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Abstract

Contemporary social media platforms enable users to act as both producers
and consumers of content, leading to the generation of enormous amounts of
data. While this ability is empowering, it is also posing many challenges con-
cerning efficient searches for relevant information. Many search approaches
have been proposed in the literature. However, searching for information on
Twitter is particularly challenging due to both the inconsistency in writing
styles and the high generation rate of spurious and duplicate content. The
quest for instant and efficient data processing to retrieve relevant information
renders many existing techniques ineffective when applied to Twitter.

We present a multilevel approach based on state-of-the-art deep learn-
ing methods and a novel scalable windowing approach for pairwise-similarity
search (SWAPS) to improve search efficiency. SWAPS optimises searches
using a strategic balancing criterion to assess the trade-off between accu-
racy and search speed, thereby circumnavigating sequential search problems.
Moreover, we propose a deep search strategy that establishes a relationship
between the status of a tweet and its longevity measured in terms of en-
gagement lifespan since posting. Deep search utilises a convolutional neural
network for textual n-grams features extraction and meta-features from the
tweet to train a fully connected network on a vast number of tweets. This ap-
proach differs from existing ones by recognising the relationship between the
status of a tweet and its engagement lifespan to ensure a better understand-
ing of the compositional semantics in tweets. The results highlight interesting
symmetrical properties with respect to similarity distribution and duration.
We evaluate our approach on various benchmark datasets and demonstrate
the efficacy and applicability of the method. Problems of event detection,
clustering and ads, among others, can utilise this approach to detect items
of interest effectively.
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1. Introduction

Since the inception of the world wide web, the mode of interaction be-
tween the media and the public has shifted from the traditional 2-step flow
[18] to multi-flow [42] where users act as both producers and consumers of
information. This culminated in a period of a rapid data growth that is pos-
ing computational challenges to tasks' where pairwise similarity is central.
Various measures? have been taken to improve interaction in terms of nav-
igation and information search. The continuous increase in online content
often poses challenges to interact effectively with online sites. Some measures
to address the challenge range from the positioning of URLs at suitable lo-
cations to bookmarking information resources based on semantic similarity.
For instance, the work of Dourish and Chalmers [8] examined the underlying
semantic relationship between information-bearing objects in spatial models
of navigation. Heymann et al. [14] leveraged the availability of user-generated
data, e.g. tags, bookmarks or any form of rich annotation in the web that
provides useful data, to improve online search and navigation. Enhancement
techniques based on heuristics and careful engineering of features have also
been considered in Aggarwal and Subbian [1]. Information about some im-
plicit factors such as interests, culture or geolocation as outlined in [28], have
been shown to improve online information searches [13].

Searches on Twitter: By enabling users to annotate contents, e.g. #hash-
tag, search for information has been greatly simplified on Twitter. Users
can perform a basic search using usernames, hashtags, trending topics or any
meaningful keywords. While these annotations have been shown to improve
searches [46], the high production rate of content from influential users often
eclipse less popular content [15]. As the volume of data in the social media
ecosystem increases, a variety of options are open for exploration. This study
posits that relevant information can be searched efficiently as a function of
time. We propose a multi-level search method based on deep learning and a
novel scalable windowing approach for pairwise-similarity search (SWAPS).

For example, in topic detection and tracking (TDT), clustering, event detection or
database search.

2For example, the early SMART project offers a test-bed to implement and evaluate
IR tasks [36].



To illustrate our proposed approach, consider Figure 1 that shows the result
of a sequential pairwise-similarity search between an anchor tweet ¢, and
other tweets t; in a window w of size z. An anchor tweet t, is the focal point
of computing pairwise similarity with other tweets in a window. Let t, and t;
be two tweets posted at times ¢ and b, respectively. We aim at estimating the
time interval b — ¢ after time ¢, until a similar tweet ¢; to t, is found, given
that this relative time difference is found within window & of size z (wf). See
Table 1 and Section 3 for full notations and definitions in the study. Our
goal is to efficiently identify tweets similar to the anchor, without searching
sequentially. The proposed SWAPS is based on the premise that if we could
predict the high-density area of the most similar tweets in a window, then we
can effectively find a group of similar tweets to any tweet without searching
sequentially. Firstly, we apply probabilistic reasoning to quantify the degree
of uncertainty in a set of tweets with respect to the approximate similarity
to any tweet within the same collection window and the time spent for the
search. The task proceeds by estimating the distribution of similarity and
relevant statistical quantities in random tweets to design an effective search
method.

We then apply a deep learning technique to predict the engagement lifes-
pan of a tweet as a function of its status. This establishes the relationship
between the status of a tweet and its engagement lifespan, which is defined
as the duration of wider engagement with the post after being posted. Deep
learning methods are powerful tools to automatically extract lezical-level and
sentence-level features without resorting to handcrafted rules. To understand
the relationship between the status of a tweet and its engagement lifespan,
lexical features have been extracted using a convolutional neural networks
(convnets) and used in training a fully-connected neural network using over
60 million pairs of tweets.

