11 research outputs found

    Highly metastatic K7M2 cell line: A novel murine model capable of in vivo imaging via luciferase vector transfection

    Get PDF
    Osteosarcoma is rare and little improvement in survival rates has occurred in the last 25 years despite modern chemotherapeutic treatment. Bioluminescent cell lines for the modeling of osteosarcoma have shown success in tracking metastases in vivo, but commonly use adenoviral vectors to transfect the native cell line with bioluminescent reporters. The purpose of this study was to develop an orthotopic model for metastatic osteosarcoma capable of in vivo monitoring of metastatic and primary tumor burden in an immunocompetent mouse and compare that model to its wild type pathogenesis. K7M2 cells were transfected using a plasmid vector and were stable after 12 weeks. Thirty-four female BALB/c mice aged four to five weeks underwent orthotopic implantation of either wild type (n=12) or transfected (n=22) K7M2 cells in the proximal tibia. Mice were monitored for tumor growth and weekly In Vivo Imaging System (IVIS) imaging was performed to monitor for pulmonary metastasis. Although tumors developed sooner in the wild type group, no significant differences were seen compared to Transfected Group 1 in rate of inoculation, growth rates after first detection, metastatic rate, and time between inoculation and death. This study establishes a new murine model for metastatic osteosarcoma using the K7M2-wt cell line transfected with a non-viral plasmid luciferase vector. The benefits of this preclinical model include an intact immune system and orthotopically driven metastatic disease; this model appears comparable to its wild type counterpart. In the future, the model may be used to examine promising immunomodulatory therapies using bioluminescence in vivo

    Correction for Johansson et al., An open challenge to advance probabilistic forecasting for dengue epidemics.

    Get PDF
    Correction for “An open challenge to advance probabilistic forecasting for dengue epidemics,” by Michael A. Johansson, Karyn M. Apfeldorf, Scott Dobson, Jason Devita, Anna L. Buczak, Benjamin Baugher, Linda J. Moniz, Thomas Bagley, Steven M. Babin, Erhan Guven, Teresa K. Yamana, Jeffrey Shaman, Terry Moschou, Nick Lothian, Aaron Lane, Grant Osborne, Gao Jiang, Logan C. Brooks, David C. Farrow, Sangwon Hyun, Ryan J. Tibshirani, Roni Rosenfeld, Justin Lessler, Nicholas G. Reich, Derek A. T. Cummings, Stephen A. Lauer, Sean M. Moore, Hannah E. Clapham, Rachel Lowe, Trevor C. Bailey, Markel García-Díez, Marilia Sá Carvalho, Xavier Rodó, Tridip Sardar, Richard Paul, Evan L. Ray, Krzysztof Sakrejda, Alexandria C. Brown, Xi Meng, Osonde Osoba, Raffaele Vardavas, David Manheim, Melinda Moore, Dhananjai M. Rao, Travis C. Porco, Sarah Ackley, Fengchen Liu, Lee Worden, Matteo Convertino, Yang Liu, Abraham Reddy, Eloy Ortiz, Jorge Rivero, Humberto Brito, Alicia Juarrero, Leah R. Johnson, Robert B. Gramacy, Jeremy M. Cohen, Erin A. Mordecai, Courtney C. Murdock, Jason R. Rohr, Sadie J. Ryan, Anna M. Stewart-Ibarra, Daniel P. Weikel, Antarpreet Jutla, Rakibul Khan, Marissa Poultney, Rita R. Colwell, Brenda Rivera-García, Christopher M. Barker, Jesse E. Bell, Matthew Biggerstaff, David Swerdlow, Luis Mier-y-Teran-Romero, Brett M. Forshey, Juli Trtanj, Jason Asher, Matt Clay, Harold S. Margolis, Andrew M. Hebbeler, Dylan George, and Jean-Paul Chretien, which was first published November 11, 2019; 10.1073/pnas.1909865116. The authors note that the affiliation for Xavier Rodó should instead appear as Catalan Institution for Research and Advanced Studies (ICREA) and Climate and Health Program, Barcelona Institute for Global Health (ISGlobal). The corrected author and affiliation lines appear below. The online version has been corrected

    An open challenge to advance probabilistic forecasting for dengue epidemics.

