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Summary

The tra operon of the prototypical F plasmid and its
relatives enables transfer of a copy of the plasmid to
other bacterial cells via the process of conjugation. Tra
proteins assemble to form the transferosome, the
transmembrane pore through which the DNA is trans-
ferred, and the relaxosome, a complex of DNA-binding
proteins at the origin of DNA transfer. F-like plasmid
conjugation is characterized by a high degree of
plasmid specificity in the interactions of tra compo-
nents, and is tightly regulated at the transcriptional,
translational and post-translational levels. Over the
past decade, X-ray crystallography of conjugative
components has yielded insights into both specificity
and regulatory mechanisms. Conjugation is repressed
by FinO, an RNA chaperone which increases the life-
time of the small RNA, FinP. Recent work has resulted
in a detailed model of FinO/FinP interactions and the
discovery of a family of FinO-like RNA chaperones.
Relaxosome components include TraI, a relaxase/
helicase, and TraM, which mediates signalling
between the transferosome and relaxosome for trans-
fer initiation. The structures of TraI and TraM bound to
oriT DNA reveal the basis of specific recognition of
DNA for their cognate plasmid. Specificity also exists
in TraI and TraM interactions with the transferosome
protein TraD.

Introduction

Conjugation, a form of horizontal gene transfer between
bacterial cells, is an important contributor to bacterial
genetic diversity. 17% to 25% of the Escherichia coli
genome is thought to originate from horizontal gene trans-

fer (Narra and Ochman, 2006), which has recently shown
to be responsible for protein family expansion in 88–98%
of genes across eight genetically distant bacterial clades
(Treangen and Rocha, 2011). In addition, conjugation
mediates the transfer of genetic material between bacte-
rial species (Gubbins et al., 2005; Palmer et al., 2010;
Wozniak and Waldor, 2010).

Plasmids of the IncF incompatibility groups are relatively
large, narrow host-range plasmids typically found in the
Enterobacteriaceae family (Frost et al., 1994; Mulec et al.,
2002). Examples include the prototypical F plasmid, and
the R1, R100 and pED208 plasmids. Members of the F
plasmid family are responsible for some of the earliest
instances of antibiotic resistance, such as the emergence
of multidrug-resistant Shigella in Japan in the mid-1950s
(Watanabe, 1963) and F-like plasmids (many of them
conjugative) continue to mediate a wide range of antibiotic
resistance mechanisms in recent times (Conly, 2002; Stra-
hilevitz et al., 2009; Potron et al., 2011). F-like replicons
and portions of F-like tra systems are found in the majority
of large virulence plasmids documented in E. coli and
Salmonella, indicating a prominent role for F-like plasmids
in their evolution (Ahmer et al., 1999; Porwollik and McClel-
land, 2003; Chu and Chiu, 2006; Johnson and Nolan,
2009). The F-derived plasmid pOX38 is capable of transfer
to Salmonella, Klebsiella and Shigella species (Mulec
et al., 2002), and evidence of horizontal propagation of
transfer (tra) genes of the E. coli F plasmid have been
found in a number of Salmonella strains (Boyd and Hartl,
1997).

The machinery of conjugation in F-like plasmids
includes a DNA-processing complex (the relaxosome)
that assembles on the plasmid’s origin of transfer (oriT)
and a type IV secretion system (the transferosome)
through which the DNA is transferred (Lawley et al., 2003)
with a coupling protein acting as the link between the two
complexes (de la Cruz et al., 2009). Cell–cell contact is
mediated via the pilus, following which the plasmid DNA is
unwound and a single strand is transferred to the recipient
cell.

Being energetically expensive, conjugation is usually
tightly regulated and highly responsive to physiological
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and environmental stimuli. For instance, F plasmid trans-
fer begins to decline in mid-exponential phase to unde-
tectable levels in stationary phase, but is able to quickly
become transfer positive when small amounts of glucose
are added (Frost and Manchak, 1998). F plasmid transfer
is regulated by a number of host factors that are sensitive
to environmental cues. The regulation of conjugation in
the IncF plasmids is one of the best studied in terms of
mechanistic detail.

Over the last decade, macromolecular structures have
become available that provide insight into regulation of
conjugation at the atomic level. The structural biology of
conjugative type IV secretion systems, the multi-protein
pore complex spanning the inner and outer membranes
that mediates substrate transfer, has been reviewed exten-
sively (Schroder and Lanka, 2005; Juhas et al., 2008;
Alvarez-Martinez and Christie, 2009; Llosa et al., 2009;
Terradot and Waksman, 2011). This review provides
an overview of recent developments in understanding
the regulation of F-like plasmid conjugation based on
the structural biology of relaxosome components,
transferosome–relaxosome interactions, and fertility inhi-
bition. An aspect of conjugation for which crystallography
has been particularly illuminating is plasmid specificity of
different conjugation systems, revealed by the plasmid-
selective interactions that components of the conjugative
machinery display for the proteins and DNA elements of
their cognate plasmid.

An overview of the regulation of F plasmid conjugation

The F-like family of plasmids all contain a large, ~ 30 kb tra
operon that encodes all the plasmid genes necessary for
assembly of the conjugative pore and transfer of the
plasmid (Frost et al., 1994; Lawley et al., 2003; Gubbins
et al., 2005). Transcription of the tra operon is driven by a
single promoter, PY, which is regulated by complex array of
plasmid-encoded as well as host factors (Fig. 1A). Regu-
lation of PY largely hinges on the plasmid-encoded tran-
scription factor, TraJ, and the host-encoded transcription
factor, ArcA. TraJ is itself subject to a complex regulatory
network involving transcriptional, post-transcriptional and
post-translational regulatory mechanisms.