1.1. Contributions

The increasing high generation rate of online content, which makes search-
ing for relevant items difficult, is the motivating factor behind this study. To
enhance searching, we contribute the following:

o We statistically analysed the distribution of similar items across 5
benchmark datasets and two collected for this study (see Table 2). Ac-
cordingly, we conducted rigorous statistical tests and interpretations
with respect to population parameters, i.e. the confidence interval at



a: similarity of anchor tweet vs. other tweets
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Figure 1: A time-similarity graph showing variations in terms of similarity magnitude in
a window. Peaks denote tweets similar to the anchor tweet where the similarity decays

overtime

which to expect adequate similarity in a finite window, the sample mean
and variance to provide useful practical insights. This enabled us to
identify the prior parameters applicable for estimating similarity in re-
lated tasks involving pairwise-similarity, e.g. clustering.

e We present a novel search algorithm (SWAPS) that balances the trade-
off between search speed and the number of relevant discovered items.
SWAPS efficiently returns relevant items with minimal loss of accuracy

in comparison with a sequential approach.

e We provide a deep learning strategy that leverages the powerful con-
vnets framework to extract relevant features to predict the engagement
lifespan of a tweet. The strategy optimises search problems by high-
lighting the meaning and the symmetrical property in terms of how
similar tweets tend to rally around tweets of high status. The strat-
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egy could be useful for search and advertisement scheduling since it
estimates when high user engagement is expected.

e The developed datasets will be made freely available.

This paper is structured as follows. Section 2 reviews related work and
the subsequent Section 3.1 describes the research data. Section 3 introduces
the proposed approach and experiments. Section 4 presents the discussion.
Section 5 concludes the study and proposes some future work. Table 1 shows
a summary of the notations utilised in the paper.

Table 1: Notations and descriptions

Notation Description
ta an anchor tweet
t; other tweets being compared with %,
wy, a finite collection of z tweets in window k
o ele set of tweets with high similarity with the anchor tweet
x and y sets of training examples and target labels respectively
{zi,yi}l y €R a training instance

2. Related Work

This section reviews research related to searches for relevant items, search
enhancement and deep learning methods in Natural Language Processing.

Relevancy search. Effective searches for similar items have been of major
concern for a long time. The early work of Agrawal et al. [2] proposed
an indexing strategy using the Discrete Fourier Transformation (DFT) that
maps sequences from the time domain to the frequency domain and computes
similarity using Euclidean distance. Rafiei and Mendelzon [35] extends the
approach in [2] to identify similar queries based on sequence matching. These
techniques rely on sequence matching to evaluate similarity, which is limited
in capturing rich semantic relationships. Vlachos et al. [41] applied the DFT
analysis to discover similar queries by comparing query signals from search
engine logs. Peng et al. [33] also applied DFT to analyse word trajectories
in both time and frequency domains. Words exhibiting signal patterns along



the trajectories are considered relevant and the higher the signal peak, the
more relevant the item. The diversity in tweets, due to the non-standard
style of the text, limits the applicability of this approach on Twitter. The
varying degree of growth and intensity exhibited by social media content has
been investigated in [43], [19] and [26] to reveal underlying mechanisms. In
Twitter, bursty patterns have been shown to follow basic statistical distribu-
tions, such as the power law, and to be mostly triggered by influential users,
making other tweets not subscribed to such trends go unnoticed.

Search enhancement. The growing volume of online content challenges ef-
fective filtering for relevant data. This has prompted various strategies to
enhance the process. Early mitigation strategies include bookmarking or
collaborative social tagging [31], [14], [46] and optimisation strategies either
based on heuristic or careful engineering of features [13], [1]. For example,
Lagnier et al. [21] investigates how information diffuses within communi-
ties, based on interaction dynamism, users’ willingness to transmit and the
generated content, to study diffusion patterns and ultimately improve online
searches.

With respect to design principles and operation, closely related work to
ours can be found in [6] and [38]. Chen et al. [6] proposed a tweet index-
ing method (TI) for real-time search based on keywords. With the growing
complexity of social stream and synonymous terms, indexing based on the
exact match will have limited coverage since synonymous terms will be over-
looked. Our approach does not require indexing tweet, but its aggregation
based on semantic features learned overtime. Sundaram et al. [38] proposed
a Locality-Sensitivity Hashing (LSH) approach that identifies duplicate or
near-duplicate documents. Hashing algorithms are sensitive to variations in
input where synonymous words may end up in different regions in the hash-
table. The LSH technique is a useful strategy to avoid sparsity problems;
however, similar to Chen et al. [6], the LSH does not account for synony-
mous terms in the documents being compared. Our study utilises convnets
which serves to account for synonymous terms and variations. Convnets con-
textually aggregate words with rich semantic similarity with closer distance
or proximate in the vector space, hence more comprehensive.

