2,261 research outputs found

    A middleware for a large array of cameras

    No full text
    Large arrays of cameras are increasingly being employed for producing high quality image sequences needed for motion analysis research. This leads to the logistical problem with coordination and control of a large number of cameras. In this paper, we used a lightweight multi-agent system for coordinating such camera arrays. The agent framework provides more than a remote sensor access API. It allows reconfigurable and transparent access to cameras, as well as software agents capable of intelligent processing. Furthermore, it eases maintenance by encouraging code reuse. Additionally, our agent system includes an automatic discovery mechanism at startup, and multiple language bindings. Performance tests showed the lightweight nature of the framework while validating its correctness and scalability. Two different camera agents were implemented to provide access to a large array of distributed cameras. Correct operation of these camera agents was confirmed via several image processing agents

    Application of bifurcation methods for the prediction of low-speed aircraft ground performance

    Get PDF
    The design of aircraft for ground maneuvers is an essential part in satisfying the demanding requirements of the aircraft operators. Extensive analysis is done to ensure that a new civil aircraft type will adhere to these requirements, for which the nonlinear nature of the problem generally adds to the complexity of such calculations. Small perturbations in velocity, steering angle, or brake application may lead to significant differences in the final turn widths that can be achieved. Here, the U-turn maneuver is analyzed in detail, with a comparison between the two ways in which this maneuver is conducted. A comparison is also made between existing turn-width prediction methods that consist mainly of geometric methods and simulations and a proposed new method that uses dynamical systems theory. Some assumptions are made with regard to the transient behavior, for which it is shown that these assumptions are conservative when an upper bound is chosen for the transient distance. Furthermore, we demonstrate that the results from the dynamical systems analysis are sufficiently close to the results from simulations to be used as a valuable design tool. Overall, dynamical systems methods provide an order-of-magnitude increase in analysis speed and capability for the prediction of turn widths on the ground when compared with simulations. Nomenclature co = oleo damping coefficient, N s2 =m2 cz = tire vertical damping coefficient Fco = damping force in oleo due to the orifice,

    Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    Get PDF
    In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference

    Wideband Digital Signal Processing Test-Bed for Radiometric RFI Mitigation

    Get PDF
    Radio Frequency Interference (RFI) is a persistent and growing problem experienced by spaceborne microwave radiometers. Recent missions such as SMOS, SMAP, and GPM has detected RFI in L, C, X, and K bands. To proactively deal with this issue, microwave radiometers must (1) Utilize new algorithms for RFI detection (2) Utilize fast digital back-ends that sample at hundreds of MHz. The wideband digital signal processing testbed (WB-RFI) is a platform that allows rapid deelopment and testing various RFI detection and mitigation algorithms

    Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    Get PDF
    Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves. The complex kurtosis algorithm has the potential to reduce data rate due to onboard processing in addition to improving RFI detection performance

    MicroReview Relaxosome function and conjugation regulation in F-like plasmids -a structural biology perspectivem mi_8131 602..617

    Get PDF
    Summary The tra operon of the prototypical F plasmid and its relatives enables transfer of a copy of the plasmid to other bacterial cells via the process of conjugation. Tra proteins assemble to form the transferosome, the transmembrane pore through which the DNA is transferred, and the relaxosome, a complex of DNA-binding proteins at the origin of DNA transfer. F-like plasmid conjugation is characterized by a high degree of plasmid specificity in the interactions of tra components, and is tightly regulated at the transcriptional, translational and post-translational levels. Over the past decade, X-ray crystallography of conjugative components has yielded insights into both specificity and regulatory mechanisms. Conjugation is repressed by FinO, an RNA chaperone which increases the lifetime of the small RNA, FinP. Recent work has resulted in a detailed model of FinO/FinP interactions and the discovery of a family of FinO-like RNA chaperones. Relaxosome components include TraI, a relaxase/ helicase, and TraM, which mediates signalling between the transferosome and relaxosome for transfer initiation. The structures of TraI and TraM bound to oriT DNA reveal the basis of specific recognition of DNA for their cognate plasmid. Specificity also exists in TraI and TraM interactions with the transferosome protein TraD

    Interethnic differences in neuroimaging markers and cognition in Asians, a population-based study

    Get PDF
    We examined interethnic differences in the prevalence of neuroimaging markers of cerebrovascular and neurodegenerative disease in 3 major Asian ethnicities (Chinese, Malays, and Indians), as well as their role in cognitive impairment. 3T MRI brain scans were acquired from 792 subjects (mean age: 70.0 ± 6.5years, 52.1% women) in the multi-ethnic Epidemiology of Dementia In Singapore study. Markers of cerebrovascular disease and neurodegeneration were identified. Cognitive performance was evaluated using Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and a neuropsychological assessment. Compared to Chinese, Malays had a higher burden of intracranial stenosis (OR: 2.28. 95%CI: 1.23-4.20) and cortical atrophy (β: -0.60. 95%CI: -0.78, -0.41), while Indians had a higher burden of subcortical atrophy (β: -0.23. 95%CI: -0.40, -0.06). Moreover, Malay and Indian ethnicities were likely to be cognitively impaired (OR for Malays: 3.79. 95%CI: 2.29-6.26; OR for Indians: 2.87. 95%CI: 1.74-4.74) and showed worse performance in global cognition (β for Malays: -0.51. 95%CI: -0.66, -0.37; and Indians: -0.32. 95%CI: -0.47, -0.17). A higher burden of cerebrovascular and neurodegenerative markers were found in Malays and Indians when compared to Chinese. Further research is required to fully elucidate the factors and pathways that contribute to these observed differences

    The Heavy Vehicle Study: a case-control study investigating risk factors for crash in long distance heavy vehicle drivers in Australia

    Get PDF
    Background Heavy vehicle transportation continues to grow internationally; yet crash rates are high, and the risk of injury and death extends to all road users. The work environment for the heavy vehicle driver poses many challenges; conditions such as scheduling and payment are proposed risk factors for crash, yet the precise measure of these needs quantifying. Other risk factors such as sleep disorders including obstructive sleep apnoea have been shown to increase crash risk in motor vehicle drivers however the risk of heavy vehicle crash from this and related health conditions needs detailed investigation. Methods and Design The proposed case control study will recruit 1034 long distance heavy vehicle drivers: 517 who have crashed and 517 who have not. All participants will be interviewed at length, regarding their driving and crash history, typical workloads, scheduling and payment, trip history over several days, sleep patterns, health, and substance use. All participants will have administered a nasal flow monitor for the detection of obstructive sleep apnoea. Discussion Significant attention has been paid to the enforcement of legislation aiming to deter problems such as excess loading, speeding and substance use; however, there is inconclusive evidence as to the direction and strength of associations of many other postulated risk factors for heavy vehicle crashes. The influence of factors such as remuneration and scheduling on crash risk is unclear; so too the association between sleep apnoea and the risk of heavy vehicle driver crash. Contributory factors such as sleep quality and quantity, body mass and health status will be investigated. Quantifying the measure of effect of these factors on the heavy vehicle driver will inform policy development that aims toward safer driving practices and reduction in heavy vehicle crash; protecting the lives of many on the road network

    The classical limit for a class of quantum baker's maps

    Get PDF
    We show that the class of quantum baker's maps defined by Schack and Caves have the proper classical limit provided the number of momentum bits approaches infinity. This is done by deriving a semi-classical approximation to the coherent-state propagator.Comment: 18 pages, 5 figure
    corecore