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The shrinking instability of toroidal liquid droplets in the Stokes flow regime

Zhenwei Yao and Mark J. Bowick
Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA

We analyze the stability and dynamics of toroidal liquid droplets. In addition to the Rayleigh
instabilities akin to those of a cylindrical droplet there is a shrinking instability that is unique to
the topology of the torus and dominates in the limit that the aspect ratio is near one (fat tori). We
first find an analytic expression for the pressure distribution inside the droplet. We then determine
the velocity field in the bulk fluid, in the Stokes flow regime, by solving the biharmonic equation for
the stream function. The flow pattern in the external fluid is analyzed qualitatively by exploiting
symmetries. This elucidates the detailed nature of the shrinking mode and the swelling of the cross-
section following from incompressibility. Finally the shrinking rate of fat toroidal droplets is derived
by energy conservation.

PACS numbers: 47.20.Dr

Liquid droplets of various shapes are ubiquitous in na-
ture pure and applied. They are found in rain, clouds,
paint, lubricants, inks, dyes and oil [1, 2] and are being in-
creasingly exploited in microfluidics [3]. The instabilities
of liquid droplets have attracted attention since the be-
ginning of the 19th century [4–9]. Early work of Plateau
showed that a long cylindrical liquid droplet is unstable
to capillary wave deformations of wavelength exceeding
the droplet circumference. Rayleigh subsequently de-
termined the most unstable capillary mode by solving
the Navier-Stokes equation [10, 11]. Purely planar liquid
droplets are, in contrast, stable since capillary waves al-
ways increase the droplet surface area and hence the free
energy [12]. Droplet instabilities thus probe the com-
bined influence of the three-dimensional geometry of the
droplets and their surface tension [4].

In this paper we study the instability of liquid droplets
in the form of three-dimensional axially symmetric solid
tori, inspired by recent experiments in which bulk liquid
tori are created by extruding water or glycerin through
a metallic needle into a rotating bath of viscous silicone
oil [13]. Thin toroidal droplets exhibit Rayleigh instabil-
ities analogous to those of the cylinder [10, 14, 15], with
the additional requirement that the most unstable mode
has wavelength λc commensurate with the outer circum-
ference of the torus. When the outer circumference is
an integer (n) times λc, the toroidal droplet eventually
fissions into n solid spherical droplets (three-dimensional
balls). Thus the change in topology of the droplet (solid
torus breaks up into n balls) is governed by a Bohr quan-
tization condition with the final number of balls playing
the role of the principal quantum number n. Toroidal
droplets also exhibit a fundamentally different type of
instability in which the torus shrinks to close its interior
hole, eventually becoming a single ball. This instability
is a signature of the topological character of the torus
and does not exist for a cylinder. Although it is present
for a torus of any aspect ratio, it is preempted by the
Rayleigh instability unless the torus is sufficiently fat (see
Appendix B).

The outline of this paper is as follows: we first analyze
the shrinking instability of toroidal droplets by minimiz-

ing a free energy controlled by interfacial surface ten-
sion. We then derive the pressure distribution driving
bulk flow of the fluid. The shrinking mode is then exam-
ined in more depth via the Stokes equation, which is the
large Ohnesorge number (Oh ≡ η/

√
ρLσ >> 1) limit of

the Navier-Stokes equation. The biharmonic equation for
the stream function determines the velocity field inside
the toroidal liquid droplet. The shrinking of the droplet
and simultaneous swelling of the cross-section from vol-
ume conservation are clearly revealed in the flow. Finally,
we calculate the shrinking speed by balancing the rate of
free energy gain with the viscous dissipation rate.
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FIG. 1: Schematic of coordinates for a solid torus generated
by rotating a circular disk of radius R2, centered a distance
R1 from the origin, around the vertical (z) axis.

A three-dimensional axially symmetric solid torus is
characterized by coordinates {u1 = α, u2 = θ, u3 = r},
as shown in Fig.1. Here α is the angle around the tube,
θ is the azimuthal angle around the z-axis, and r is the
radial coordinate of the tube. The central circle of the
solid torus with radius R1 (at r = 0) will be called the
reference circle of the solid torus. The outer radius of
the tube is denoted R2. The aspect ratio of the toroidal
surface is then φ = R1/R2. The non-zero components of
the metric tensor of the solid torus are g11 = r2, g22 =
(R1 + r cosα)2 and g33 = 1.
The instability of a toroidal liquid droplet to shrinking

can be seen in terms of the free energy F = σA. In

http://arxiv.org/abs/1011.3437v3
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the shrinking process, R1 decreases and R2 increases due
to volume conservation. The change of free energy with
radius is

dF

dR1
= 2π2σR2 > 0. (1)