Deep learning methods. The increasing volume of social media data requires
proportionate handling tools, and prior research works have identified deep
learning models as most useful. Recently those models have revolutionised



many research areas from basic computations to complex computer vision
tasks, such as real object recognition in images or videos. Since the pio-
neering work of Kim [20] on convolutional neural networks (CNN) for text
classification, there has been a surge of implementations and useful best prac-
tice for various NLP tasks [45]. Sutskever et al. [39] applied deep learning
techniques, in particular, Long short-term memory (LSTM) units, for textual
sequence mapping, applicable to automatic translation tasks. Deep learning
has been successfully applied to numerous extraction tasks [7], [44], [24], due
to its capability to automatically extract lexical-level and sentence-level fea-
tures without resorting to handcrafted methods or cumbersome traditional
NLP tools. Mencia and Fiirnkranz [29] and Bhatia et al. [4] applied the tra-
ditional multilayer perceptron and deep learning for multi-label classification,
respectively. Motivated by the success of deep learning in related areas, this
study leverages it to efficiently search for relevant information on Twitter,
thereby contributing to search enhancement.

3. Proposed Approach

This section describes our multi-level approach based on the proposed
SWAPS algorithm to speed-up searching and deep learning to predict en-
gagement lifespan. We begin by quantifying the uncertainties associated
with the problem using a probabilistic inference toolkit?, describing SWAPS
and finally introducing the deep learning strategy.

Notations and definitions. For the prediction task, xy and v denote sets of
training examples and target labels respectively and {z;,y;}, € R denotes
a training instance. The input, y, consists of both main and meta features
(see Table 2). For any anchor tweet t,, its circle consists of most similar
tweets to it denoted by t%, .. For a given window, each anchor tweet is
represented as a list of tuples containing the similarity score (¢) between the
anchor tweet and any other tweet t;, and the relative posting time p = p; —p,
in seconds*. Thus, for each anchor tweet

tgzrcle = [¢((tai7 tj)7p)]?:i+1

3We utilise the PYMC3 probabilistic programming toolkit developed in Python [37].

dp = Pj — Pa defines the time difference between the anchor tweet and a closely related
tweet only, j. Similarly, p = p; — p, defines the time difference between the anchor tweet
and any other tweet, 3.



Figure 2: An example of how each tweet in a finite collection of tweets compares with
others. Each tweet is a potential anchor, and for each designated anchor, t%, in the
window, the set of tweets whose similarity is higher than a threshold 7 constitutes the
anchor’s circle given by ¢% Note that j € t% refers to a tweet with a high degree

circle’ circle
of similarity with the anchor tweet which distinguishes it from other tweets ¢; that could

be similar or dissimilar to the anchor.

where n = |¢(t,,,t;) > 7| and 7 is a predefined threshold®.

Definition. Similar tweets refer to any pair of tweets (t,, t;), whose similarity
magnitude ¢ is greater than a predefined threshold 7. We denote ¢(t,,t;) > 7
as a random variable that defines a similarity between the anchor tweet ¢,
and any other tweet ¢;, otherwise dissimilarity (i.e. ¢(tq,t;) < 7).

Computing pairwise similarity on large document collections is a task
common to a variety of problems. Similarity metrics are broadly categorise
as sequence matching and linear (word-embedding). Sequence matching com-
putes similarity by matching co-occurrence of lexical sequences in documents
using metrics such as Cosine and Dice [2]. These metrics suffer a setback if
apply to tweets due to the sparsity of co-occurring terms [23]. Similarities
based on word-embedding can reveal the semantic similarities since it does
not rely on matching co-concurrence but the contextual meaning of terms.
Common examples are doc2vec and word2vec [30]. Our approach computes
similarity based on word embedding.

°For all experiments in this paper, 7 = 0.5, i.e. two tweets are considered similar (1) if
¢ > 0.5, otherwise dissimilar (0).



3.1. Dataset Description

In this section, we describe the datasets and the corresponding prepro-
cessing technique given in Section 3.4.1. We utilise two categories of data:
Collected data (collected mainly for the study) and Public data (available
from public data repositories). Majority of the datasets consist of collections
of short messages (known as tweets) obtained from Twitter.

3.1.1. Collected Datasets

This data category is mainly collected for the study and consist of: subject-
based tweets (SBT) and diverse tweets (DVT) datasets. Both the SBT and
DV'T consist of tweets collected from Twitter using a collection crawler that
returns relevant information based on keywords. Keywords play a crucial
role in retrieving specific documents from a large corpora [25]. Our col-
lection approach is based on ad-hoc retrieval method, which involves the
use of descriptive keywords to search for relevant documents [27]. The
SBT consists of a collection of tweets posted during the height of the FU
refugee crisis (2016/2017). Noting the bias that may arise due to the seem-
ingly black box sampling strategy by Twitter in returning queried docu-
ments [40], we utilise diverse keywords covering many aspects of the sub-
ject. Sample collection keywords include refugee, migrants, refugee crisis,
EU refugees, refugees € (refugee/migrants); migrants € (refugees/migrants);
crisis & (refugees/migrants). The DVT consists of a random collection of
tweets spanning diverse topics of discussion on Twitter based on [3]. This
is to mitigate similarity bias likely to be caused by focusing on the specific
discussion topic and to maximise the diversity and randomness in the data.

