42 research outputs found

    Characterization of yeast histone H3-specific type B histone acetyltransferases identifies an ADA2-independent Gcn5p activity

    Get PDF
    BACKGROUND: The acetylation of the core histone NH(2)-terminal tails is catalyzed by histone acetyltransferases. Histone acetyltransferases can be classified into two distinct groups (type A and B) on the basis of cellular localization and substrate specificity. Type B histone acetyltransferases, originally defined as cytoplasmic enzymes that acetylate free histones, have been proposed to play a role in the assembly of chromatin through the acetylation of newly synthesized histones H3 and H4. To date, the only type B histone acetyltransferase activities identified are specific for histone H4. RESULTS: To better understand the role of histone acetylation in the assembly of chromatin structure, we have identified additional type B histone acetyltransferase activities specific for histone H3. One such activity, termed HatB3.1, acetylated histone H3 with a strong preference for free histones relative to chromatin substrates. Deletion of the GCN5 and ADA3 genes resulted in the loss of HatB3.1 activity while deletion of ADA2 had no effect. In addition, Gcn5p and Ada3p co-fractionated with partially purified HatB3.1 activity while Ada2p did not. CONCLUSIONS: Yeast extracts contain several histone acetyltransferase activities that show a strong preference for free histone H3. One such activity, termed HatB3.1, appears to be a novel Gcn5p-containing complex which does not depend on the presence of Ada2p

    Linker Histone H1 and H3K56 Acetylation are Antagonistic Regulators of Nucleosome Dynamics

    Get PDF
    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1

    The Novel Deacetylase Inhibitor AR-42 Demonstrates Pre-Clinical Activity in B-Cell Malignancies In Vitro and In Vivo

    Get PDF
    While deacetylase (DAC) inhibitors show promise for the treatment of B-cell malignancies, those introduced to date are weak inhibitors of class I and II DACs or potent inhibitors of class I DAC only, and have shown suboptimal activity or unacceptable toxicities. We therefore investigated the novel DAC inhibitor AR-42 to determine its efficacy in B-cell malignancies.In mantle cell lymphoma (JeKo-1), Burkitt's lymphoma (Raji), and acute lymphoblastic leukemia (697) cell lines, the 48-hr IC(50) (50% growth inhibitory concentration) of AR-42 is 0.61 microM or less. In chronic lymphocytic leukemia (CLL) patient cells, the 48-hr LC(50) (concentration lethal to 50%) of AR-42 is 0.76 microM. AR-42 produces dose- and time-dependent acetylation both of histones and tubulin, and induces caspase-dependent apoptosis that is not reduced in the presence of stromal cells. AR-42 also sensitizes CLL cells to TNF-Related Apoptosis Inducing Ligand (TRAIL), potentially through reduction of c-FLIP. AR-42 significantly reduced leukocyte counts and/or prolonged survival in three separate mouse models of B-cell malignancy without evidence of toxicity.Together, these data demonstrate that AR-42 has in vitro and in vivo efficacy at tolerable doses. These results strongly support upcoming phase I testing of AR-42 in B-cell malignancies

    Histone H3 and the Histone Acetyltransferase Hat1p Contribute to DNA Double-Strand Break Repair

    No full text
    The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH(2)-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly

    The yeast histone chaperone hif1p functions with RNA in nucleosome assembly.

    No full text
    Hif1p is an H3/H4-specific histone chaperone that associates with the nuclear form of the Hat1p/Hat2p complex (NuB4 complex) in the yeast Saccharomyces cerevisiae. While not capable of depositing histones onto DNA on its own, Hif1p can act in conjunction with a yeast cytosolic extract to assemble nucleosomes onto a relaxed circular plasmid.To identify the factor(s) that function with Hif1p to carry out chromatin assembly, multiple steps of column chromatography were carried out to fractionate the yeast cytosolic extract. Analysis of partially purified fractions indicated that Hif1p-dependent chromatin assembly activity resided in RNA rather than protein. Fractionation of isolated RNA indicated that the chromatin assembly activity did not simply purify with bulk RNA. In addition, the RNA-mediated chromatin assembly activity was blocked by mutations in the human homolog of Hif1p, sNASP, that prevent the association of this histone chaperone with histone H3 and H4 without altering its electrostatic properties.These results suggest that specific RNA species may function in concert with histone chaperones to assemble chromatin
    corecore