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Effects of classical stochastic webs on the quantum dynamics of cold atomic gases
in a moving optical lattice
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We introduce and investigate a system that uses temporal resonance-induced phase-space pathways to create
strong coupling between an atomic Bose-Einstein condensate and a traveling optical lattice potential. We show
that these pathways thread both the classical and quantum phase space of the atom cloud, even when the optical
lattice potential is arbitrarily weak. The topology of the pathways, which form weblike patterns, can by controlled
by changing the amplitude and period of the optical lattice. In turn, this control can be used to increase and limit
the BEC’s center-of-mass kinetic energy to prespecified values. Surprisingly, the strength of the atom-lattice
interaction and resulting BEC heating of the center-of-mass motion is enhanced by the repulsive interatomic
interactions.
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I. INTRODUCTION

There is great interest in the interaction of harmonically
trapped atomic Bose-Einstein condensates (BECs) with op-
tical lattice (OL) potentials [1–5]. Such systems have been
used to realize and study a wide range of BEC dynamics,
including soliton formation and evolution [6], the effect of
nonlinear interactions on quantum tunneling [7], and BEC
transport through energy bands [8]. Conversely, studies of
the interactions of ultracold atoms with real crystal lattices,
for example semiconductor surfaces, have highlighted the
strong Casimir-Polder attraction of atoms to a surface that is
approximately 1 μm away and have shown how that attraction
can facilitate interaction between atomic gases and condensed
matter [9–11]. For example, the Casimir-Polder attraction has
been used to couple BECs in a harmonic trap to a vibrating
SiN cantilever whose mean position is of the order of 1 μm
away from the trap center [12]. Dynamical perturbations have
also been applied to BECs by using oscillating OLs [13–15]
and by exploiting Feshbach resonances to create a periodic
driving term [16]. All of these studies have shown that resonant
driving can excite discrete modes within the BECs, which often
induces center-of-mass motion of the atom cloud, thus heating
it and causing atoms to be lost from harmonic traps.

Perturbing a simple harmonic oscillator by a plane wave
whose frequency is commensurate with the oscillator fre-
quency has been shown to rapidly excite the oscillator
[17–26]. This resonant heating manifests itself experimentally
in, for example, enhanced electron transport in semiconductor
superlattices [20–27] and heating in Tokamak fusion reactors
[17–19,28]. The excitation of the oscillator is due to the
resonant creation of intricate phase-space structures known
as “stochastic webs” [17–26,29], which enable the oscillator
to diffuse through the web filaments away from the web center,
thereby gaining energy and becoming delocalized in real space.

In this paper, we investigate the dynamics of a BEC
with no, or repulsive, interatomic interactions, which is
confined by a three-dimensional harmonic trap and driven
by a traveling OL potential. We show that the stochastic
web that forms resonantly in the single-atom classical phase

space has a pronounced effect on the evolution of the BEC’s
density profile. In particular, the quantum mechanical Wigner
functions calculated for the condensate wave function diffuses
through regions of phase space that correspond to the classical
stochastic web filaments. This causes the Wigner functions
to expand outwards away from the origin of the phase space,
through channels aligned with radial filaments in the classical
stochastic web, thereby increasing the BEC’s center-of-mass
motion. By adjusting the shape of the OL potential, and hence
tailoring the underlying classical phase-space structure, we can
control a priori the limit to which the BEC heats and derive
an analytical model for the energy gained from the OL as a
function of its wavelength. Although the heating rate increases
with the strength of the OL potential, resonant diffusion of
the BEC’s Wigner functions along stochastic web filaments
persists for arbitrarily small OL perturbations.

II. SEMICLASSICAL MODELING
OF THE PERTURBED BEC

In our investigation, we simulate the spatiotemporal evo-
lution of a BEC using the Gross-Pitaeveskii equation (GPE),

ih̄
∂ψ(x,t)

∂t
=

[
− h̄2

2m
∇2 + V (x,t) + g|ψ(x,t)|2

]
ψ(x,t),

(1)
in which interatomic collisions are taken into account via
the nonlinear term, proportional to the local atom density,
in the effective potential energy [30–34]. Within the GPE, the
distribution of atoms of mass m is described via a mean-field
wave function ψ(x,t), and, for the interacting cloud, the
strength of the mean-field interatomic interaction potential
is given by g = g0 = 4πh̄2as/m, where as is the s-wave
scattering length. For noninteracting clouds, we will set g = 0.