Another key point of regulation is at the formation of the
relaxosome, a large protein assembly centred on the mul-
tifunctional TraI protein. TraI specifically binds the plasmid
oriT sequence, creating a single-strand nick at the plasmid
nic site, and subsequently unwinding the plasmid to liber-
ate the single transfer strand for conjugation (Fig. 1B). The
relaxosome also appears to be critical for the direct recruit-
ment of the plasmid to the conjugative pore through inter-
actions between the DNA-binding protein, TraM, and the
hexameric ring ATPase TraD, which likely forms the cyto-
plasmic entrance to the pore.

Regulation of PJ and PY transcription by
environment-sensitive host factors

Transcription from PY, as well as the transcription of the
major plasmid transcription factor, TraJ, depends on a
number of host-encoded proteins which are sensitive to
cellular conditions like nutrient availability and stress.
Transcription from the traJ promoter, PJ, is controlled by
the global transcription factors cyclic AMP receptor protein
(Crp) (Harwood and Meynell, 1975; Starcic et al., 2003)
and leucine-responsive regulatory protein (Lrp) (Starcic-
Erjavec et al., 2003; Camacho and Casadesus, 2005;
Camacho et al., 2005), as well as Dam-mediated DNA
methylation (Camacho and Casadesus, 2005; Camacho
et al., 2005). H-NS is a silencer of transcription from
PJ, and PY, as well as PM, the promoter for the traM gene
(Will et al., 2004; Will and Frost, 2006a). It is thought that
TraJ acts more as an ‘anti-silencer’ of PY expression
rather than an activator (Frost and Koraimann, 2010),
consistent with a model where transcriptional activators
disrupt DNA bridges mediated by H-NS at promoters
(Dorman and Kane, 2009). The crystal structure of E. coli
H-NS (residues 1–83) bound to DNA revealed a superhe-
lical structure proposed to be a scaffold for DNA conden-
sation (Arold et al., 2010). The possibility that a large
superhelical arrangement forms during H-NS silencing is
intriguing in light of the requirement of PM and PJ to be on
the same fragment for silencing to occur (Will et al., 2004).
The half-life of TraJ is the controlled by two protease
systems in response to different environmental stimuli
(Fig. 1A). HslVU (ClpYQ), an AAA+ ATPase, degrades
TraJ when stimulated by the CpxAR stress response
system (Lau-Wong et al., 2008). In response to elevated
temperature, the GroEL protein chaperone is involved in
repression of conjugation and tra gene expression
through its ability to facilitate degradation of TraJ (Zahrl
et al., 2007) (Fig. 1A).

In addition to TraJ, two other transcription factors, TraY
and ArcA, are known to bind proximal to PY and regulate
the tra operon (Inamoto and Ohtsubo, 1990; Nelson
et al., 1993; Strohmaier et al., 1998; Rodriguez-Maillard
et al., 2010). Activation of transcription at PY by TraJ may
be sensitive to cell redox state (Arutyunov et al., 2011).
TraY is a transcriptional regulator of Py, exerting a posi-
tive or negative effect depending on the individual
plasmid system (Silverman and Sholl, 1996; Taki et al.,
1998). The general host transcription factor ArcA also
regulates transcription of the tra operon via effects on PY

(Silverman et al., 1991; Strohmaier et al., 1998; Serna
et al., 2010) (Fig. 1A). In the R1 system, the TraM DNA-
binding protein also appears to regulate PY, although this
function could be an indirect effect due to the ability of
TraM to mediate relaxosome formation (Polzleitner et al.,
1997).
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Post-transcriptional regulation of traJ

Following high-frequency transfer (HFT), where plasmids
are spread rapidly via conjugation throughout the newly
infected bacterial population, conjugation is repressed by
the action of the FinO/FinP fertility inhibition system on
traJ mRNA (Gubbins et al., 2005). The FinO/FinP system
acts by reducing the level of TraJ protein (Finnegan and
Willetts, 1971; Frost et al., 1989; 1994; Gubbins et al.,
2005). Translation of traJ mRNA is repressed by the 79 nt
antisense RNA FinP, which is complementary to the
5′-UTR of traJ mRNA, and blocks its ribosome binding site
(Frost et al., 1994; Gubbins et al., 2005). A myriad of small
RNA species have been shown to play critical roles in
regulation of plasmid transfer and replication (Brantl,
2007; Georg and Hess, 2011). Some work by directly
blocking the rbs like FinP, including the hok/sok family of
RNA toxin-antitoxin systems (Gerdes et al., 1997), and
the CopA/CopT system that regulates plasmid replication

in the R1 plasmid (Nordstrom, 2006). A family of putative
FinP structural homologues represented by PtaRNA1 is
proposed to be part of a toxin–antitoxin pair due to it being
frequently found antisense to the same putative toxin
(Findeiss et al., 2010)

Regulation of traJ mRNA by FinP critically depends on a
plasmid encoded protein, FinO. FinO is an RNAchaperone
that increases the lifetime of FinP by protecting it from
degradation by RNase E (Jerome et al., 1999), while
enhancing duplex formation of FinP and traJ mRNA (van
Biesen and Frost, 1994). The process of duplex formation
has been shown to occur through a strand exchange
mechanism (Arthur et al., 2003) mediated by initial forma-
tion of a ‘kissing complex’ between complementary regions
of the FinP and traJ mRNA stem loops (Gubbins et al.,
2003) (Fig. 2A).