3.1.2. Public Datasets

In addition to the data purposely collected for the study, we use the
following datasets, which can be downloaded from public data repositories.

Review tweets These are collections of reviews posted by users on Twitter.
Review tweets! [11] consists of reviews about drugs and Review tweets2 [17]
contains a collection of tweets about health-related issues from major health
news agencies. Review tweets3 [5] consist of customers’ reviews about services
offered by hotels. It is expected these datasets will have a high degree of
similarities, which will be useful for evaluation.

Eur-Lez Dataset [29] This is the only non-tweet dataset in the study. We
use the Fur-lex dataset which does not incorporate temporal information to
demonstrate the operation of SWAPS beyond tweets.

9



Table 2: Datasets and features (main and meta features comprising the tweet signature)

Group Pagir:\;lse Unique  Description
Diverse tweets 35m 300000K  consists of random tweets collected us-
(DVT) ing diverse keywords covering many do-
mains (based on [3]) to introduce a high
level of randomness and improve the
universality of the dataset.
Subject-based 45m 300000K comsists of tweets collected in
£ tweets (SBT) 2016/2017 related to EU refugee
§ crisis
53 Review tweetsl 3107 602400  data about patients’ reviews on specific
drugs and related conditions
Review tweets2 334140 17413 contains tweets about health news from
major health news agencies
Review tweets3 400 9336 online and offline collections of cus-
tomers review about hotel service
Social Circles 27549 7059 collection of tweets from social circles
in Twitter
Fur-Lex 12353646 62311 data about EU legal documents
main features - varies  consist of various n-gram features (uni-
gram, bigram, trigram, forth-gram and
fifth-gram) extracted from each tweet
3 using deep learning convnets
% meta features - 6 extracted from the meta-data of a tweet
& or the user that posted it. Features in-

clude similarity score, relative posting
time, period (e.g. morning, afternoon),
number of followers, tweet’s favourite
count, number of friends

Social Circles Dataset [22] This dataset consists of 81,306 users crawled

from Twitter. Based on the IDs of the users, we retrieved their tweets and
other relevant information for the study. Because this dataset is from users
with affiliations to specific online communities [22], we expect a higher de-
gree of similarity in their tweets. We extracted 7059 unique users for this
experiment.

3.2. Uncertainty quantification

Figure 3 shows a hypothetical finite window k of size z (w}) depicting

how an anchor tweet t, compares with all other tweets in the window. Con-
ventionally, ¢, is sequentially compared with every other tweet ¢; in the win-

10
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Figure 3: A hypothetical finite window of random tweets depicting a random anchor tweet,
t., posted at time p, its m similar tweets and the time distance d between a similar tweet
tsim and the anchor tweet ¢,

dow, and this approach certainly impedes the efficiency of the process if the
search space is vast. Our preliminary analysis, shown in Figure 1, suggests
that a tweet tends to have a set of m most similar tweets known as circle,
distributed within a finite window. The goal is to compute the probability
distribution of similar vs. dissimilar tweets in relation to a random anchor
tweet in any given window. Accordingly, we conduct rigorous statistical tests
and interpretations with respect to the population parameter (i.e. the con-
fidence interval for true similarity distribution in a finitely sized window),
the confidence interval, sample mean andvariance to gain useful insights ap-
plicable in practice. We experiment using a diverse collection of tweets and
various window sizes. In other words, we take a bootstrap sample from the
corpus population, that is useful in measuring the variability of the similarity
distribution and their temporal behaviour in the windows.

3.2.1. Distribution of similar tweets in a window

The circle size m, (m = [t%,,. € wi|), of an anchor tweet is considered as
a random variable 6 such that ¢(t,,t;) € [0,1] > 750 = 1,2,3,...., z. In line
with related studies [10], [23], [12], we apply probabilistic generative models
to estimate 6 in each window. We begin with Bernoulli:

¢(tq,t;) Bern(f) = Bern(1,0)

such that
p(d(ta,t;) = 110) =0
and
p(P(ta,t;)) =00) =1—-0;0<60 <1

The respective mean and variance are given by E[p(t,, t;)] = 6 and var[p(t,, t;)] =
6(1 —6). For a finite window, the estimation follows a Binomial distribution
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where m denotes ¢(t,,t;) = 1,Vi € m and the sum of possible ways to obtain
m given by:

Bin(m|z,0) = (:l) om (1 — o)

For each window, we repeatedly compute the number of ways (;) to select
similar tweets (if any) to the anchor tweet on different samples by varying
the window sizes. This approach enables us to quantify the required number
of trials in a window, the window size required for finding enough similar
tweets and the associated uncertainties regarding the variability of ¢2. ., €
wi. Figure 4 shows results from trials that utilised various window sizes.
Using a relatively small window size of 200 tweets shows high instability
and many dissimilar tweets. Increasing the window size to about 500 tweets
provides more stability and increases the number of similar tweets. The
distribution remains virtually unchanged with a window size of 1500 and
2500 random samples.