Thus toroidal liquid droplets shrink to reduce the free en-
ergy. Although this static analysis reveals the shrinking
mode, the free energy alone does not provide a complete
description of the system. In particular, determining the
shrinking rate requires a study of droplet hydrodynamics.
We first analyze the pressure distribution in a toroidal

droplet to understand the driving force for bulk flow.
Taking the divergence of the Navier-Stokes equation for
an incompressible fluid shows that the pressure must be
harmonic

∆p(r, α) = 0 . (2)

The boundary condition is given by the distribution of
Laplace pressure on the interface between the inner and
outer fluids

p− p0 = σH, (3)

where H is the mean curvature H = R1+2R2 cosα
R2(R1+R2 cosα) . For

simplicity, we first consider the external pressure p0 as
constant. The problem of solving for the pressure dis-
tribution in the bulk fluid is then reduced to solving
Laplace’s equation, Eq.(2), with the specified boundary
condition. The Laplace pressure drop from the exterior
(α = 0) to the interior (α = π) of the torus is given by

P (α = 0) − P (α = π) = 2σ 1
R2

φ
φ2−1 and is a measure of

the asymmetry of the torus. Since φ > 1, the Laplace
pressure on the exterior of the toroid is always bigger
than on the interior. One also sees that the asymmetry
is more pronounced for a fat torus with aspect ratio φ ap-
proaching one. In the limit φ → ∞, a toroid approaches
a solid cylinder and the asymmetry as well as the shrink-
ing mode disappear. Note that for the opposite case of
constant pressure in the inner fluid, the pressure in the
outer fluid will fall from the interior to the exterior of the
torus. The outer fluid will therefore flow outward and
the inner fluid will correspondingly flow inward, shrink-
ing the droplet. Shrinking is thus a universal feature of
one toroidal fluid inside another.
Laplace’s equation for the pressure Eq.(2) separates in

the coordinates {ρ, ϕ, θ}[16, 17] defined by

~x(ρ, ϕ, θ) =







a sinh ρ cos θ
cosh ρ−cosϕ
a sinh ρ sin θ
cosh ρ−cosϕ

a sinϕ
cosh ρ−cosϕ






,

where a = r sinh ρ.
Exploiting azimuthal symmetry and imposing the re-

quirement that the pressure be finite as one approaches
the reference circle, the physically acceptable solution
takes the form [17]

p =
√

cosh ρ− cosϕ
∑

p∈Z

αpRe[Qp−1/2(cosh ρ)] cos(pϕ)(4)

0 Π 2 Π
-2

-1

0

1

2

ΑHradL

p
-

p 0
HP

aL

FIG. 2: The pressure p(r, α) vs. angle α at different radial
distances away from the reference circle for R1 = 5 mm and
aspect ratio φ = R1/R2 = 1.5. The solid black curve is the
pressure distribution on the boundary p = σH . Green curve:
r = R1/1.5 (boundary). Blue curve: r = R1/3. Red curve:
r = R1/10. Dashed Black curve: r = R1/100. The green
curve fits the exact pressure on the boundary very well.

where Re[Qp−1/2(x)] is the real part of the associated
Legendre function of the second kind. The coefficients
αp can be determined by imposing the boundary con-
dition in Eq.(3). The pressure distribution inside the
droplet is plotted in Fig.2 for aspect ratio φ = 1.5,
surface tension σ = 4 × 10−3 N/m and R1 = 5 mm.
The pressure clearly drops from the exterior (α = 0, 2π)
to the interior (α = π). This pressure gradient drives
the fluid towards the center of the toroid. As r de-
creases the pressure distribution becomes more isotropic
(α-independent). Note that only the p = 0 mode in
Eq.(4) contributes to the pressure near the reference cir-
cle. This enables us to study the behavior of the fluid
near the reference circle analytically. By inserting the
zero mode in Eq.(4) into the Stokes equation one can
determine the velocity field near the reference circle in
{x, z} coordinates: vx = vα sinα − vr cosα = c, and
vz = vα cosα + vr sinα = 0. The velocity field near
the reference circle is uniform towards the center of the
toroid.
We now turn to the velocity distribution in a viscous

toroidal liquid droplet. In this regime of large Ohnesorge
number the Navier-Stokes equation reduces to the Stokes
equation

∆~v =
1

η
∇p, (5)

where η is the fluid viscosity. Here viscous dissipation
dominates over kinetic energy damping:

Ėkin

Ėvisc

=
d[ 12

∫

ρv2dV ]/dt
∫

dV σ′
ij∇ivj

∝ ρLσ

η2
<< 1, (6)

where σ′
ij = η(∇ivj + ∇jvi) is the viscous stress ten-

sor. Since the characteristic speed of the fluid is much
smaller than the speed of sound, we can treat the fluid as
incompressible (∇ · ~v = 0)[18]. For incompressible fluids
one can write the velocity field as the curl of a vector



3

2.0

x

z

o

FIG. 3: The velocity field inside and outside a cross-section
of a toroidal liquid droplet. The dashed semi-circle is the
interface of two distinct fluids. The velocity field inside the
droplet is calculated by solving the biharmonic equation. The
external flow pattern is schematically plotted by imposing
boundary conditions and exploiting symmetry. Parameters
are mode number ν = 1, R1 = 5 mm and R2 = 2 mm.

potential ~ψ (~v = ∇× ~ψ) leading directly to

∆2 ~ψ = 0. (7)

The complete velocity field can be obtained by solving
the biharmonic vectorial equation Eq.(7) which reduces
to a simplified scalar differential equation in the {ρ, ϕ, θ}
coordinates[19]

E2(E2ψ) = 0, (8)

where ψ, the stream function, is the only non-zero com-

ponent ψθ of the vector potential ~ψ and the second-
order partial differential operator E is given by E2 =
wh2[∂ρ(

1
w∂ρ)+∂ϕ(

1
w∂ϕ)], with w = a sinh(ρ)/[cosh(ρ)−

cos(ϕ)] and h = [cosh(ρ)−cos(ϕ)]/a. Imposing the phys-
ical requirements that approaching the reference circle vx
tends to a finite value and vz → 0 (reflection symmetry)
yields the complete solution

ψ =
a sinh ρ

(cosh ρ− cosϕ)3/2

+∞
∑

ν=−∞

cν sin(νϕ)Q
1
ν−3/2(cosh ρ)(9)

Note that vx → − πc1
2
√
2
and vz → 0 as ρ → ∞ (r → 0).

Thus only the ν = 1 mode contributes to the flow near
the reference circle. The coefficients cν in Eq.(9) can
be determined by matching to the velocity field on the
interface. Assuming that high viscosity fixes the fluid
particles on the interface to move with the interface as it
shrinks, the boundary conditions are found to be vx0 =
V (1 − x0

2 R1

) and vz0 = −V z0
2 R1

, where x0 and z0 denote

spatial points on the boundary and V ≡ dR1/dt. The
point (x = 0, z = 0) is the center of the cross section. The
ν = 1 mode is sufficient to fit this boundary condition.
The velocity field inside the droplet in the laboratory

frame is plotted in Fig.3. The shrinking of the droplet
is clearly indicated by the inward directed flow inside
the droplet. One also sees that outer fluid within the
toroidal hole is squeezed out. Further insight is provided
by plotting the velocity field (see Fig.4) inside the droplet
in a reference frame comoving with the shrinking of the
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FIG. 4: The velocity field inside the toroidal droplet of Fig.3
in a comoving reference frame shrinking with the droplet. The
swelling of the cross section is readily inferred.
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FIG. 5: (a) The vorticity Ωθ(r)/Ωθ(r = R2) versus r. Param-
eters: ν = 1, c1 = 1, α = 1 rad, R1 = 5 mm and R2 = 4mm .
The vorticity field falls to zero at the reference circle. (b) Ωθ

versus angle α for modes ν in the range (−3, 3). The vortic-
ity Ωθ is rescaled to show different modes in the same figure.
Parameters: φ = 5, a = 1. Blue curve: ν = 0 (vorticity van-
ishes). Black curve: ν = 1. Brown curve: ν = 2. Gray curve:
ν = 3. Green curve: ν = −1. Red curve: ν = −2. Pink
curve: ν = −3. Note that the number of peaks or valleys is
determined by the mode number ν.

droplet. The swelling of the cross section resulting from
volume conservation is clearly visible.