For BECs with repulsive interatomic interactions, g0 is pos-
itive, meaning that the potential energy of the BEC increases
with increasing atomic density. The total external potential
energy in the GPE above, V (x,t), comprises the harmonic
trapping potential, Vtrap(x) = m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2, and
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the time-dependent OL perturbation that drives the atom
cloud. The harmonic lengths along x, y, and z are defined
by lx,y,z = (h̄/mωx,y,z)1/2. We consider an OL traveling along
the z direction and described by the plane-wave potential
Vpert(z,t) = Vo cos(kcz − ωct), where Vo,kc, and ωc are the
wave amplitude, wave vector, and angular frequency, respec-
tively. We define the ratio R = ωc/ωz, which is a positive
integer for temporally resonant driving. The OL wave vector
kc will, throughout, be scaled by the inverse of the harmonic
trapping length, lz.

To solve the GPE, we apply a projector to the mean-field
wave function in order to create the projected Gross-Pitaevskii
equation (PGPE) [35]. Physically, this projection limits the
mean-field wave function to expansion over the cooler, highly
occupied energy eigenfunctions of the three-dimensional (3D)
harmonic trap; see Ref. [35] for details.

The PGPE provides a qualitatively and quantitatively
accurate description of the dynamics of atomic gases that
are sufficiently cold for their incoherent fraction to be
neglected [36]. In this regime, the PGPE has been shown to
produce quantitatively accurate results when compared with
experiments on atomic gases in, and far from, equilibrium [37]
and when compared to more complex theoretical formalisms
[38].

However, there has also been much discussion of when
and how these projected methods break down, for example in
the case of quasicondensate systems where the noncoherent
part of the atomic cloud plays a much larger role [39]. In
such cases, more powerful methods are required, including
the stochastic projected Gross-Pitaevskii equation (SPGPE),
stochastic Gross-Pitaevskii equation (SGPE), and Zaremba-
Nikuni-Griffin (ZNG) formalism [40]. Even at very low
temperatures, dynamical excitations can sometimes affect
quantum mechanical coherence across the cloud. However,
it has been shown that even if coherence is partially lost, the
results from simple GPE-like methods still agree with more
complex methodologies for atoms in chaotic systems; see, for
example, [41].

Here, we only consider low-temperature regimes and atom
cloud parameters chosen to ensure that decoherence and
quantum mechanical fluctuations [42], which only add 1/2
an atom to the ∼300 atoms that typically occupy each energy
level, have a negligible qualitative and quantitative effect on
the behavior of the driven BECs. Additionally, we limit the
projector to ensure that for typical OL parameters, the PGPE
meets the validity requirement that high-energy states near the
cutoff are all highly occupied [35].

We consider a BEC comprising 87Rb atoms with m =
1.455 × 10−25 kg and as = 5.4 × 10−9 m. The trapping
frequencies are ωx = 2π × 120 Hz and ωy,z = 2π × 30 Hz
[35], creating a “pancake”-shaped BEC with a width-to-height
aspect ratio of 4, as shown in Fig. 1. Using these parameters,
the harmonic length lz = 1.94 μm. The number of atoms,
N , in the system is an important parameter as the nonlinear
self-interaction potential scales with the atom density. For very
large N , the repulsive interatomic forces strongly affect both
the internal and center-of-mass dynamics of the atom cloud.
However, we find that taking an experimentally accessible
value of N = 104 [35] leads to an evolution that is influenced
both by interatomic collisions and by the single-particle

FIG. 1. Isodensity surface (red) of a BEC that is confined in a
3D harmonic potential and subject to a plane-wave potential [high
(low) potential energy shown in green (blue)] traveling along the z

direction, corresponding to the lowest frequency of the harmonic trap.

resonant phenomena, in particular the formation of extended
stochastic web patterns in phase space, whose effect on BEC
dynamics is the focus of this paper.

