19 research outputs found

    Tackling the Digital Divide: The Shift from Access to Capacity

    Get PDF
    A focus of daily life in the UK now revolves around the adoption of technology and the impact of Internet based technology raises issues of the digital divide, knowledge divide, social empowerment and socio economic effects. This paper focuses on the impact of the UK government's policy, ‘digital by default', on individuals with limited IT skills living in an area of deprivation. Following a review of prior research, the paper analyses data from semi structured interviews with progression support workers in their roles supporting individuals in their use of computers to find employment. Research results identify barriers inhibiting individuals from using IT and the discussion reflects whether the inclusion of concepts of Rogers' Diffusion of Innovations theory into the design of the ‘digital by default' policy has the potential to address the digital divide. The Conclusion draws on the research results to recommend a revised policy strategy.</p

    A behaviour biometrics dataset for user identification and authentication

    Get PDF
    As e-Commerce continues to shift our shopping preference from the physical to online marketplace, we leave behind digital traces of our personally identifiable details. For example, the merchant keeps record of your name and address; the payment processor stores your transaction details including account or card information, and every website you visit stores other information such as your device address and type. Cybercriminals constantly steal and use some of this information to commit identity fraud, ultimately leading to devastating consequences to the victims; but also, to the card issuers and payment processors with whom the financial liability most often lies. To this end, we recognise that data is generally compromised in this digital age, and personal data such as card number, password, personal identification number and account details can be easily stolen and used by someone else. However, there is a plethora of data relating to a person's behaviour biometrics that are almost impossible to steal, such as the way they type on a keyboard, move the cursor, or whether they normally do so via a mouse, touchpad or trackball. This data, commonly called keystroke, mouse and touchscreen dynamics, can be used to create a unique profile for the legitimate card owner, that can be utilised as an additional layer of user authentication during online card payments. Machine learning is a powerful technique for analysing such data to gain knowledge; and has been widely used successfully in many sectors for profiling e.g., genome classification in molecular biology and genetics where predictions are made for one or more forms of biochemical activity along the genome. Similar techniques are applicable in the financial sector to detect anomaly in user keyboard and mouse behaviour when entering card details online, such that they can be used to distinguish between a legitimate and an illegitimate card owner. In this article, a behaviour biometrics (i.e., keystroke and mouse dynamics) dataset, collected from 88 individuals, is presented. The dataset holds a total of 1760 instances categorised into two classes (i.e., legitimate and illegitimate card owners’ behaviour). The data was collected to facilitate an academic start-up project (called CyberSignature1) which received funding from Innovate UK, under the Cyber Security Academic Startup Accelerator Programme. The dataset could be helpful to researchers who apply machine learning to develop applications using keystroke and mouse dynamics e.g., in cybersecurity to prevent identity theft. The dataset, entitled ‘Behaviour Biometrics Dataset’, is freely available on the Mendeley Data repository

    Real-Time Traffic Analysis using Deep Learning Techniques and UAV based Video

    Get PDF
    In urban environments there are daily issues of traffic congestion which city authorities need to address. Realtime analysis of traffic flow information is crucial for efficiently managing urban traffic. This paper aims to conduct traffic analysis using UAV-based videos and deep learning techniques. The road traffic video is collected by using a position-fixed UAV. The most recent deep learning methods are applied to identify the moving objects in videos. The relevant mobility metrics are calculated to conduct traffic analysis and measure the consequences of traffic congestion. The proposed approach is validated with the manual analysis results and the visualization results. The traffic analysis process is real-time in terms of the pre-trained model used
    corecore