The vorticity field, ~Ω ≡ ∇ × ~v = −∆~ψ is plotted in
Fig.5 which shows its only non-zero component Ωθ as
a function of r and α respectively. Fig.5(a) shows that
the vorticity field is only significant near the boundary –
it decays rapidly as one approaches the reference circle.
Fig.5(b) shows Ωθ versus α for ν ∈ [−3, 3]. The vorticity
field vanishes at α = 0 and π due to its odd parity. The
sign of Ωθ reflects the chiral property of vortices. The
number of peaks and valleys on the z > 0 plane (i.e.,
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α ∈ [0, π]) is

n =







−ν, ν < 0
ν − 1, ν > 1
1, ν = 1,

and is therefore completely determined by the mode ν.
In the process of shrinking the free energy gained is

dissipated in viscous damping. By equating the rate of
change of the free energy, Eq.(1), to the viscous dissipa-
tion rate we can obtain the shrinking speed. We focus
here on the experimentally explored case of a low vis-
cosity (ηi) inner fluid immersed in a viscous (ηo) outer
bath [13]. In this case the dissipation occurs almost en-
tirely in the outer fluid. Applying Stokes’ equation for an
incompressible fluid the dissipation rate can be separated
into two parts

Ėvis = −
∫

dV σ′
ij∂ivj = −

∫

dfiσ
′
ijvj (10)

+

∫

dV vj∂iσ
′
ij .

Here dfi is the i component of the area element of the in-
terface. The first term is the heat flux on the fluid bound-
ary and the second term is the dissipation rate inside the
bulk fluid. The second term can be related to the vortic-
ity:

∫

vj∂iσ
′
ijdV = η

∫

vj∆vjdV = −η
∫

~v · (∇ × ~Ω)dV .
Since the Reynolds number of the external fluid is very
small in the experimental setup (Re ≈ 10−4 [13]), we
may take the external flow to be as irrotational (vanish-
ing vorticity) by recalling the experiment of flow through
a cylindrical solid: an irrotational-rotational flow tran-
sition occurs at Re ∼ 1, below which the flow is irrota-
tional [20]. In the shrinking process, the toroidal droplet
moves in the external fluid. This is equivalent to flow
through the toroidal droplet. Since the viscosity of the
internal fluid is very small in this case, the internal dissi-
pation can be neglected. Thus we need to calculate only
the surface integral in Eq.(10) to obtain the dissipation
rate. We need the viscous stress on the boundary to
evaluate the surface integral. Rotational symmetry and
the limiting condition ηi/ηo ≪ 1 imply both σ′

rθ and σ′
rα

vanish at the interface. To determine σ′
rr = 2ηo∂rvr we

need the gradient of vr at the interface. Assuming that
the fluid particles near the boundary move together with
the interface during shrinking, as a result of the viscous
external fluid, we have

∂rvr|interface =
6R1

R2
2

Ṙ2 cosα. (11)

Inserting Eq.(11) along with the velocity field on the in-
terface into the surface term of Eq.(10) yields

Ėvis = −24π2ηo((
R1

R2
)2 − 1

2
)R2Ṙ1Ṙ2 . (12)

By equating the rate of change of the free energy from
Eq.(1) and the dissipation rate Eq.(12), we have

Ṙ2(t) =
vs
12

1

φ2(t)− 1/2
(13)
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FIG. 6: The time evolution of the normalized inner droplet
radius Rin(t)/Rin(0) for initial aspect ratio 1.4. The the-
oretical result is the solid curve and the experimental data
points are taken from Ref.[13]. Parameters: R1(0)= 3 mm;
vs = σ/ηo = 133 µm/s.

and the interior hole of the droplet decreases in size ac-
cording to

Ṙin(t) = − vs
12

2 φ(t) + 1

φ2(t)− 1/2
, (14)

where φ(t) = R1(t)/R2(t) and vs = σ/ηo. The shrinking
speed is controlled by the aspect ratio of the droplet,
in accord with experimental observations [13]. In the
limit of infinite aspect ratio (the cylinder) the shrinking
speed vanishes, as required. The constant 1/2 in the
denominator of Eq.(13) plays an important role in the
limit that the aspect ratio approaches one (fat tori). The
plot of Rin(t)/Rin(0) versus t is shown in Fig.6 for an
initial aspect ratio R1(0)/R2(0) = 1.4, ηi/ηo = 1/30, 000,
σ = 4 mN/m, R1(0) ≈ 3 mm and ηi = 10−3 kg/(m ·
s). For these parameters vs = σ/ηo ≈ 133 µm/s. Fig.6
shows that droplets shrink with roughly constant speed,
as found in [13]. Our results predict that it would take
about 21 s (aspect ratio 1.4) and 50 s (aspect ratio 1.9)
for a toroidal droplet to shrink to close the inner hole
of toroid, in qualitative agreement with the experimental
values of 25 s and 38 s respectively. Thus thinner toroidal
droplets shrink more slowly, consistent with experimental
observations [13].
Our energy conservation approach to determining the

shrinking speed can also be applied to a 2-dimensional
system where it yields an analytical result. Consider
a shrinking hole on a liquid film. The limiting case of
a shrinking toroidal liquid droplet with Rin → 0 and
ηi/ηo >> 1 can be modelled as such a 2-dimensional
system, since the dynamics of the hole becomes indepen-
dent of the fluid far away from the hole. As the hole
shrinks, a flow will be induced outside the hole on the
film. In the Stokes flow regime, the velocity field can
be derived analytically in the polar coordinates {ρ, θ} as
vρ = 1