Extensive work has been done to characterize the
mechanism of FinO-chaperoned FinP–traJ mRNA interac-
tions. The crystal structure of a proteolytically stable frag-
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Fig. 1. tra operon regulation in F-like plasmids.
A. Overview of F plasmid tra operon regulatory factors. Positive regulatory effects are indicated by an arrow and solid lines, negative effects
are indicated by a dash and dotted lines.
B. F plasmid oriT region with the binding sites for host and plasmid DNA-binding proteins indicated. The direction of TraI unwinding of DNA
following cleavage at the nic site and covalent attachment to the 5′ end of DNA is indicated by a red arrow.
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ment of FinO26–186 showed that it forms a novel, largely
a-helical fold that is elongated due to a flexible N-terminal
a-helix. It has two highly positively charged surfaces one at
the top of the N-terminal helix, and the other covering one
face of the core of the protein (Ghetu et al., 2000) (Fig. 2B).
The N-terminal helix is crucial for strand exchange, in
particular the residue Trp36. The structured core of the
protein, residues 45–186, was shown to bind RNA with
high affinity but was unable to catalyse strand exchange
(Ghetu et al., 1999; Arthur et al., 2003). Regions in closest
contact with the RNA have been determined by cross-
linking to be the large positively charged patch in the core
of the protein, and the tip of the N-terminal helix (Ghetu
et al., 2002). RNase protection experiments reveal that the
lower half of the SLII stem-loop and the 3′-tail single-
stranded tail, are contacted by FinO in a manner that is
dependent on the presence of a free 3′-hydroxyl (Arthur
et al., 2011). The RNA footprinting and cross-linking data,
together with structural data from small-angle X-ray scat-

tering (SAXS), were used as restraints in generating
models for FinP–FinO interactions (Fig. 2C) (Arthur et al.,
2011). Based on the proximity of Trp36 to the RNA in the
model, it has been proposed that Trp36 may form stacking
interactions with the RNAbases following a conformational
change.

Two other RNA chaperones with structural and func-
tional similarities to FinO have been recently discovered,
revealing that these proteins represent a wide-spread
family of bacterial RNA chaperones. The crystal structure
of the previously uncharacterized Neisseria meningitidis
1681 (NMB1681) is very similar to the core of FinO
(Fig. 2D). NMB1681 also has significant RNA binding,
strand-exchange and duplexing activities in vitro (Chaulk
et al., 2010). Remarkably, NMB1681 is able to partially
restore conjugative repression to finO-deficient E. coli in
vivo even though its ability to protect FinP from degrada-
tion is relatively weak (Chaulk et al., 2010). Sequence
alignments and proteolytic mapping have also suggested
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Fig. 2. Mechanism and structure of the FinO family RNA chaperones.
A. FinO/FinP fertility inhibition of F-like plasmids. FinO facilitates strand exchange and duplexing between FinP antisense RNA and the
ribosome binding site of traJ mRNA. Initial contact between FinP and traJ mRNA is thought to occur by formation of a ‘kissing complex’
between complementary bases in the loops.
B. Electrostatic surface representation of the crystal structure of FinO26–186.
C. HADDOCK model of FinP bound to FinO45–186.
D. Structural alignment of FinO (red) with NMB1681 (blue).
E. Model of the ProQ FinO-like domain. Model was created with MODELER using the FinO structure as a template.
F. Electrostatic surface representation of the ProQ FinO-like domain.
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that the N-terminal domain of E. coli ProQ, a regulator of
the membrane transporter, ProP, is also related to FinO
(Smith et al., 2007) (Fig. 2E and F). In addition to the
FinO-like domain, ProQ also contains an additional
C-terminal domain predicted to have structural similarity
to another RNA chaperone, Hfq. The ProQ FinO-like
domain displays significant RNA binding activity, while the
C-terminal Hfq-like domain has significant RNA strand
exchange and duplexing activities in vitro (Chaulk et al.,
2011). The native RNA substrates of these two proteins
have yet to be determined.

In addition, traJ mRNA is also regulated by Hfq, which
specifically recognizes the 5′-UTR of traJ mRNA (Will and
Frost, 2006b) and is known to interact with RNase E
(Morita et al., 2005) (Fig. 1A). Therefore, Hfq may enhance
degradation of traJ mRNAs by bringing them in closer
proximity to RNase E. Hfq may also mediate degradation
of traJ mRNA via UtpR, a small RNA transcribed from
outside the tra region that is complementary to the traJ
mRNA promoter (Frost and Koraimann, 2010). A flexible
C-terminal protrusion from the Hfq core has been shown to
have a role in interactions with long RNAs (Beich-Frandsen
et al., 2011), and several crystal structures show that Hfq
forms a hexameric Sm fold that binds RNA single strands
along the central pore (Schumacher et al., 2002; Link
et al., 2009; Sauer and Weichenrieder, 2011).