The initial state used in our quantum simulations is
the ground state of the harmonic trap, normalized so that
N = 104, which we determine by evolving the PGPE using
the imaginary-time substitution t → −it so that excited-
state contributions to the density profile decay exponentially,
leaving only the ground state. We also consider noninteracting
atomic clouds (g = 0) in which every atom initially occupies
the single-particle ground state of the harmonic trap.

Even though the PGPE only describes a microcanonical
ensemble, it can still be used to determine the temperature of
the atom cloud in equilibrium [35,43]. However, since a BEC
driven by a traveling OL is heated dynamically and evolves
far from equilibrium, its temperature is not well defined.
Consequently, we use the energy per atom, E(t),

E(t) = 1

N

∫ ∞

−∞
ψ†(x,t)ih̄

∂ψ(x,t)

∂t
dx, (2)

as the measure of heating and to quantify the instantaneous
energy of the atom cloud.

Figure 2 shows E(t) curves calculated versus time t , in
units of τz = 2π/ωz, for various optical lattice parameters to
highlight the enhanced heating that occurs when the harmonic
trap is driven resonantly. The two dark-blue curves (labeled 2
and 3) show E(t) for noninteracting (g = 0, solid dark-blue
curve, 3) and interacting (g = g0, dashed dark-blue curve, 2)
atom clouds when R = 1. Both curves have approximately the
same form for t < 10, although when g > 0 the atom cloud
has a larger initial energy due to the repulsive interatomic
interactions. For t � 10, E(t) attains a maximum value of
E ≈ 25h̄ωz when g = 0, but thereafter decreases. By contrast,
for g = g0, E(t) reaches a maximum and then remains
approximately constant. The red (labeled 4) and light-blue
(labeled 5) curves in Fig. 2 show E(t) for nonresonant heating,
with R = 0.95 and

√
2, respectively, when g = 0. Both curves

show that E(t) increases far slower off resonance, even when
R = 0.95, than for the R = 1 resonant case. The solid green
curve (labeled 1) in Fig. 2 shows E(t) calculated for R = 2, and
shows that the energy of the atom cloud increases to a higher
maximum than when R = 1. However, in order to reach the
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FIG. 2. Comparison between the energy per atom, E(t), in the
BEC calculated vs time t , shown in units of τz, for resonant
and nonresonant plane-wave driving and for different strengths
of interatomic interaction: Dark-blue solid (labeled 3) and dashed
(labeled 2) curves show R = 1 resonant heating for noninteracting
(g = 0) and interacting atoms, respectively; red (labeled 4) and
light-blue (labeled 5) curves show nonresonant heating for R = 0.95
and R = √

2, respectively (g = 0 in both cases); green curve (labeled
1) shows R = 2 heating for g = 0 and Vo = 1.3h̄ωz. Vo = 0.3h̄ωz for
all other curves. In all cases, N = 104 and kc = 0.5/lx .

higher maximum in approximately the same time, the optical
lattice depth is increased by more than a factor of 4 when
R = 2 compared to R = 1.

To understand the evolution of E(t), we now consider
the quantum phase-space evolution of the atom cloud by
calculating the Wigner quasiprobability distribution function
using

W (x,p) = 1

πh̄

∫ ∞

−∞
ψ†(x + �)ψ(x − �)e2ip·�/h̄d�, (3)

where p = px x̂ + py ŷ + pzẑ and � = λx x̂ + λy ŷ + λzẑ. To
reduce this six-dimensional distribution to a two-dimensional
function of the variables z and pz that characterize motion
along the OL direction, we integrate over the other four
dimensions. Due to its form, W (z,pz) is real, and therefore
the accuracy of the integration can be quantified by the ratio
of the resulting imaginary and real parts. In our simulations,
we ensure that Im(W )/Re(W ) < 10−10.