The information in Figure 5 allows the computation of statistical quan-
tities about the data such as the sample mean, the median, the the highest
posterior density (HPD) and the the region of practical equivalence (ROPE).
In the Figure, HPD and ROPE are represented as a long black bar and red
bar respectively. The HPD quantifies the probability that there is a 95%
dissimilarity between the expected and the actual data distribution®. This
is crucial in deciding whether to increase the window size or not.

Figure 6 shows a pair-plot of the mean similarity and mean duration as
a function of various window sizes. Many similar tweets in the range of 500-
800 can be observed and the duration or relative posting time spans to -15,
which suggests that there exist tweets similar to the anchor tweet before its
posting time.

3.3. SWAPS Algorithm

Informed by the quantification of uncertainty and the related statisti-
cal quantities, we present the Scalable Windowing Approach for Pairwise-
similarity Search (SWAPS) algorithm. SWAPS utilises the expected mean,
E[¢](meanpyse ), and the variance, varyse, as baseline parameters to regulate

6The computation can be conditioned on the time of collection and the popularity of
the content since influential users on Twitter attract more attention and drive trending
topics
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Figure 4: The trace or results from random samples drawn from the posterior distribution
based on the prior. The different colours in the line denote similarity values of samples;
z and y axes respectively denote the similarity value and frequency in the window. The
corresponding sub-figures in the right column report the similarity magnitudes and degree
of stability in the samples as a function of window size. We can observe a drop in the
perturbations as the window size is increased: (a) a small window size, 200, shows a high
level of instability and low similarity (b) the instability is still evident with a window size
of 500 (c) a window size of 1500 shows moderate stability and increased similarity (d)
finally, a window size of 2500 shows no major improvement over (c¢). The distribution
remains virtually unchanged with a window size of 1500 random samples
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a: Posterior distribution at the threshold b: Posterior distribution above threshold
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Figure 5: The posterior distribution and the quantification of uncertainties, based on the
observed data. Relevant statistical quantities about the data such as sample mean, me-
dian, the highest posterior density (HPD) and the region of practical equivalence (ROPE)
can be defined. HPD quantifies the belief that on the distribution corresponding to our
expectation and the observed data, 95% will be dissimilar. The ROPE is useful in decid-
ing whether to keep increasing the window size or not by using values within the desired
threshold. For instance, The red ROPE along the black HPD bar in (a) at the threshold
value and (b) above the threshold value corresponds to a tunable region where various
values can be evaluated, e.g. 5.5 — 6.5

its operation. These quantities can be used to evaluate and inform assump-
tions, such as the actual mean similarity in an interval [p — ¢q] € w express
as fsim([¢]%). This quantity should be at least equal or greater than the
meanygse such that

psim ([9]5) — E[9] = 0

The mean value is useful in taking longer search steps, and the variance
informs how the distribution changes at shorter intervals. A significant de-
viation in these quantities heralds a change in the similarity distribution.
For instance, the undulations in Figure 1 are related to changes in the mean
and variance and are utilised by the algorithm to decide when and how to
regulate the search process. Consequently, a control mechanism consisting
of catalysing factor ¢ (or c-factor) and jump index (or j-index ¢(t;)) is pro-
posed to effectively guide the process. The c-factor is related reciprocally
with the mean similarity. The j-inder accepts the c-factor, pim([¢]2), [w]
and the current position of the anchor tweet to compute the next arbitrary
starting point 7. These quantities are related as follows:

1 q
psim([]F) = 7| Z¢(ti>tj) >T ti;t; €p—q
k p

|w
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mean similarities and window sizes
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Figure 6: A pairplot to explore the relationship between mean score, window size and
relative posting time as a grid of axes. Each variable in the plot is shared in the y-azxis
across a single row and the z-azis is the same along the column. A reasonable amount
of similar pairs are obtained using a window size of about 400-500 tweets. More similar
tweets can be obtained by increasing the window size to the region of 800-1000 tweets.

p(t) = c+ 7 p(t;) < |wil

p—agXx Msim<[¢]29

The j-index always returns an integer value less than the window size,
which corresponds to the position where searching should continue. The
search limit (1), a user define fractional value, defines the point to invoke
SWAPS after n sequential search steps. Our implementation uses [ = 1/4,
i.e. 1/4 of the space has been searched before SWAPS is invoked. An interest-
ing property of both ¢ and ¢(t;) is their diminishing behaviour, as illustrated
in Figure 7, as the mean similarity increases over time. SWAPS can ac-
commodate any standard similarity metric, such as Cosine similarity, or a
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custom metric to suit the application requirements. For instance, the perfor-
mance of the Cosine similarity, which is based on terms co-occurrence, can
be enhanced by incorporating the length of terms, based on the observation
that terms that consist of many characters has been shown to be informative
[34]. However, a more powerful approach is to compute similarity based on
word embedding vectors [30]. Our analysis results are based on computing
Cosine similarity (Section 3) between the embedding vectors of a pair of
tweets.