Overview of relaxosome function

The primary function of the relaxosome at oriT is to initiate
nicking of plasmid DNA for transfer. The relaxosome is
composed of several protein components including the
plasmid encoded TraI, TraY and TraM, as well as the host
factor, IHF. TraI is a bifunctional relaxase/helicase that
recognizes the nic sequence within oriT and introduces a
nick on the transfer strand that results in the covalent
attachment of TraI to the 5′ end of the nick (Byrd and
Matson, 1997). TraI then unwinds the DNA in a 5′ → 3′
direction and is transported into the recipient cell along
with the transfer strand (Lang et al., 2010; Dostal et al.,
2011). A minimum of 60 bases of single-stranded DNA
around the nic site is necessary for this to occur efficiently
(Csitkovits et al., 2004). TraY is an accessory protein that
binds to two sites at oriT and to the PY promoter (Nelson
et al., 1993; Luo et al., 1994). IHF stimulates TraI nicking
and helicase activities (Inamoto et al., 1994; Howard
et al., 1995; Nelson et al., 1995; Kupelwieser et al., 1998;
Karl et al., 2001) and likely contributes to the three-
dimensional structure of the relaxosome by inducing
sharp DNA bends (Fig. 1B). The relaxosome is brought in
close proximity to the transferosome through a key inter-
action between the transferosome ATPase TraD, and
TraM, which binds to multiple sites near oriT (Disque-
Kochem and Dreiseikelmann, 1997; Beranek et al., 2004;

Lu et al., 2008). In general, these interactions selectively
occur between proteins of the same plasmid; heterotypic
interactions are much less stable. Single-stranded DNA is
then transferred through the transferosome (Lawley et al.,
2003).

Structural insights into TraI function and
plasmid specificity

TraI activity is modulated by several proteins and negative
cooperativity between two domains for DNA binding. F
plasmid TraI is a 192 kDa protein consisting of a relaxase
domain (~ 1–306) (Byrd et al., 2002), two putative RecD-
like helicase folds (~ 303–844 and ~ 830–1473) (Dostal
and Schildbach, 2010), and a C-terminal domain of
unknown function (~ 1476–1756) that also appears to be
required for F conjugation (Guogas et al., 2009).Amodel of
full-length TraI was constructed, using a SAXS envelope
that shows that TraI has an elongated, conformation in
solution (Cheng et al., 2011). The relaxase domain cleaves
at nic through nucleophilic attack by the Tyr16 hydroxyl.
This tyrosine is part of a YY-X5–6-YY motif (Tyr16, Tyr17,
Tyr23 and Tyr24 in F TraI) that is largely conserved in the
MobF family of conjugative relaxases (Byrd and Matson,
1997). Binding and nicking activity of the relaxase at nic is
highly sequence specific, and therefore plasmid specific
(Fekete and Frost, 2000; Stern and Schildbach, 2001;
Harley and Schildbach, 2003; Gonzalez-Perez et al.,
2009).

Crystal structures have been solved for MobF class
relaxases from three plasmids [F (Datta et al., 2003),
pCU1 (Nash et al., 2010), R388 (Guasch et al., 2003)],
and one MobQ class relaxase from the plasmid R1162
(Garcillan-Barcia et al., 2009). Although the structures
represent multiple Inc groups (F plasmid -IncF, pCU1
-IncN, R388 -IncW and R1162 -IncQ), all structures share
a conserved fold, consisting of a 5-stranded b-sheet, the
‘palm’, with a pair of long a-helices on one face and two
largely a-helical domains on the DNA binding face The
a-helical flap that closes over the bound DNA are the
‘fingers’ that becomes ordered upon binding (Larkin et al.,
2005) (Fig. 3A). Structures of relaxase–nic DNA com-
plexes for F plasmid TraI and R388 plasmid TrwC have
revealed that the relaxase binds to a single-stranded DNA
U-turn stabilized by intramolecular contacts between the
DNA bases (Guasch et al., 2003; Larkin et al., 2005).
From the crystal structure of F TraI bound ssDNA, the key
tyrosine for cleavage, Tyr16, is in good position to cleave
the DNA phosphate backbone. Tyr17, which exhibits
some functional redundancy with Tyr16, forms a hydrogen
bond with Asp81, a residue important for transfer and
cleavage (Larkin et al., 2005; 2007). There is strong struc-
tural conservation of the HUH motif, a triple-histidine diva-
lent cation co-ordination site (His146, His157 and His159)
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in close proximity to the active-site tyrosines (Larkin et al.,
2005; Boer et al., 2006) (Fig. 3B). The metal ion in the F
TraI crystal structures has been assigned as Mg2+ (Larkin
et al., 2005; 2007; Lujan et al., 2007), but the physiologi-
cally active metal ion of F TraI is not entirely resolved, as
it is capable of significant nicking activity in the presence
of Ca2+, Mg2+ or Mn2+ (Larkin et al., 2005; 2007).

The relaxases of F-like plasmids show a high level of
binding specificity to the nic site of their cognate plasmids.
Harley and Schildbach (2003) have shown that TraI of F
and R100 plasmids bind to their cognate nic site three
orders of magnitude more tightly than to the nic site of the
non-cognate plasmid. This selectivity is largely due to the
interactions of a non-conserved pair of amino acid resi-
dues, Gln193 and Arg201 in F TraI, and a pair of single-
stranded bases at 145′ and 147′ (according to the base-
numbering scheme of the nic site in Frost et al., 1994)
(Fig. 3C). The specificity of binding can be swapped to
some extent between R100 and F by switching residues
only at these positions (Harley and Schildbach, 2003).
The crystal structure of F TraI bound to nic DNA bases
144′–153′ provides an explanation for the role of Gln193,
Arg201, G145′ and G147′ in binding specificity. In addition
to revealing hydrogen bonds between the DNA bases and
the side-chains, Arg201 forms part of a pocket entered
by G147′ (Larkin et al., 2005) (Fig. 3D). Comparison

between the structures of F TraI and R388 TrwC (Boer
et al., 2006) reveal the nature of specificity in relaxase-
oriT DNA interaction between the two plasmid groups.
None of the above-mentioned specificity determinants is
conserved. Residues corresponding to that of F TraI
Gln193 and Arg201, Thr189 and Asn197 of TrwC, are not
appropriately positioned for interaction with bases in the
R388 nic site corresponding to F 145′ and 147′. Instead, a
hydrogen bond is formed between His4 and A19 and
between Asn218 and T21. In addition, Arg190 forms a
cation-pi stacking interaction with T21 (Fig. 3E). A further
site of specific binding is at the position immediately 5′ to
the nic site, which is T in R388 but is G in the nic sites of
other F-like plasmids (Fig. 3C). It was predicted that
Lys262 in TrwC, which interacts with the cognate T in the
R388 nic site, would be precluded from interaction with
guanine in the nic site of other F-like plasmids due to
steric hindrance (Gonzalez-Perez et al., 2009).