Figures 3(a, i–iv) show the Wigner function evolution
calculated for a noninteracting cloud when R = 1, i.e., corre-
sponding to the solid blue curve (labeled 3) in Fig. 2. Initially,
the probability distribution is centered on (z,pz) = (0,0),
corresponding to the harmonic trap ground state [Fig. 3(a,i)].
As t increases, the OL excites the BEC into oscillatory center-
of-mass motion. After the OL has acted for one trap period,
τz, the atom cloud has moved along the z axis, increasing
its potential energy in the harmonic trap. This can be seen
from the Wigner function in Fig. 3(a,ii), whose horizontal
displacement and symmetry reveal that the time-averaged z

coordinate 〈z〉 > 0 and that the atom cloud has almost zero
average momentum (〈pz〉 ≈ 0). In addition, the internal form
of the Wigner function is similar to that at t = 0, which
means that the BEC’s spatial shape is preserved. As t further
increases, the Wigner function continues to diffuse along
the z axis and pz = 0 pathway, and the BEC moves further

away from the harmonic trap center, gaining potential energy.
Eventually, the BEC’s Wigner function reaches a region of
phase space, determined by the wave vector of the OL as
explained below, where it no longer moves to higher z values
but, instead, broadens and moves away from pz = 0 around
a ringlike dynamical barrier of radius ρ = √

z2 + p2
z in phase

space [Fig. 3(a,iii)]. Next, the Wigner function profile remains
ringlike but begins to move back towards (z,pz) = (0,0),
decreasing its phase-space radius and, hence, causing E(t) to
decrease, as shown for t > 10τz by the dark-blue solid curve
(labeled 3) in Fig. 2.

Figures 3(b, i–iv) show the Wigner function evolution
calculated for the BEC with repulsive interatomic interactions.
Initially [Fig. 3(b,i)], the atom cloud has a larger spread
in position than when g = 0 [Fig. 3(a,i)]. As t increases
to 6τz [Fig. 3(b,ii)], the OL driving potential causes the
BEC’s Wigner function to travel along the same 〈pz〉 = 0
pathway as for g = 0 [Fig. 3(a,ii)]. However, for the BEC,
the repulsive interatomic interactions strongly affect the form
of the Wigner function and cause the atom density profile
to spread and fragment in both phase and real space. Figure
3(b,iii) captures, at t = 17τz, the Wigner function moving out
around the same circular phase-space barrier as for g = 0
[Fig. 3(a,iii)]. However, in contrast to the almost symmetric
spreading seen for g = 0 [Figs. 3(a,iii) and 3(a,iv)], the BEC’s
Wigner function becomes highly fragmented as it reflects
from the circular dynamical barrier and expands rapidly in
both z and pz [Fig. 3(b,iv)]. All of the Wigner functions
shown in Fig. 3 for t > 0 reveal asymmetry between +pz

and −pz because propagation of the OL traveling wave along
the positive z direction makes the atom cloud drift in this
direction. This asymmetry diminishes as the OL amplitude Vo

decreases.
The repulsive g|ψ(x,t)|2 potential breaks the position-

momentum symmetry that is embedded in the equation of
motion for the noninteracting atom cloud. The effect of this
symmetry breaking on the evolution of the atom density
profile is particularly pronounced when the Wigner function
begins to move around the circular dynamical barrier in phase
space [e.g., Fig. 3(b,iii)] because the atom cloud decelerates
along z, thus increasing the peak atom density. The symmetry
breaking prevents the interacting cloud from contracting back
towards (z,pz) = (0,0) along the 〈pz〉 = 0 pathway following
reflection from the dynamical barrier when t ∼ 15τz. This
explains why, for the BEC, E(t) continues to increase for t �
20τz (dark-blue dashed curve in Fig. 2, labeled 2) in contrast
to the energy loss seen when t � 10τz for the noninteracting
cloud (dark-blue solid curve in Fig. 2, labeled 3).