    Get PDF
    A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue

    Osteosarcoma Overview

    No full text
    <p><b>Article full text</b></p> <p><br></p> <p>The full text of this article can be found here<b>. </b><a href="https://link.springer.com/article/10.1007/s40744-016-0050-2">https://link.springer.com/article/10.1007/s40744-016-0050-2</a></p> <p><br></p> <p><b>Provide enhanced content for this article</b></p> <p><br></p> <p>If you are an author of this publication and would like to provide additional enhanced content for your article then please contact <a href="http://www.medengine.com/Redeem/”mailto:[email protected]”"><b>[email protected]</b></a>.</p> <p><br></p> <p>The journal offers a range of additional features designed to increase visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the highest scientific standard and all features are marked as ‘peer reviewed’ to ensure readers are aware that the content has been reviewed to the same level as the articles they are being presented alongside. Moreover, all sponsorship and disclosure information is included to provide complete transparency and adherence to good publication practices. This ensures that however the content is reached the reader has a full understanding of its origin. No fees are charged for hosting additional open access content.</p> <p><br></p> <p>Other enhanced features include, but are not limited to:</p> <p><br></p> <p>• Slide decks</p> <p>• Videos and animations</p> <p>• Audio abstracts</p> <p>• Audio slides</p

    Synthesis, Characterization, and In Vivo Cytokinome Profile of IL-12-Loaded PLGA Nanospheres

    Get PDF
    We report the successful encapsulation and elution of recombinant murine IL-12 (rmIL-12) from poly(lactide-co-glycolic) acid (PLGA) nanospheres (IL-12-NS) synthesized using the double emulsion/solvent evaporation (DESE) technique with microsphere depletion through ultracentrifugation. Images obtained with scanning electron microscopy (SEM) showcased a characteristic spherical shape with a mean particle diameter of and zeta potential of . These values suggest minimal flocculation when in solution, which was reflected in an in vivo biodistribution study that reported no observed morbidity/mortality. Encapsulation efficiency (EE) was determined to be with average particle concentration obtained per batch of particles/mL. Disparate zeta (ζ) potentials obtained from both protein-loaded and protein-unloaded batches suggested surface adsorption of protein, and confocal microscopy of BSA-FITC-loaded nanospheres confirmed the presence of protein within the polymeric shell. Furthermore, elution of rmIL-12 from IL-12-NS at a concentration of 500 million particles/mL was characterized using enzyme-linked immunosorbent assay (ELISA). When IL-12-NS was administered in vivo to female BALB/c mice through retroorbital injection, IL-12-NS produced a favorable systemic cytokine profile for tumoricidal activity within the peripheral blood. Whereas IFN-γ nadir occurred at 72 hours, levels recovered quickly and displayed positive correlations postburst out to 25 days postinjection. IL-12-NS administration induced proinflammatory changes while prompting minimal counterregulatory increases in anti-inflammatory IL-10 and IL-4 cytokine levels. Further, while IL-6 levels increased to 30 folds of the baseline during the burst phase, they normalized by 72 hours and trended negatively throughout the sill phase. Similar trends were observed with IL-1β and CXCL-1, suggesting a decreased likelihood of progression to a systemic inflammatory response syndrome-like state. As IL-12-NS delivers logarithmically lower amounts of IL-12 than previously administered during human clinical trials, our data reflect the importance of IL-12-NS which safely create a systemic immunostimulatory environment

    Using the Spleen as an In Vivo Systemic Immune Barometer Alongside Osteosarcoma Disease Progression and Immunotherapy with α-PD-L1

    No full text
    Indications for immunotherapies are still unclear, and there is a great need for real-time patient immune status monitoring. In this study, we confirmed that the local and systemic immune profiles of an orthotopic osteosarcoma model with or without luciferase transfection were statistically equivalent. Next, we used flow cytometry to describe systemic immune cell populations influenced by osteosarcoma disease progression. When compared to vehicle-inoculated sham mice, it was found that tumor-bearing mice had significant immunophenotype disturbances at approximately 11 weeks after inoculation (at which time 90% of primary tumor-bearing mice have fulminant pulmonary metastases). Percent populations of natural killer cells and T regulatory cells were increased in the spleens of tumor-bearing mice (p<0.0083) compared to shams. Additionally, T lymphocytes from spleens of tumor-bearing mice showed increased Tim-3/PD-1 exhaustion status (p<0.0083). There were also increases in the percent populations of myeloid cells and overall M1/M2 macrophage marker expression on tumor-bearing mice spleens versus controls (p<0.00714). Finally, treatment with 20 μg α-PD-L1 decreased T-cell exhaustion back to sham status, with a corresponding increase in CTLA-4 expression on cytotoxic T cells in the majority of mice tested. Checkpoint inhibition also increased splenic monocyte maturation and returned macrophage M1/M2 marker expression back to sham status. These data suggest that cancer induces systemic immune dysregulation and that these changes may be elucidated and utilized for treatment purposes by sampling the systemic immune environment via the spleen. In addition, treatment with the checkpoint inhibitor α-PD-L1 may neutralize but not overcome the systemic immunological changes induced by a progressing malignancy

    Against Shaming: Preserving Dignity, Decency, and a Moral-Educative Mission in American Schools

    No full text
    corecore