The TraI relaxase domain is followed by two helicase
folds and a C-terminal domain that may interact with
TraM. The C-terminal helicase fold is the functional heli-
case, whereas the N-terminal helicase fold functions as a
binding domain for ssDNA (Haft et al., 2006). Supporting
this, the C-terminal fold but not the N-terminal fold con-
tains a b-hairpin required for helicase activity homologous
to E. coli RecD (Dostal and Schildbach, 2010). The crystal
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structure of the region C-terminal to the helicase domain,
consisting of residues 1476–1629 of F TraI, has been
solved, revealing a novel fold. Although truncations in this
region are very detrimental to conjugation, the precise
function of this region is yet to be determined (Guogas
et al., 2009).

Two binding sites for single-stranded DNA have been
discovered on TraI, one in the relaxase domain, and the
other in the N-terminal helicase domain. Several findings
indicate that there is negative cooperativity in single-
stranded DNA binding between the two domains. The
isolated helicase domain exhibits greater unwinding activ-
ity than the full-length protein (Sut et al., 2009). Twice as
much DNA as expected was required to reach binding
saturation with the full-length protein, indicating that
binding of the relaxase site interferes with binding to the
helicase site (Dostal and Schildbach, 2010). High-affinity
binding of the relaxase domain to the DNA hairpin formed
by an inverted repeat 3′ to nic is hypothesized to act as a
‘switch’ between an inactive state to a helicase active
state (Mihajlovic et al., 2009; Sut et al., 2009; Dostal and
Schildbach, 2010).

The nature of TraI interactions with transferosome com-
ponents still needs to be clarified. Direct interaction of
coupling proteins with the relaxase has been reported in
R388, RP4, and the RP4-mobilizable plasmids pBHR1
and pLV22a (Szpirer et al., 2000; Schroder et al., 2002;
Llosa et al., 2003; Thomas and Hecht, 2007). Direct
TraI–TraD interaction in F-like plasmids has yet to be
demonstrated, although it has been suggested in a
number of studies. TraI colocalizes with TraD in the mem-
brane fraction when TraD is coexpressed (Dash et al.,
1992). The TraD cytoplasmic domain stimulates the relax-
ase and helicase activities of TraI (Mihajlovic et al., 2009;
Sut et al., 2009). TraI is transported to the recipient cell
while it is attached to the transferred plasmid DNA (Lang
et al., 2010; Dostal et al., 2011), therefore interaction with
the conjugative pore is necessary at some point. Evidence
suggests that interaction occurs in a sequence-specific
manner through its translocation sequences. Residue
Leu626 in the first translocation sequence of F TraI is
essential for transfer (Lang et al., 2010). It has been
hypothesized that there is a signalling conduit from TraD
through TraI1–992 for export or import of substrates through
the T4SS (Lang et al., 2010; 2011). Whether TraI forms a
relaxosome–transferosome bridge with TraD in F-like
plasmids akin to the TraD–TraM interaction or affects TraI
activity indirectly through DNA is unknown.

Structural insights into TraM autoregulation and
plasmid specificity

TraM has multiple functions in the relaxosome and is
essential for conjugation to occur. TraM stimulates DNA

nicking and unwinding by the TraI relaxase/helicase and
mediates relaxosome–transferosome contact. In addition,
it autoregulates its own transcription and is sensitive to
environmental conditions. F plasmid TraM binds to three
sites at oriT, sbmA, sbmB and sbmC (Fig. 1B). Each site
contains DNA-binding motifs which are specific to TraM of
the cognate plasmid. Binding of TraM to these sites is
cooperative, and the highest affinity binding site is sbmA
(Fekete and Frost, 2002). sbmA and sbmB overlap with
the TraM promoter PM, such that TraM negatively regu-
lates its expression when bound to these sites (Penfold
et al., 1996) (Fig. 1A and B). Crystal structures are avail-
able which shed light on how TraM performs these func-
tions and maintains plasmid specificity while interacting
with other transfer machinery components.

TraM is a tetrameric protein consisting of a C-terminal
tetramerization domain (Verdino et al., 1999; Miller and
Schildbach, 2003) and an N-terminal dimerization and
DNA-binding domain (Schwab et al., 1993; Kupelwieser
et al., 1998; Miller and Schildbach, 2003; Lu et al., 2004).
Oligomerization of TraM is essential for TraM function (Lu
et al., 2004). The crystal structure of the C-terminal
domain shows that it forms an a-helical bundle (Lu et al.,
2006), and the crystal structure of full-length TraM bound
to sbmA DNA shows that the N-terminal domains dimerize
to form a ribbon–helix–helix (RHH) domain (Wong et al.,
2011). RHH domains are a commonly used DNA-binding
motif in prokaryotes (Schreiter and Drennan, 2007) and
are widely distributed among the plasmid kingdom.

