55 research outputs found

    Effects of Bedding Material on Equine Lower Airway Inflammation : A Comparison of Two Peat Beddings, Wood Pellet, and Straw Pellet

    Get PDF
    The effects of bedding material on air quality are important amongst horses worldwide. Respiratory diseases, especially equine asthma, are highly prevalent with air hygiene playing a major role on the pathophysiology of these diseases. The objective of our study was to investigate the effects of four bedding materials on the respiratory signs, tracheal mucus score, and tracheal wash (TW) and bronchoalveolar lavage fluid (BALF) cytology in healthy adult horses. The study design was a prospective controlled cross-over study, and the subjects were healthy adult riding school horses (n = 32) from a single stable. Wood pellet, straw pellet, and loosely stored peat (Peat 3) were compared to peat packed in plastic-covered bales (Peat 2). Lower airway endoscopy and sampling (TW and BALF) for cytological examination were performed after each 35-day bedding period. The tracheal mucus scores (P = 0.014) and respiratory rate (P = 0.026) were higher during the straw pellet period compared to the Peat 2 period. The respiratory rate was lower during the wood pellet period compared to the Peat 2 period (P = 0.004). The TW neutrophil percentage during the straw pellet period was higher compared to the Peat 2 period (P = 0.0003). The BALF neutrophil percentage was higher during the straw pellet period (P = 0.005) and during the Peat 3 period compared to the Peat 2 period (P = 0.04). We conclude that baled peat (Peat 2) caused lower neutrophil percentages in the airway samples compared to straw pellet and loosely stored peat (Peat 3). No difference was observed between Peat 2 and wood pellet. The information gained from this study may assist veterinarians and horse owners in selecting appropriate bedding materials, especially for horses with equine asthma.Peer reviewe

    Nuclear proteome of virus-infected and healthy potato leaves

    Get PDF
    Abstract Background Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown. Results In this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography–coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2–108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing–related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. Conclusions Our results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection

    Effects of Bedding Material on Equine Lower Airway Inflammation : A Crossover Study Comparing Peat and Wood Shavings

    Get PDF
    Bedding materials affect stable air hygiene, and thus the development and exacerbation of equine asthma. There is limited knowledge concerning the effects of different types of bedding material on equine lower airway inflammation. The objective of our study was to investigate the effects of bedding materials on respiratory signs, tracheal mucus score, and lower airway cytology in healthy adult horses. The study design was a prospective controlled study, and the subjects were healthy adult riding school horses (n = 32) from a single stable. Wood shavings were compared to peat, which was used as a reference bedding material. Lower airway endoscopy and sampling (tracheal wash and bronchoalveolar lavage fluid) for cytological examination were performed after each 35-day bedding period. No difference between bedding periods was observed in the respiratory rate or tracheal mucus score. Tracheal wash neutrophil percentage with the wood shavings was higher compared to the previous (P = 0.040) or following (P = 0.0045) peat period. Bronchoalveolar lavage fluid neutrophil percentage with the wood shavings was higher compared to the following peat period (P <0.001). We conclude that, between the two bedding materials used in this study, peat caused less neutrophilic lower airway inflammation in horses. The information gained from this study may assist veterinarians and horse owners in selecting bedding materials, especially for horses suffering from equine asthma.Peer reviewe

    Haploinsufficiency of A20 impairs protein–protein interactome and leads into caspase-8-dependent enhancement of NLRP3 inflammasome activation

    Get PDF
    Objectives TNFAIP3 encodes A20 that negatively regulates nuclear factor kappa light chain enhancer of activated B cells (NF-κB), the major transcription factor coordinating inflammatory gene expression. TNFAIP3 polymorphisms have been linked with a spectrum of inflammatory and autoimmune diseases and, recently, loss-of-function mutations in A20 were found to cause a novel inflammatory disease ‘haploinsufficiency of A20’ (HA20). Here we describe a family with HA20 caused by a novel TNFAIP3 loss-of-function mutation and elucidate the upstream molecular mechanisms linking HA20 to dysregulation of NF-κB and the related inflammasome pathway.Methods NF-κB activation was studied in a mutation-expressing cell line using luciferase reporter assay. Physical and close-proximity protein–protein interactions of wild-type and TNFAIP3 p.(Lys91*) mutant A20 were analysed using mass spectrometry. NF-κB -dependent transcription, cytokine secretion and inflammasome activation were compared in immune cells of the HA20 patients and control subjects.Results The protein–protein interactome of p.(Lys91*) mutant A20 was severely impaired, including interactions with proteins regulating NF-κB activation, DNA repair responses and the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The p.(Lys91*) mutant A20 failed to suppress NF-κB signalling, which led to increased NF-κB -dependent proinflammatory cytokine transcription. Functional experiments in the HA20 patients’ immune cells uncovered a novel caspase-8-dependent mechanism of NLRP3 inflammasome hyperresponsiveness that mediated the excessive secretion of interleukin-1β and interleukin-18.Conclusions The current findings significantly deepen our understanding of the molecular mechanisms underlying HA20 and other diseases associated with reduced A20 expression or function, paving the way for future therapeutic targeting of the pathway.Peer reviewe