To gain insight into the form and evolution of the Wigner
functions, we now consider the corresponding classical equa-
tions of motion. A single harmonically confined atom with
no interatomic collisions performs simple harmonic motion
along the x and y directions, which separates from that along
z. Motion along the z direction corresponds to a harmonic
oscillator driven by the traveling OL potential and is described
by the following equation:

z̈ = −ω2
zz + Vokc

m
sin(kcz − ωct), (4)
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FIG. 3. (a, i–iv) Position-momentum (z,pz) phase-space Wigner functions (normalized moduli, |W |/N , plotted) showing the time evolution
calculated for a noninteracting atom cloud with resonant R = 1 plane-wave driving. (i) t = 0, cloud at rest; (ii) t = τz, cloud has been excited to
a larger phase-space radius, ρ = √

z2 + p2
z , along the 〈pz〉 = 0 pathway; (iii) t = 7τz, cloud reaches, and scatters from, a ring-shaped dynamical

barrier; (iv) t = 17τz, cloud begins to contract along the 〈pz〉 = 0 pathway, reducing its mean ρ value and energy. (b, i–iv) Phase-space evolution
calculated for an interacting atom cloud (g = g0) at times (i) t = 0, cloud at rest but repulsive interactions produce a larger initial phase-space
spread than for g = 0; (ii) t = 6τz, cloud is excited as in (a,ii) except that the interactions have distorted the phase-space distribution; (iii)
t = 17τz, the cloud reaches the ring-shaped dynamical barrier and scatters from it, becoming fragmented; (iv) t = 25τz, cloud continues to
evolve in phase space with no reduction in its energy. Color bar shows normalized values of the Wigner function modulus.

where all of the parameters take the numerical values described
above in order to facilitate direct comparison between classical
and quantum evolution of the atom cloud. To determine the
classical dynamics, we solved Eq. (4) using the fourth-order
Runge-Kutta algorithm. The initial conditions were taken to be
a set of pseudorandomly created positions and momenta with
Gaussian distributions, corresponding to those of the single-
particle, quantum mechanical ground state of the harmonic
potential along z and with the same associated energy, h̄ωz/2.

Figure 4(a) shows a stroboscopic Poincaré section con-
structed by plotting the phase-space variables (z,pz) obtained
from Eq. (4) at equally spaced times, t = lτz, l = 0,1,2, . . .,
for R = 1. The form of the Poincaré section differs markedly
from the elliptical islands of stability found in the absence
of the plane-wave driving potential. In particular, there are
two distinct islands with an almost linear separatrix (blue
dashed line) and enclosed by a circular boundary (red dashed
curve). Around these dashed regions of phase space, the
classical motion is chaotic and the width of the chaotic regions
increases with the amplitude of the plane-wave perturbation in
Eq. (4).

It is well known that the phase space of a harmonic
oscillator driven by a plane wave whose angular frequency
is an integer multiple of the unperturbed harmonic-oscillator
frequency is threaded by a continuous stochastic web within
which the motion is unstable [17–26,29]. Each stochastic web
is characterized by an infinite number of circular filaments
connected by 2R radial filaments. Figure 4(a) shows the
position of the two radial filaments (blue dashed lines) that
extend outwards along pz = 0 and the innermost ring-shaped
filament (dashed red curve). Stochastic webs have analytically

defined structures that can be determined by expanding the
Hamiltonian of the driven harmonic oscillator into Bessel
functions and finding the stationary points of the system
[29]. The concentric ring-shaped filaments have radii given
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FIG. 4. (a) Classical Poincaré section (dots) calculated for an
87Rb atom driven by a plane wave. Blue and red dashed curves show,
respectively, the location of the radial and first ring-shaped filaments
of the stochastic web that encloses the islands of stability shown in
black. (b)–(d) Wigner functions (normalized moduli plotted: color bar
lower right) that are periodically time averaged over 40τz for R = 1
with (b) g = 0 and (c) g = g0, and for R = 2 with (d) g = 0. For all
panels, Vo = 0.3h̄ωz. (a)–(c) kc = 0.5/lz; (d) kc = 0.75/lz.
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by ρS
R = AS