Many relaxosome accessory proteins are predicted to
utilize RHH folds to contact DNA. These include a family
represented by MbeC of the ColE1 plasmid (Varsaki et al.,
2009), TraY of F (Bowie and Sauer, 1990; Lum and
Schildbach, 1999) and TrwA of the R388 (Moncalian
et al., 1997; Moncalian and de la Cruz, 2004). TraY of
F-like plasmids regulate PY promoter activity (Silverman
and Sholl, 1996; Taki et al., 1998) and stimulates the
activity of TraI (Howard et al., 1995) when bound to its
DNA sites. The RHH domain of TraY is believed to be
encoded by two domains in tandem on a single chain, and
bends the DNA by ~ 50° upon binding (Lum and Schild-
bach, 1999). Indeed, the structure of the relaxosome
accessory protein VirC2 from the Agrobacterium tumefa-
ciens T-DNA transfer system reveals a novel fold that
mimics an RHH dimer within a single polypeptide chain
(Lu et al., 2009)

The crystal structure of TraM of an F-like plasmid,
pED208, in complex with a minimal sbmA site has been
determined (Wong et al., 2011). Two TraM tetramers are
bound to sbmA on opposite sides of the DNA double helix,
with their N-terminal RHH domains in a staggered
arrangement. Their cooperative binding to sbmA is medi-
ated entirely through the DNA, as no protein–protein con-
tacts are observed. Similar binding arrangements have
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been observed in other bacterial transcription factors,
including QacR (Schumacher et al., 2002), CgmR (Itou
et al., 2010), IdeR (Pohl et al., 1999) and DtxR (White
et al., 1998). Features of the binding mechanism are

underwinding of the DNA to ~ 12 base pairs per turn and
kinking of the DNA axis (Fig. 4A). Since the spacing
between the two binding motifs bound by the same
tetramer is 12 base pairs, underwinding positions the

β-ribbon Binding motif sbmA homologue α1-α2 loop

F

R100

R1

pED208

E

G

CT
A

A

Y7

K3

Q5

S34 S32

L33

Y7

Q5

K3

A B

D

C

Fig. 4. TraM binding to sbmA.
A. Crystal structure of two pED208 TraM tetramers cooperatively bound to sbmA. Dots indicate disordered regions of polypeptide chain linking
the tetramerization and DNA binding RHH domains.
B. Kinking of sbmA DNA by the pED208 TraM a1–a2 loop. Acidic residues Glu29 and Glu30 are shown by red spheres. The DNA axis is
shown by a grey line. Repulsion between the acidic residues and the DNA backbone is indicated with red curved lines, and the direction of
kinking is indicated by arrows.
C. Interactions between the pED208 TraM RHH domain and GANTC-binding motif in sbmA DNA. Specific interactions between the N-terminal
b-sheet and the major groove of the GANTC motif are indicated, as well as non-specific contacts between TraM and the DNA phosphate
backbone.
D. Putative binding of F sbmA phosphate backbone by the F TraM a1–a2 loop. The basic loop is shown by a blue dotted line, with attraction
between the loop and phosphate backbone indicated by blue curves.
E. Comparison of DNA-binding specificity determinants in F-like plasmids. Residues of the RHH b-sheet that contact DNA bases are boxed
and are coloured-coded (basic – blue, hydrophobic – orange, Gln/Asn – yellow, Tyr – purple).
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binding motifs on the same side of the DNA helix. The
kinking results from repulsion of the DNA phosphate back-
bone by the acidic a1–a2 loop (Fig. 4B). The mechanism
of high-affinity binding is likely to be conserved among
other F-like plasmids as a similar arrangement of binding
motifs and binding mechanism is seen with the F, R1 and
R100 sbmA sites (Geist and Brantl, 2008; Wong et al.,
2011), (Fig. 4E).

The pED208 TraM–sbmA complex also reveals why the
TraM–DNA interaction is an important plasmid specificity
determinant. Alternating b-sheet residues of the RHH
domain form specific contacts with the DNA bases of the
pED208 GANTC-binding motifs, in particular hydrogen
bonding of Gln5 and Tyr7 to the conserved adenine and
guanine bases within the GANTC motif (Fig. 4C) (Wong
et al., 2011). In comparison, the F oriT has a different and
less well-defined consensus sequence, A(G/C)CG(G/C)T,
and is 6 base pairs long instead of 5 (Fig. 4E). This pro-
vides an explanation for the observation that TraM pro-
teins only mediate conjugation of their cognate plasmid,
and not the transfer of other plasmids with a different
TraM DNA binding specificity (Kupelwieser et al., 1998;
Fekete and Frost, 2000; Lu et al., 2002; Wong et al.,
2011). While the highly acidic a1–a2 loop of pED208
TraM repels the DNA backbone (Fig. 4C), the additional
length and basic residues in the a1–a2 loop of F may form
electrostatic interactions with the DNA backbone which
are required for stable binding (Fig. 4D) (Wong et al.,
2011).

Additional plasmid specificity occurs at the level of
TraM interactions with the coupling protein TraD of the
transferosome (Disque-Kochem and Dreiseikelmann,
1997; Beranek et al., 2004). This forms a physical tether
between the transferosome and relaxasome which may
be the conduit for signalling of cell–cell contact to the
relaxosome. TraD is a hexameric ATPase of the FtsK/
SpoIII family (Gomis-Ruth et al., 2001), consisting of an
N-terminal membrane-spanning region and a C-terminal
cytoplasmic domain that makes up the bulk of the protein
(Frost et al., 1994). The conserved ATPase domain is
followed by a C-terminal extension in F (Frost et al.,
1994). TraD is able to bind to both single- and double-
stranded DNA, with a preference for single-stranded DNA
(Schroder et al., 2002). Structural and functional studies
of the TraD orthologue from plasmid R388, TrwB, reveal a
narrow channel within the TrwB ring through which the
ssDNA must pass during conjugation (Gomis-Ruth et al.,
2001).

