304 research outputs found

    Exploratory Research on MEMS Technology for Air-Conditioning and Heat-Pumps

    Get PDF
    This report details the efforts to exploit micro-electrical-mechanical-systems (MEMS) and micro device technologies to improve control of multi-channel evaporators by reducing maldistribution among channels, and increase capacity and efficiency of current vapor-compression refrigeration chillers and heat-pumps. Besides summarizing the market potential of MEMS technology for use in evaporators and micro-heat-pumps, the report describes the accomplishments of an experimental investigation of refrigerant-side maldistribution in multi-channel plate heat exchangers (PHE's). A special test facility designed for the purpose of studying the maldistribution of refrigerant in evaporators is described in the report. The facility allows maldistribution caused by either normal superheat temperature control, or induced by the user in controlled amounts, to be measured and quantified. Four different techniques were used to detect the presence of liquid droplets in the stream of superheated vapor at the evaporator exit, an indication of maldistributed flow. They are: Helium-Neon laser, beaded thermocouple, static mixer and newly designed heated MEMS sensor. Comparison of the four techniques shows that the MEMS sensor designed and fabricated in this project has the highest potential for indicating maldistribution, manifested by entrained liquid droplets, in multi-channel evaporators. A complete set of test results in the time and frequency domain is show in graphical form in the appendices. The design, fabrication, calibration, and testing of the MEMS serpentine resistance sensor is also reported, along with a control scheme and strategy for implementing the MEMS sensor in multi-channel evaporator systems

    Blockade of Digestion by Famotidine\ud Pretreatment Does Not Interfere With the Opioid-Enhancing\ud Effect of Ingested Amniotic Fluid

    Get PDF
    Ingestion of placenta or amniotic fluid by rats has been shown to enhance ongoing opioid-mediated antinociception, but does not, by itself, produce antinociception. This enhancement is produced by an active substance(s) in placenta and amniotic fluid that we have termed POEF for placental opioid-enhancing factor. Previous research has shown that enhancement requires mediation by the gastrointestinal system: gastric vagotomy blocks enhancement produced by ingested placenta; amniotic fluid injected SC or IP does not produce enhancement. The present study was designed to distinguish between two possible explanations for the blockade of the POEF effect produced by gastric vagotomy: that afferent information arising in vagal gastric receptors conveys the critical information to the CNS, or that disruption of vagal efferent action on digestion blocks the manufacture or activation of the POEF molecule in the gut. Famotidine is an H2-histamine receptor antagonist that reduces gastric acid and pepsin secretion to an extent at least as great as gastric vagotomy. Rats treated with either famotidine or a vehicle were fed placenta or a control substance, then stimulated with vaginal/cervical probing to produce antinociception that is partly opioid mediated. Famotidine did not block POEF enhancement of vaginal/cervical stimulation-induced analgesia in a tail flick latency test. These results suggest that enhancement by POEF does not require normal digestive processes or other processes inhibited by famotidine

    The Analgesia-Enhancing Component of\ud Ingested Amniotic Fluid Does Not Affect\ud Nicotine-Induced Antinociception in\ud Naltrexone-Treated Rats

    Get PDF
    Ingestion of amniotic fluid and placenta by rats has been shown to enhance opioid-mediated antinociception but not affect the nonopioid-mediated antinociception produced by aspirin, suggesting spccificity for opioid-mediated processes. However, enhancement by the active substance(s) in amniotic fluid and placenta1 (POEF, for placental opioid-enhancing factor) of antinociception produced by other nonopioid mechanisms has yet to be examined. The present experiments tested whether ingestion of amniotic fluid enhances the antinociception produced by nicotine injection. In Experiment IA, Enhancement of morphine-mediated antinociception by ingestion of amniotic fluid was demonstrated in a hot-plate assay. In Experiment IB, rats pretreated with naltrexone were given an orogastric infusion of amniotic fluid or control (0.25 ml), then injected with nicotine (0, 0.075, 0.125, or 0.225 mg/kg subcutaneously), then tested for antinociception in a hot-plate assay. Amniotic fluid ingestion did not enhance the antinociception produced by various doses of nicotine. In Experiment 2, rats pretreated with naltrexone were given an orogastric infusion of amniotic fluid (0, 0.125,\ud 0.25, or 0.50 ml) and then injectcd with 0.125 mg/kg nicotine. None of the doses of amniotic fluid enhanced the nicotine-induced antinociception. The findings of these experiments lend support to our contention that the enhancement by POEF of antinociception is specific to opioid-mediated processes

    Effects of classical stochastic webs on the quantum dynamics of cold atomic gases in a moving optical lattice