R/kc, where AS
R is the Sth root of the Rth Bessel

function, JR , i.e., where JR(AS
R) = 0. The dashed red ring

shown in Fig. 4 corresponds to S = 1 and R = 1.
Stochastic webs are important in many branches of physics,

including plasma dynamics, Tokamak fusion, quasi crystals,
condensed-matter quantum devices, and analogous optical
and atomic systems [17–26,29]. One reason for this interest
is that the radial filaments provide chaotic pathways along
which the oscillator can diffuse, thus attaining higher ρ values
and gaining energy from the plane wave. The existence of
stochastic webs in the classical phase space of a harmonically
trapped atom resonantly driven by a traveling OL explains
key features of the heating rates determined from quantum
mechanical models for the evolution of the atom cloud (Fig. 2).

To explain this classical-quantum correspondence, we now
consider time averages of a series of Wigner functions
calculated every trap period, τz, over the interval 0 � t � 40τz.
This time averaging makes the phase-space evolution of the
atom density distribution clearer and facilitates comparison
with stroboscopic Poincaré sections, such as that shown in
Fig. 4(a). Figure 4 also shows time-averaged Wigner functions
calculated by solving the PGPE for R = 1 and (b) g = 0, (c)
g = g0, and for R = 2 and (d) g = 0.

Although, in principle, the web filaments extend outwards
to infinity, their width becomes exponentially thinner with
increasing phase-space radius, ρ = √

z2 + p2
z . Consequently,

in a classical picture, an atom starting from rest at the web
center moves out along the z > 0 (blue) radial filament in
Fig. 4(a) and then, rather than continuing to move radially
away from the web center, transfers to the inner ring-shaped
filament (red), before eventually reentering the radial filament
and moving back towards the web center. Trajectories in
the two islands of stability enclosed by the web filaments
have a similar form characterized by gaining and losing
kinetic energy as they move respectively away from, and
towards, the web center. The time-averaged Wigner function
calculated for the noninteracting atom cloud [Fig. 4(b)]
concentrates around the radial and innermost ring filaments
of the stochastic web, indicating that the quantum mechanical
evolution of the atom cloud is shaped by the underlying clas-
sical dynamics. When interatomic interactions are included
[Fig. 4(c)], the time-averaged Wigner function peaks near
the z > 0 radial filament and is bounded by the innermost
ring filament. However, within that circular boundary, the
probability distribution is more diffuse than for g = 0 because
the interatomic interactions create additional forces that enable
the driven oscillator to spread further into the islands of
stability that are enclosed by the stochastic web. In the absence
of interactions, the islands of stability are inaccessible to
a classical trajectory starting from rest at the web center
and so the corresponding time-averaged Wigner function
[Fig. 4(b)] penetrates less far into the islands of stable classical
motion.

Localization of the classical orbits within the innermost
ring-shaped filament in Fig. 4(a) explains why, in a quantum
picture, the atom cloud backscatters entirely from the first
phase-space ring, with no part of the atom cloud being able to
travel further outwards beyond this ring, which therefore acts
as a dynamical barrier in phase space. Since the ring radii have
the analytical form given above, the corresponding maximum

attainable energy per particle in the atom cloud is

ER
ring = mω2

z

[
A1

R

]2

2k2
c

. (5)

As R increases, the radius of the inner ring also increases
as it corresponds to the first root of successively higher-order
Bessel functions, with A1

1 < A1
2 < A1

3, etc. This makes more
of the phase space accessible to the driven oscillator as R

increases, which explains why the maximum energy that
the atom cloud attains in Fig. 2 is higher for R = 2 (green
curve, labeled 1) than for R = 1 (dark-blue solid curve,
labeled 3). However, with increasing R, the ability to excite
the entire atom cloud along the radial phase-space pathways
to reach the innermost circular web filament diminishes
because the web radius ρ1