ρr(t)ṙ(t) and vθ = 0. By energy conservation, the

shrinking speed of the hole can also be derived analyt-
ically. By equating the rate of change of the line en-
ergy Ės = dEs

dt = 2πγ ṙ and the viscous dissipation rate

Ėvis = −
∫

ρdρdθ(σ′ρρ∂ρvρ) = −2πη ṙ2, we have ṙ = γ
η ,

where η is the viscosity of fluid and γ is the line tension.
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We expect that the formalism employed here will have
a variety of applications to the dynamics of fluid in-
terfaces. It may also be extended to liquid crystalline
droplets where the interplay of liquid crystalline order
and the shape of the droplet should be very rich.
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Appendix

A. The shape of cross section

So far we have assumed that droplets remain perfectly
circular in cross-section as they shrink. Here we show
that this assumption is well justified.
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FIG. 7: Minimum energy cross-sectional shapes within a two
parameter family of possible shapes (see Eq.(A.1)). The
dashed curves are the unperturbed circular shapes: (a) as-
pect ratio 10 (thin torus) and (b) aspect ratio 2 (fat torus).
Parameters: R2 = 1.

The shape of a toroidal liquid droplet is characterized
by the radii R1 and R2 which may in general vary with
α and θ. Retaining azimuthal symmetry we consider the
following ansatz for R2 at a fixed time:

R2(α) = a+ c2P2(cosα) + c3P3(cosα). (A.1)

The second term describes an ellipse which is symmetric
about z axis, while the third term describes a shape with
three round corners, which is asymmetric about the z-
axis (we are ignoring the shrinking mode here, described
by a P1(cosα) term). The shape of the droplet is specified
by points in the {c2, c3|c2, c3 ∈ [−b, b]} space.
We numerically search for the ground state in the

{c2, c3|c2, c3 ∈ [−b, b]} space for which

L = A−A0 + λ|V − V0| (A.2)

is minimized, where V0 andA0 are the volume and surface
area of the unperturbed droplet. λ is set to be large to
impose volume conservation. We take a = 1 and b = 0.2.

For tori with typical aspect ratios R1/R2 = 10 and 2,
we find the ground states in the {c2, c3|c2, c3 ∈ [−b, b]}
space shown in Fig.7. The cross-sections are very close
to circular. In the experimental work of [13] this is also
true.

B. Rayleigh instability vs shrinking mode

It is observed experimentally[13] that the Rayleigh in-
stability disappears for sufficiently fat solid tori (R1(t =
0)/R2(t = 0) . 2) whereas the shrinking mode is present
for all aspect ratios. Here we derive a lower bound on the
aspect ratio for the emergence of the Rayleigh instability.

Two conditions must be satisfied for the Rayleigh in-
stability: (1) modes with wavelength λ > λc, where λc
is the minimum wavelength of the Rayleigh instability
mode and (2):

uk(t = t1) & R2(t = 0), (B.1)

where uk is the perturbation amplitude and t1 is the life-
time of the shrinking droplet (Rin(t = t1) = 0). It is well
known [10, 11] that uk grows exponentially:

uk(t) = uk(0)e
vst/R2(0), (B.2)

where vs = σ/η is the characteristic speed and R2(0) the
characteristic length scale of the system. We assume that
uk grows exponentially all the way until breakup of the
droplet. On the other hand we have shown that Rin(t)
decreases almost linearly in time. So formally, we have

Rin(t) = Rin(t = 0)− vct, (B.3)

from which we have t1 = Rin(t=0)
vc

. By inserting

Eq.(B.2,B.3) into Eq.(B.1), we obtain

R1(0)

R2(0)
& 1 + c ln(

R2(0)

uk(0)
), (B.4)

where c = vc/vs is an aspect ratio factor of order one
that tends to 1/2 for aspect ratio one by Eq.(14). Thus
the Rayleigh instability is dominant for sufficiently thin
tori.

It can be checked that for aspect ratios satisfying
Eq.(B.4) even the perimeter of the interior of the torus
(2π(R1(0) − R2(0))) can accommodate the Rayleigh in-
stability mode, i.e.,

2π(R1(0)−R2(0))

R2(0)
& 2π ln(

R2(0)

uk(0)
) > 2π. (B.5)
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