralization po-
tencies against the two viruses, suggesting subtle differences 
in the Ab binding properties. As a limitation, the virus geno-
type in most serum donors remains unknown. These data 
also suggest that the current vaccine approaches directed 
against WT spike should be effective against the D614G 
strains. The relationship between increased transmission and 
virulence remains complex and could be impacted by age, sex 
and other comorbidities, and it is unclear whether the mini-
mum infectious dose may be lower for D614G in humans (26). 
It is clearly important to monitor and identify the emergence 
of new variants of SARS-CoV-2 with increased transmission 
and pathogenesis and/or altered antigenicity, especially as 
levels of human herd immunity and active interventions alter 
the selective forces that operate on the genome. 
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 Fig. 1. SARS-CoV-2 D614G variant shows enhanced infectivity in immortalized cell lines and 
replication fitness in upper human respiratory epithelia compared with the ancestral WT virus. 
(A) Genomes of recombinant SARS-CoV-2 D614G variants based on the backbone of a D614-form
strain WA1. (B) Entry efficiency of WT-nLuc and D614G-nLuc in multiple susceptible cell lines at MOI
of 0.5. After 1h infection, cells were treated with neutralization antibodies to minimize the secondary
round of infection. The relative light unit (RLU) representing the nLuc expression level was measured
at 8h post infection. RLU values were normalized with background (Bkgd) residual luciferase signals
in both viral inocula. (C) Growth curves of the two viruses in Vero-E6 (i), Vero-81 (ii), A549-ACE2 (iii)
and Huh7 (iv) cell lines at MOI = 0.5. (D to F) Comparison of 24, 48 and 72h titers between the two
variants infected primary nasal (D), large airway (E) and small airway (F) cells at MOI of 0.1.
Triplicated titers of the two viruses in the cultures from the same donor were analyzed by paired t
test. (G) Schematic of competition assays on large airway epithelial cells. Cultures were infected with
1:1 or 10:1 ratio of WT and D614G mixture at MOI of 0.5, and the supernatants were serially passaged
three times in naïve cultures. (H and I) BtsCI digestion (H) and Sanger sequencing chromatogram (I)
of S gene fragments amplified from viral samples in the LAE competition assay. The 1.5 kb fragments
containing the residue 614 were amplified from the total RNA of individual samples collected in each
passage. Data in (B) and (C) are indicated as mean ± SD and analyzed by unpaired t test between
both viruses; data in (D) to (F) are analyzed by paired t test. N.S., not significantly different; *, p <
0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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Fig. 2. D614G substitution does not alter SARS-CoV-2 virion morphology, S protein cleavage 
patterns and sensitivity to neutralizing antibodies. (A) Transmission electron microscopy image 
of WT and D614G virions on airway epithelial cell surface, scale bar: 200 nm. (B) Scanning electron 
microscopy images of WT and D614G virions on airway epithelial cell surface, scale bar: 100 nm. 
(C) Quantification of S protein on individual SARS-CoV-2 virion projections. The number of S proteins
on individual virion projections from different SEM images were quantify manually, n=20.
(D) Western blot analysis of SARS-CoV-2 virions washed from WT- or D614G-infected HNE cultures
at 72h post infection. Each lane contains a pooled sample from triplicated cultures derived from the
same donor. Full-length (FL), S1/S2 cleaved spike protein (S) and nucleocapsid protein (N) were
probed. Samples in each pair were loaded based on equal amount of the N protein. (E and F) S to N
ratios (E) and FL to cleaved S ratios (F) were determined by measuring relative intensity of bands in
the Western blot image. (G) Summary of ID50 values of 25 convalescent human sera against WT- and
D614G-nLuc viruses. (H) Neutralization curves of three representative human sera. Viral sequence
reveals that the serum #1 was collected from a COVID-19 patient infected with a D614G SARS-CoV-
2 variant. (I and J) Summarized IC50 values (I) and individual neutralization curves (J) of 6 human
neutralizing mAbs against both viruses. Data in (C), (E) and (F) are indicated as mean ± SD and
analyzed by unpaired t test; data in (G) and (I) were analyzed by paired t test. N.S., not significantly
different.
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Fig. 3. D614G substitution does not alter SARS-CoV-2 pathogenesis in hACE2 mice. (A) Lung, 
brain and nasal turbinate titers of WT and D614G infected mice were determined on day 2 and day 5. 
Each mouse was infected with 105 PFU of the virus (n=5/group); plaque assay detection limit 
(1.7 log10PFU/mL) is indicated as dashed lines. Data are analyzed by unpaired t test. 
(B) Representative H&E staining and IHC staining of SARS-CoV-2 N protein in the lung tissues
collected from infected hACE2 mice harvested at day 2 post infection, scale bar = 100 μm.
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Fig. 4. D614G substitution enhances SARS-CoV-2 transmission in hamsters. (A and B) Viral titers 
in the lung (A) and nasal turbinates (B) collected from SARS-CoV-2 infected hamsters at day 3 and 
6. Each hamster was infected with 103 PFU of the virus, n=8/virus for each timepoint; plaque assay
detection limit (1 log10PFU/mL) is indicated as dashed lines. (C). Body weight of mock-, WT- and
D614G-infected hamsters (n = 4/group). Hamsters in the body weight study were not subjected to
nasal wash sampling. (D) Immunohistochemistry (IHC) staining of SARS-CoV-2 nucleocapsid
proteins in representative lung tissues collected from WT- and D614G-infected hamsters at day 3,
scale bar = 100 μm. (E) H&E staining of representative lung tissues collected on day 3, 6, and 9 from
hamsters infected with WT or D614G, scale bar: 1mm. (F) (i) Quantification of IHC positive cells in
hamster lung tissues, following scoring system: 0, no positive cell; 1, <10%; 2, 10-50%; 3, >50%
positive cells in each lobe of lung. (ii) The size of pulmonary lesions was determined based on the
mean percentage of affected area in each section of lobes from each animal. (iii) Pathological
severity scores in infected hamsters, based on the percentage of inflammation area for each section
of the five lobes collected from each animal using the following scoring system: 0, no pathological
change; 1, affected area (≤10%); 2, affected area (<50%, >10%); 3, affected area (≥50%); an
additional point was added when pulmonary edema and/or alveolar hemorrhage was observed.
(G) Viral titers in nasal washes collected from infected and exposed hamster pairs in WT and D614G
groups; plaque assay detection limit (1 log10PFU/mL) is indicated as dashed lines. The number of
positive hamsters in both exposure groups at day 2 (WT vs. D614G = 0/8 vs. 5/8) are analyzed by
Fisher exact test, p = 0.0256. N.S., not significantly different.
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