Genetic studies have shown that the C-terminal 8
amino acids of TraD are sufficient to define specific inter-
actions with its cognate TraM (Wong et al., 2011). The
C-terminal 38 amino acids of TraD is sufficient for TraM
binding (Beranek et al., 2004) TraM was shown to interact
with TraD via its C-terminal domain, as a single mutation

in this domain, K99E, abrogates TraM–TraD interaction
without affecting autoregulation or tetramerization (Lu and
Frost, 2005). The mechanism of this interaction was
revealed at the atomic level by the crystal structure of the
TraM C-terminal domain in complex with the last 7 amino
acids of TraD. The highly acidic TraD peptide forms a
b-turn and interacts with the largely basic cleft on TraM
that includes Lys99. Especially critical for recognition is
the C-terminal phenylalanine of TraD and its main chain
carboxylate. The Phe side-chain fits into a hydrophobic
pocket, while the C-terminal carboxylate is recognized by
nearby positively charged residues Arg110 and Lys76 (Lu
et al., 2008) (Fig. 5A and B). The structure of pED208
TraM has enabled modelling of TraM–TraD interactions in
the pED208 system. The TraD binding groove is largely
maintained in pED208, but differs in only a few residues
within the last 8 amino acids of TraD. A charge swap at F
Lys83 to pED208 Glu81, allow for discrimination between
F and pED208 systems in vivo (Wong et al., 2011)
(Fig. 5B).

The regions of TraD contacted by TraM are likely not
restricted to the C-terminal tail. Full binding affinity and
conjugative ability is only attained when the last 38 resi-
dues are intact (Beranek et al., 2004). Deletion of the last
8 amino acids in F results in at 103-fold decrease in F
plasmid mobilization while truncation of the full C-terminal
extension at residue 576 leads to an additional 102-fold
decrease (Lu et al., 2008) (Fig. 5C). The C-terminal
extension appears to mediate specificity in interactions
between F TraD and its cognate relaxosome, while inhib-
iting transfer of other plasmids such as R388 and
RSF1010 (Sastre et al., 1998).

A protein with an analogous function to TraM in the
R388 plasmid is TrwA, a relaxosome component with a
putative RHH-fold and a C-terminal tetramerization
domain (Moncalian and de la Cruz, 2004). The N-terminal
domain is the DNA-binding domain, and the C-terminal
domain is a tetramerization domain that interacts with
TrwB, the coupling protein of the R388 system (Llosa
et al., 2003). It also functions as a negative transcriptional
regulator of the trw operon and enhances activity of TrwC,
the relaxase (Moncalian et al., 1997). The TrwA–TrwB
interaction is more than simply a bridge between the
relaxosome and transferosome, as TrwA affects the
ATPase activity and oligomerization state of TrwB. In the
absence of TrwA and DNA, TrwB is a monomer with weak
ATPase activity. Both TrwA and DNA stimulate TrwB’s
ATPase activity and formation of TrwB hexamers (Tato
et al., 2007). Whether this also occurs in the F plasmid
has yet to be shown. However, evidence suggests that
F TraD is largely dimeric in vivo in the absence of the
F plasmid, but forms higher-order oligomers when F is
present (Haft et al., 2007). This suggests that F plasmid
proteins, possibly TraM, are required for hexamer
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formation. The presence of multiple TraM sites may be
required for an avidity effect, where multiple TraM tetram-
ers bound to DNA are required for efficient binding to TraD
(Fig. 5D).

Structural studies of the TraM tetramerization domain
have also suggested a mechanism for the regulation of
conjugation in response to increased pH or temperature

(Lu et al., 2006). The central helical bundle within the
TraM tetramerization domain contains an unusual proto-
nated glutamic acid (Glu88) packed in a fourfold symmet-
ric arrangement. Basic pH and/or increased temperature
result in its deprotonation, leading to decreased tetramer
stability and reduced conjugation. Tetramerization is
essential for interaction of TraM with TraD (Lu et al.,

F plasmid pED208
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Fig. 5. TraM binding to TraD.
A. Detailed view of the structure of the F TraD C-terminal peptide (grey sticks) bound to the TraM C-terminal domain.
B. Comparison of TraM electrostatic surface in the F and pED208 TraD binding pockets. F TraD peptide is in the conformation observed in the
crystal structure and the pED208 peptide is modelled based on the F TraD peptide.
C. Functional domains of F TraD. Residues known to bind TraM are shown in dark green. TM, transmembrane domain.
D. Model of TraM avidity effect in binding to TraD. IM, inner membrane. TraD is shown in green, and TraM in purple. TraM N-terminal domains
are shown as ellipsoids, and TraM C-terminal domains are shown as cylinders. Multiple TraM tetramers are bound to three sbmA sites at oriT
in a compact arrangement due to nucleosome-like DNA wrapping. The localized concentration of TraM tetramers facilitates interaction
between multiple TraM binding sites and multiple TraD C-termini.
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2006). Thus, the deprotonation of Glu88 appears to be a
direct mechanism by which conjugation can be repressed
in non-optimal pH and temperature. This residue is con-
served among the IncFI and FII plasmids F, R1 and R100,
but is not in others like the IncFV plasmid pED208. It
remains to be seen if TraM from pED208 or other plas-
mids exhibit the same pH and temperature-dependent
stability.