R increases [29]. This can be seen
from the time-averaged Wigner function calculated for R = 2
[Fig. 4(d)]. Although this Wigner distribution is clearly shaped
by the innermost circular filament and by the four (i.e., 2R)
radial filaments of the corresponding classical stochastic web,
the time-averaged probability density remains concentrated
towards the center of the web at (z,pz) = (0,0) as it takes far
longer for the cloud to reach the ring-shaped web filament
when R = 2 than for R = 1. Indeed, as shown in Fig. 2, when
R = 2 (green curve, labeled 1), the optical lattice depth has
to be increased approximately fourfold in order for the atom
cloud to attain its maximum energy at a similar time to the
R = 1 case (dark-blue solid curve, labeled 3). Consequently,
the most efficient excitation and heating of the cloud occurs
when R = 1 rather than for higher-frequency ratios.
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FIG. 5. Maximum energy of atom clouds calculated vs wave
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potential. Blue curve shows E1

ring values given by Eq. (5). Black
(red) symbols are maximum energies calculated using the GPE with
g = g0 (g = 0). Insets: Wigner functions (moduli plotted) calculated
for R = 1 and kc = (a) 0.4/lz, (b) 0.75/lz peak around the classical
stochastic webs in phase space.
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The classically derived Eq. (5) suggests that a traveling OL
with R = 1 can be used to heat a BEC to an energy, E1

ring, that
is selected a priori, by simply varying kc. To investigate the
validity of Eq. (5) for predicting quantum dynamics, in Fig. 5
we compare E1

ring calculated versus kc from this equation (solid
blue curve) with the maximum energy attained by interacting
(black circles) and noninteracting (red circles) atom clouds
whose quantum evolution is described by the PGPE.

Although the quantum mechanical results are generally
very close to the classical prediction from Eq. (5), there are
also some interesting differences. Primarily, the maximum
energy attained by the interacting atom cloud (black circles)
generally exceeds the classical prediction because the initial
repulsive self-interaction causes expansion of the atom cloud,
thus increasing its kinetic energy. In addition, in contrast to
the classical model, the maximum energy attained by the
interacting atom cloud does not vary monotonically with kc,
revealing peaks around kc = 0.8/lz and 1.6/lz. These peaks
originate from spatial resonance between the width of the
interacting atom cloud and the wavelength of the OL when
λc = 2π

kc
∼ 2zT F and ∼zT F , respectively, where zT F is the

Thomas-Fermi radius, i.e., half the width of the atom cloud.
When this spatial resonance condition is satisfied, the cloud
acts more like a single atom, ensuring the entirety of the cloud
is heated coherently, rather than fragmenting and converting
its interatomic interaction energy into kinetic energy. When
kc � 1.25/lz, the maximum temperature reached by both
the interacting and noninteracting atom clouds exceeds the
classical prediction. This is because, in this high-kc regime,
the radius of the inner stochastic web ring is smaller than the
initial position and momentum spread of the two atom cloud
ground states. As a result, the corresponding Wigner functions
can rapidly expand beyond the first web ring, causing the
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FIG. 6. Color map (scale right) showing the total energy E of
each atom in an 87Rb BEC calculated vs time (in units of τz) and the
amplitude Vo (in units of h̄ωz) of a plane-wave driving potential with
kc = 0.5lz. The map is shown both as a surface plot (upper) and a
2D projection (lower). Along the dashed curve in the projection, the
BEC’s energy is 90% of the energy limit given by Eq. (5).
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FIG. 7. Atom density profiles calculated for an 87Rb BEC with

g = go shown in the x = 0 plane for R = (a) 1, (b) 2 at times t =
(i) 5.00τz, (ii) 5.25τz, (iii) 5.50τz, (iv) 5.75τz, (v) 6.00τz. (a, i–v)
Large-amplitude center-of-mass oscillation during which the BEC
maintains a spatially coherent form. (b, i–v) There is no center-of-
mass oscillation, but significant deformation and fragmentation of the
atom cloud.

energy to increase above the maximum value predicted by
Eq. (5).