    Get PDF
    We introduce and investigate a system that uses temporal resonance-induced phase-space pathways to create strong coupling between an atomic Bose-Einstein condensate and a traveling optical lattice potential. We show that these pathways thread both the classical and quantum phase space of the atom cloud, even when the optical lattice potential is arbitrarily weak. The topology of the pathways, which form weblike patterns, can by controlled by changing the amplitude and period of the optical lattice. In turn, this control can be used to increase and limit the BEC’s center-of-mass kinetic energy to prespecified values. Surprisingly, the strength of the atom-lattice interaction and resulting BEC heating of the center-of-mass motion is enhanced by the repulsive interatomic interactions

    Threshold Power of Canonical Antennas for Inducing SAR at Compliance Limits in the 300-3000 MHz Frequency Range

    Get PDF
    A study of the specific absorption rate (SAR) in an exposed body induced by canonical antennas is presented, with the aim of determining an upper bound for the antenna transmit power that demonstrates that a product is inherently compliant with internationally accepted radio frequency (RF) exposure limits. Starting from the fundamental limits in antenna quality factor (Q) and the corresponding bandwidth, several antenna sizes are selected, and their SAR distributions are computed using the method of moments (MoM) and finite-difference time domain (FDTD) method in the frequency range 300-3000 MHz. The threshold powers are then determined, below which the peak 1-g and 10-g averaged SAR would not exceed the limits specified in international exposure standards. From the data, simple expressions are derived to estimate the threshold power over a wide range of antenna sizes, frequencies, and distances from the body. It is demonstrated that the results presented in this paper are conservative in comparison with the measured SAR data of real products as well as other published data

    Scaling in Late Stage Spinodal Decomposition with Quenched Disorder

    Full text link
    We study the late stages of spinodal decomposition in a Ginzburg-Landau mean field model with quenched disorder. Random spatial dependence in the coupling constants is introduced to model the quenched disorder. The effect of the disorder on the scaling of the structure factor and on the domain growth is investigated in both the zero temperature limit and at finite temperature. In particular, we find that at zero temperature the domain size, R(t)R(t), scales with the amplitude, AA, of the quenched disorder as R(t)=A−βf(t/A−γ)R(t) = A^{-\beta} f(t/A^{-\gamma}) with β≃1.0\beta \simeq 1.0 and γ≃3.0\gamma \simeq 3.0 in two dimensions. We show that β/γ=α\beta/\gamma = \alpha, where α\alpha is the Lifshitz-Slyosov exponent. At finite temperature, this simple scaling is not observed and we suggest that the scaling also depends on temperature and AA. We discuss these results in the context of Monte Carlo and cell dynamical models for phase separation in systems with quenched disorder, and propose that in a Monte Carlo simulation the concentration of impurities, cc, is related to AA by A∼c1/dA \sim c^{1/d}.Comment: RevTex manuscript 5 pages and 5 figures (obtained upon request via email [email protected]

    The shrinking instability of toroidal liquid droplets in the Stokes flow regime

    Get PDF
    We analyze the stability and dynamics of toroidal liquid droplets. In addition to the Rayleigh instabilities akin to those of a cylindrical droplet there is a shrinking instability that is unique to the topology of the torus and dominates in the limit that the aspect ratio is near one (fat tori). We first find an analytic expression for the pressure distribution inside the droplet. We then determine the velocity field in the bulk fluid, in the Stokes flow regime, by solving the biharmonic equation for the stream function. The flow pattern in the external fluid is analyzed qualitatively by exploiting symmetries. This elucidates the detailed nature of the shrinking mode and the swelling of the cross-section following from incompressibility. Finally the shrinking rate of fat toroidal droplets is derived by energy conservation.Comment: 6 pages, 7 figure

    Using acoustic waves to induce high-frequency current oscillations in superlattices

    Get PDF
    We show that gigahertz acoustic waves in semiconductor superlattices can induce terahertz (THz) electron dynamics that depend critically on the wave amplitude. Below the threshold amplitude, the acoustic wave drags electrons through the superlattice with a peak drift velocity overshooting that produced by a static electric field. In this regime, single electrons perform drifting orbits with THz frequency components. When the wave amplitude exceeds the critical threshold, an abrupt onset of Bloch-type oscillations causes negative differential velocity. The acoustic wave also affects the collective behavior of the electrons by causing the formation of localized electron accumulation and depletion regions, which propagate through the superlattice, thereby producing self-sustained current oscillations even for very small wave amplitudes. We show that the underlying single-electron dynamics, in particular, the transition between the acoustic wave dragging and Bloch oscillation regimes, strongly influence the spatial distribution of the electrons and the form of the current oscillations. In particular, the amplitude of the current oscillations depends nonmonotonically on the strength of the acoustic wave, reflecting the variation in the single-electron drift velocity
    • …
    corecore