Indirect evidence suggesting an interaction between
TraM and the C-terminal domain of TraI has been
reported by one group, but another group could not
confirm the interaction (Ragonese et al., 2007; Guogas
et al., 2009). TraM is known to stimulate nicking and
unwinding activity of TraI (Sut et al., 2009). The ability of
TraM to induce negative supercoils in plasmid DNA may
be part of the mechanism of TraI transesterase stimula-
tion (Mihajlovic et al., 2009). This activity is consistent with
the unwinding of DNA observed in the TraM–sbmA crystal
structure (Wong et al., 2011).

Towards an understanding of relaxosome architecture

The DNA topology-modifying effects of TraM binding
and the DNA bending effects of TraY, IHF and other
host transcriptional factors suggest a complex three-
dimensional arrangement of proteins and DNA at the
relaxosome. The distance and rotational orientation
between relaxosome components on the DNA helix is
crucial, as insertion of bases between IHF and TraY
binding sites are poorly tolerated (Williams and Schild-
bach, 2007). The arrangement of relaxosome proteins
also appears to be mediated by intrinsic and protein-
induced DNA bends, as well as DNA unwinding by tra
components. The IHF heterodimer induces a 160° bend
when bound to the minor groove of DNA (Rice et al.,
1996), and is likely a major contributor to a complex
three-dimensional relaxosome conformation. The TraD
homologue TrwB, as well as TraM, have been shown to
induce negative supercoiling on plasmid DNA (Mihajlovic
et al., 2009; Sut et al., 2009). TraM has been shown to
aggregate non-specifically on DNA at high concentra-
tions, and has been proposed to polymerize on the DNA
to yield a nucleosome-like structure similar to TraK of the
plasmid RP4 (Di Laurenzio et al., 1992; Ziegelin et al.,
1992; Fekete and Frost, 2002). Electron microscopy of
TraM on F DNA has indicated that TraM shortens the DNA
but does not induce a significant bend, supporting this
idea (Di Laurenzio et al., 1992; Fekete and Frost, 2002).
The unwinding by TraM which is observed in the TraM–
sbmA crystal structure would not yield unwinding of DNA
to the extent of that observed in plasmids isolated from
TraM-expressing cells (Mihajlovic et al., 2009). This would
also support the idea that TraM aggregates on oriT DNA
beyond its defined sbm sites. The presence of sbmA-like

sites across various plasmids (Fig. 4E) indicates that this
DNA element probably plays a key role in relaxosome
function, perhaps serving as a nucleation point for TraM
‘spreading’ along plasmid DNA.

Conclusion

Study of the regulation of F plasmid conjugation paints a
complex picture in which many plasmid-encoded and host
factors work together at multiple levels to render transfer
highly sensitive to diverse cellular stimuli. These factors
include global regulatory proteins that control many other
genes in the bacterial genome, as well as plasmid-
encoded factors (Fig. 1A). The complexity of conjugative
regulation and responsiveness to many environmental
factors may be part of a mutual survival strategy for the
plasmid and host cell. The repression of conjugation as
nutrients are used up approaching stationary phase
appears to be a strategy to avoid overtaxing the host cell
in suboptimal conditions, as conjugation is an energeti-
cally demanding process (Frost and Manchak, 1998).
However, additional factors may be involved, as conjuga-
tion of certain plasmids can be upregulated under
unfavourable growth conditions such as low glucose for
pRK100 (Starcic et al., 2003), and low oxygen for pSLT
(Serna et al., 2010). In the case of pSLT, overall favour-
ability of the conditions for growth may be what ultimately
determines conjugation levels, which are driven to high
levels in the nutrient-rich, microaerobic small intestine of
mice (Garcia-Quintanilla et al., 2008).

Although the host acquires benefits from maintenance
of conjugative plasmids such as antibiotic resistance and
enhanced virulence, the plasmid is not without selfish
tendencies. In vitro, in vivo and structural biology studies
have shown a high level of plasmid specificity in relaxo-
some protein–oriT DNA interactions and relaxosome–
transferosome protein interactions. The specific
interactions between components of the conjugation
machinery and their target plasmid DNAs allow transfer of
only the cognate plasmid DNA and a limited number of
related conjugative and mobilizable plasmids, so that the
plasmid avoids taxing the cell by mediating the transfer of
other plasmids apart from its own.

While structural studies of F conjugation have been
extremely insightful in explaining the plasmid specificity of
individual tra protein interactions with oriT DNA, how con-
jugative components and bacterial regulatory factors work
together while bound to oriT is much less clear. In addi-
tion, structural information is not yet available for the key
plasmid transcriptional regulatory proteins TraJ and TraY.
DNA distortion appears to be critical for establishing these
large multi-protein complexes. Many of the proteins
involved, such as IHF and TraY, are known to significantly
bend DNA upon binding. The DNA itself likely contains
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significant intrinsic bends in and around the frequent AT
tracts (Frost et al., 1994). In addition, the key plasmid-
encoded factors TraM and TraI are known to unwind the
DNA double helix, and evidence suggests that relaxo-
some components stimulate the transesterase and heli-
case activities of TraI in a mechanism that involves
alterations in the structure of the DNA near nic (Mihajlovic
et al., 2009; Sut et al., 2009). Further work is needed to
elucidate the structural details of how conjugative compo-
nents work in concert to control gene expression and
mediate DNA transfer.
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