The OL amplitude Vo also affects the heating of the
atom cloud. Although the stochastic web structure still forms
resonantly in phase space for arbitrarily small Vo values, the
width of the web filaments, and hence the rate at which the
atom cloud moves outwards along them in phase space, and
how far it travels, both increase with increasing Vo. The color
map in Fig. 6 shows the total energy of an interacting 87Rb BEC
with g = g0 calculated versus t and Vo for fixed kc = 0.5/lz.

053623-6



EFFECTS OF CLASSICAL STOCHASTIC WEBS ON THE . . . PHYSICAL REVIEW A 96, 053623 (2017)

The dashed curve in the projected (lower) color map, which
lies within the yellow band in the color scale, marks where the
energy of the atom cloud reaches 90% of the maximum energy
given by Eq. (5). As Vo increases, the atom cloud reaches this
energy threshold faster because, qualitatively, the stochastic
web filaments are wider and hence support faster and further
phase-space diffusion. Quantitatively, analysis of the locus of
the dashed curve shows that the time taken for the atom cloud
to reach 90% of the maximum energy is τheat ≈ 2.8h̄/Vo. The
uneven nature of the heating shown in Fig. 6 is due partly to
the self-interaction energy and partly to variation in the rate at
which the atom cloud diffuses through phase space as its spatial
and momentum distributions change [29]. These effects limit
the maximum heating rate, as seen in Fig. 6 for Vo > 3.5h̄ωz,
where the time evolution of the BEC’s energy depends only
weakly on Vo.

The OL parameters can be controlled to create phase-space
stochastic web filaments that are wide enough to allow
coherent center-of-mass motion in which the condensate gains
energy with very little fragmentation. Such motion is shown in
Figs. 7(a, i–v) (i.e., left-hand column) over a single harmonic
trap period at times t = (i) 5.00τz, (ii) 5.25τz, (iii) 5.50τz,
(iv) 5.75τz, and (v) 6.00τz. The atom cloud has a similar
form at the beginning and end of the period and shows no
internal fragmentation. By contrast, R = 2 resonant heating,
as shown in Figs. 7(b, i–v) (i.e., right-hand column), causes
mainly internal deformation and the excitation of quadrupole
oscillation modes within the atom cloud. In this case, the OL
produces very little center-of-mass motion and, as a result,
limited heating.

III. CONCLUSION

Driving a harmonically confined cold atom cloud with a
traveling OL whose frequency is commensurate with that of
the harmonic trap causes controllable heating of the cloud
by imprinting a stochastic web in the classical phase space.

The web filaments provide a network of transport channels
through which the atoms can diffuse and gain energy in both
classical and quantum descriptions of the atomic dynamics.
The heating of the cloud can be selected a priori by changing
the wavelength of the OL, even for very small OL amplitudes.
This result opens up many avenues for future work because
controlled excitation and heating of atomic gases typically
requires strong coupling to a driving potential, for example
via large deformations of the harmonic trapping potential.
By contrast, we have shown that plane-wave perturbations
of arbitrarily small amplitude can exert a large, controllable
effect on BECs. Delicate control potentials of this form could
therefore be used for precise, nondestructive, quantum state
preparation and coherent evolution. Our results also suggest
different directions for experimental studies of BECs coupled
to an oscillating cantilever or membrane [12]. In particular,
stochastic webs may be created and used to control atom clouds
by coupling the atoms, via the atom-surface Casimir-Polder
attraction, to mechanical standing waves along the nearby
solid-state oscillator. Since resonant coupling has been shown
to create stochastic webs in the atomic phase space [29], we
expect it to cause a rapid controllable increase in the kinetic
energy corresponding to the BEC’s center-of-mass motion and,
conversely, sympathetic cooling of the solid-state oscillator. In
principle, the oscillator could be cooled close to its quantum
mechanical ground state by transferring energy to the atom
cloud, thereby providing access to a range of macroscopic
quantum phenomena in condensed matter [44]. Moreover,
such strong resonant coupling between surfaces and BECs,
resulting from arbitrarily weak perturbations, could provide
new mechanisms and protocols for coherent-state transfer and
readout.
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