    Novel TMEM173 Mutation and the Role of Disease Modifying Alleles

    Get PDF
    Upon binding to pathogen or self-derived cytosolic nucleic acids cyclic GMP-AMP synthase (cGAS) triggers the production of cGAMP that further activates transmembrane protein STING. Upon activation STING translocates from ER via Golgi to vesicles. Monogenic STING gain-of-function mutations cause early-onset type I interferonopathy, with disease presentation ranging from fatal vasculopathy to mild chilblain lupus. Molecular mechanisms underlying the variable phenotype-genotype correlation are presently unclear. Here, we report a novel gain-of-function G207E STING mutation causing a distinct phenotype with alopecia, photosensitivity, thyroid dysfunction, and features of STING-associated vasculopathy with onset in infancy (SAVI), such as livedo reticularis, skin vasculitis, nasal septum perforation, facial erythema, and bacterial infections. Polymorphism in TMEM173 and IFIH1 showed variable penetrance in the affected family, implying contribution to varying phenotype spectrum. The G207E mutation constitutively activates inflammation-related pathways in vitro, and causes aberrant interferon signature and inflammasome activation in patient PBMCs. Treatment with Janus kinase 1 and 2 (JAK1/2) inhibitor baricitinib was beneficiary for a vasculitic ulcer, induced hair regrowth and improved overall well-being in one patient. Protein-protein interactions propose impaired cellular trafficking of G207E mutant. These findings reveal the molecular landscape of STING and propose common polymorphisms in TMEM173 and IFIH1 as likely modifiers of the phenotype.Peer reviewe

    Gain-of-function CEBPE mutation causes noncanonical autoinflammatory inflammasomopathy

    Get PDF
    Background: CCAAT enhancer-binding protein epsilon (C/EBP epsilon) is a transcription factor involved in late myeloid lineage differentiation and cellular function. The only previously known disorder linked to C/EBP epsilon is autosomal recessive neutrophil-specific granule deficiency leading to severely impaired neutrophil function and early mortality. Objective: The aim of this study was to molecularly characterize the effects of C/EBP epsilon transcription factor Arg219His mutation identified in a Finnish family with previously genetically uncharacterized autoinflammatory and immunodeficiency syndrome. Methods: Genetic analysis, proteomics, genome-wide transcriptional profiling by means of RNA-sequencing, chromatin immunoprecipitation (ChIP) sequencing, and assessment of the inflammasome function of primary macrophages were performed. Results: Studies revealed a novel mechanism of genome-wide gain-of-function that dysregulated transcription of 464 genes. Mechanisms involved dysregulated noncanonical inflammasome activation caused by decreased association with transcriptional repressors, leading to increased chromatin occupancy and considerable changes in transcriptional activity, including increased expression of NLR family, pyrin domain-containing 3 protein (NLRP3) and constitutively expressed caspase-5 in macrophages. Conclusion: We describe a novel autoinflammatory disease with defective neutrophil function caused by a homozygous Arg219His mutation in the transcription factor C/EBP epsilon. Mutated C/EBPe acts as a regulator of both the inflammasome and interferome, and the Arg219His mutation causes the first human monogenic neomorphic and noncanonical inflammasomopathy/immunodeficiency. The mechanism, including widely dysregulated transcription, is likely not unique for C/EBP epsilon. Similar multiomics approaches should also be used in studying other transcription factor-associated diseases.Peer reviewe

    Nopeiden natriumjäähdytteisten reaktoreiden reaktorifysiikka

    No full text

    New methods in thermal hydraulics

    No full text
    corecore