Algorithm 1 SWAPS: Given a set of timestamped tweets ¢;,...,t._1 € wf)
posted at time p € [pg, pr] from corpus D:

1: Initialisation: anchor tweet t,, buddy tweet t;, baselines (meanpgse, Varpgse),
search limit |

2: while t;index < z — 1 do

3 Via, t; € w]i compute ¢(ta, ti); Hsims; VAT sim

4 if tgindex > 1 x |wi| and figim < meanpyse then

5: compute ¢ and ¢(t;)

6: update anchor: tyindex < ¢(t;)

7 update buddy: tyindex + p(tj) + 1

8

9

else
ty — tq

10: Mmeanpgse < Hsim; if meanpgse < fisim
11: VAT pgse < VAT sim | if varpgse < VArsim
12: continue
13: end if
14: ty ta+1
15: t; < tit1

16: end while

3.8.1. SWAPS Complexity
Both sequential search and SWAPS are iterative algorithms, and operation-

wise they are similar since activities such as looping over items are common
in both, but the items to be compared are different. For a finite window
wj, the total number of comparisons to be made by the sequential process is
S 272 2 — i and by SWAPS approximately 3 S22 — i # 2. Both methods
leverage the symmetry in dot multiplication for computations. In SWAPS,
there is approximately 1/3 chance of invoking a control mechanism. With a
window size of just 350 tweets, there are 30625 total comparisons to be made
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Figure 7: The behaviour of SWAPS parameters in regulating search speed: as the mean
similarity improves, the effect of the c-factor (labelled as + at the bottom middle) is
diminishing, hence shorter or no j-index values apply.

using sequential searches and roughly 10208 comparisons using SWAPS. Ta-
ble 3 summarises the execution time, measured in seconds, for both methods
on various datasets. For the sequential approach in window wjf, the incre-
ment is linear and the first m anchors will cause z —1,2—2,2—3,...,2—m
comparisons, respectively, with complexity of O(z?). The execution of the
outer loop in SWAPS, shown in Algorithm 1, is dependent upon the control
mechanism that decides the next starting position. Considering a minimum
jump, based on the mean similarity of 0.2 after 170 pairs have been searched,
c-factor evaluates to 5 and the corresponding j-index to 15. Proceeding at a
steady pace for m iterations, the complexity is bounded by O(z(logz)).

3.4. Status of a tweet and engagement lifespan

The motivation behind the use of deep learning is to strategically optimise
searches by exploring the idea that relevant information can be efficiently
searched as a function of the engagement lifespan of tweets. To learn the

17



non-spam -

SPD robable
cleaning P Usable
spam data

Figure 8: Data cleaning pipeline. The SPD cleaning step involves the use of a prediction
model trained on numerous features related to tweets.

association between the status of a tweet and its engagement lifespan, over 60
million tweets have been represented based on their meta-features and used
to train a regression model. The goal of the regression model is to predict
time interval at which a given anchor tweet will attract significant attraction.
The predicted time is not absolute but an approximate time range, in which
relevant tweets to the anchor tweet are expected to be posted.

3.4.1. Data Cleaning and Preprocessing

Online social media attract all sort of information from diverse users. In
terms of cleaning, social media data is particularly challenging to process
due to the prevalence of a personalised form of writing and lack of structure
emanating from a lack of standard writing styles [32]. Tweets are generally
noisy and constitute a substantial proportion of irrelevant or spam content
which could undermine analysis result. As an initial preprocessing task,
we utilise a spam filtering technique (SPD) proposed in [16] to get rid of
irrelevant content from the data. The SPD approach makes it possible to
incorporate detection mechanism in the data collection pipeline or apply the
technique to an existing data to remove tweets with a high probability of
being spam. To enable the use of SPD, we collect all the features such as
network features and textual features required for the SPD detection, which
returns the likelihood of spam or non-spam. Figure 8 shows the data cleaning
pipeline. The filtered tweets are then normalised by converting to lower
case and removing stopwords to obtain shingles. Shingles are the set of

attributes for similarity comparisons and are obtained after the removal of
URLs, #hashtags, @mentions’.

"These sequences were removed so that the approach generalises well on text other
than tweets, such as the Eur-Lex data (see Table 2)
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Figure 9: A convnet and a fully connected neural network consisting of numerous dense
layers. The framework uses main and meta features to learn the relationship between the
status of a tweet and its engagement lifespan. Each channel in the architecture consists of
(a) the length of the input sequence (b) an embedding layer (c) an 1-d convnet layer with
32 filters and a kernel size (equivalent to the n-gram) (e) a maz pooling layer to select
best feature from (d) the feature map and finally (f) integrates the output which combines
with meta features to train (h) a fully connected neural network.

3.4.2. Feature Extraction

For training and evaluation purposes, Figure 9 shows the feature extrac-
tion and the training pipeline utilised in the study. Two sets of features have
been used: main features, i.e. features extracted from raw tweets using 1-d
multi-channel convolutional neural network (CNN or convnet based on Kim
20]), and meta features, which are fed to the fully connected neural network
segment in the figure. Conuvnet automatically extracts relevant features in a
tweet as n-grams at various lexical-levels. Table 2 provides additional details
about the features.

The filter in each channel of Figure 9 is initialised with the embedding
of the term as a weight vector®. We adjust the region size of filters to have
the same width as the dimensionality of the word vector, to preserve the
inherent sequential structure in the data [45]. The fully connected neural
network (FCN), i.e. segment (h) in Figure 9, accepts the main features, con-

8The embedding matrix E is trained on the SBT and DVT datasets.
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sisting of the integrated best features from each channel defining a high-level
representation of a tweet, and the corresponding meta-features of the tweet
for training. As far as the variations in the data scale, with respect to
meta-features, are concerned, each feature used for training the deep learn-
ing model is proportionally scaled by subtracting the mean and dividing by
the standard deviation. Finally, the data is proportionally split into train
and test sets.

3.4.3. Prediction

We conducted a series of experiments on various datasets, shown in Ta-
ble 2, to learn the behaviour of as many different tweets as possible at various
times.

The training objective is to minimise crucial loss functions: mean-squared
error (MSE), and mean absolute error (MAE). These are useful metrics to
assess the efficacy of the model. Figure 10, which utilises the MSFE loss func-
tion, shows the experimentation results using the SBT and DVT datasets.

MSE. This is a widely used loss function in regression problems which is
expressed as the mean of sum of the squared distances between the target
(y) and the predicted () values:

1« .
mse = ﬁlzl(yz —4i)

The aim is to minimise the distance or error between the true value and the
predicted value.

MAE. In addition to the MSE which takes into account the direction of the
errors, we apply the MAE which evaluates the mean magnitude of the errors
in the prediction task. It is based on the absolute difference between the
target (y) and the predicted (y) values:

Z?:l ly: — 4l
n

mae =
In Figure 10(d), the target values appear as a straight line due to proxim-

ity in posting time between the tweets which were collected from the diverse
topic of discussion. With an average 100m daily users contributing about
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Figure 10: Evaluation results on SBT and DVT datasets. Sub-figures (a) and (c) depict the
MSE and MAE, and sub-figures (b) and (d) compare the actual target to predicted targets.
There is a shorter time interval in the DVT dataset, which can be explained due to the
random collection of topics discussed simultaneously in the data and the predictions are
mostly behind the target. See Table A.4 for some examples. There is a longer duration in
the SBT, which is generated using a small set of specific keywords to filter relevant content
but performs better.

500m content?, the amount of tweets is enormous. Within a second or two,
thousands of tweets are being produced, and because the collection keywords
span various discussion topics on Twitter, many unrelated tweets are pro-
duced. We reduce the size, as shown in the appendix (Figure B.15) to make
the pattern more visible.

The diverse datasets, collected using keywords spanning broad subjects
such as sports, entertainment, politics, education, news, consist of a multitude
of disparate tweets from these broad categories posted within a short period
with close proximity. Thus, the probability of picking a tweet with high sim-
ilarity with other tweets in the DVT' is evidently low. The diverse dataset is

9See https://www.omnicoreagency.com/twitter-statistics,/
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actually not the ideal practical use-case since real information search often
starts with some high-level keywords specific to the search topic. The ratio-
nale of using the DVT is to compare with the ideal use-case that employs
specific searching criteria using the SBT, which shows a better performance
with potentials of improvement.

3.4.4. Evaluation

We conducted three forms of analysis: (1) several quantitative evaluations
on various test datasets (2) a comparative analysis between SWAPS and
sequential search, and (3) an evaluation on independent benchmark datasets.

In addition to the SBT and DVT, we utilised various datasets (consisting
of tweets of various sizes and non-tweet content, see Table 2) to search for
similarities using both Sequential search and SWAPS. Of interest are the ex-
ecution times and the number of similar pairs or the mean similarity for both
methods. As a form of greedy search, the Sequential method always returns
a higher proportion of similar items, albeit at the expense of longer execu-
tion time. SWAPS, on the other hand, returns a relatively high proportion
of similar items more efficiently.

Based on Table 3 and Figure 11, the difference between the items found
by the two methods is marginal in SBT and DVT in comparison with other
datasets. This is desirable and is probably because the other datasets have
been collected and curated for a specific purpose. For example, instances
in the review datasets exhibit high similarities among them since they are
all reviews of products of the same type and, thus, they mostly contain
similar terms. Noting the difference in execution time between Sequential
and SWAPS, it could be argued that the difference is not significant enough
to warrant compromising accuracy. Considering the window sizes (maximum
of 1000 tweets only, see Figure 6), the practical advantage of SWAPS would
be appreciated when working with larger window size (as demonstrated in
Section 3.3.1).

Figure 11 shows relative proportions of most similar items found by Se-
quential and SWAPS methods. The results are the aggregation of the differ-
ent similarity scores in a window of tweets of variable sizes. Figure 6 shows
the different window sizes. The result in Figure 11 only captures samples
from the window sizes we consider to be adequate (from 100 up to 500) for
illustration. The SWAPS achieves higher counts at a few instances, but the
overall count is in favour of the Sequential method. Moreover, SWAPS is
invoked at a specific point when certain criteria are met (see section 3.3);
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Table 3: Execution performance across multiple datasets. SC and MC: execution based
on single core and multiple cores, respectively. Only MC is available for datasets with a
large pairwise size.

Sequential SWAPS
Dataset execution time(s) g, execution time(s)  fisim
SC MC SC MC
DVT — 5640 0.26 — 2340 0.21
SBT — 4400 0.33 — 1800 0.28
Review tweetsl 425 252 0.63 145 95 0.47
Review tweets2 — 1572 0.85 19975 761 0.64
Review tweets3 5.0 5.0 0.71 12 5 0.59
Eur-Lex — 1325 0.60 — 348 0.46
Social Circles — 205 0.38 — 31 0.34

225 Proportion of similarity magnitude across variable window sizes (100-500)

200
175
150
Method

. SWAPS
mmm Sequential

D |} M
0.67 0.81 0.87
MeanSims

Figure 11: Proportions of mean similarities in searches conducted by Sequential and
SWAPS methods. As expected, the Sequential method returns higher proportion of simi-
larity than SWAPS but at the expense of longer time (see Table 3). The difference in the
proportion between the two is marginal, which can be compromised in favour of speed.

until then, the operation is sequential.

4. Tweet’s status and choice of anchor tweet

We observe that the circle size for anchor tweets differs based on the
relevance of the tweet in attracting attention. To demonstrate this, we apply
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the concept of light cone!® and ripples. Figure 12(a) intuitively illustrates the
level of interest generated by an anchor tweet. The similarity of a tweet to
other tweets increases as the engagement lifespan increases. The similarity
of a tweet to other tweets increases as the engagement lifespan increases.
Tweets with high engagement tend to have many features in common (e.g.
high indegree or followership). These features are considered responsible
for higher engagement and as a proxy for online social status. It follows
that the category of tweets with high engagement level will show exhibit a
certain pattern of similarity by having many features in common. Sustaining
a high engagement lifespan, i.e. more ripples in Figure 12(a), is explained
by a latent variable we refer to the ability of tweet’s relevance which is the
relevance of a tweet based on a combination of features defining its status.
This phenomenon is investigated by applying the idea of item response theory
[9]. With respect to this study, item response theory (IRT) measures the
influence of an anchor tweet in attracting more tweets i.e. is the tweet from a
user who has a large following or who tends to have a low favourite counts?
Accordingly, we apply the Rasch model to assess the relevance of an anchor
tweet, as shown in Figure 12(b).

4.1. Engagement level and mazimisation

With a growing data stream and high demand for instant processing
where efficiency is crucial, the sequential method is not only time consum-
ing, but computationally expensive. The ultimate goal of the prediction
model is to estimate the expected time at which to anticipate a high level
of engagement with a tweet. The level of engagement can be discerned since
the longer the tweet can attract attention (more circle members) the more
engaged is the tweet. In Figure 12(a), a more extended period and a large
number of circle members are considered high engagement. We sample some
tweets with a high number of circles and observe the exact period or time of
the day (see Table A.4 for some examples). A substantial number of tweets
appear to be produced at a definite period, mostly toward the end of the
evening. This behaviour was previously observed and termed pointless bub-
bles [3]. In some cases, most similar tweets (assumed random) are posted
around 10am — 4pm and evening period, perhaps due to a large number of

10T everaging the concept of a light cone from Physics and how ripples are created in a
pond, in proportion to the surface area.
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Figure 12: Sub-figure (a) shows how anchor tweet generates attention after posting and
observing how the wavelength of each ripple differs. This can be explained by the status of
the tweet, e.g. if the tweet was posted by a celebrity or any user with high followership base,
it has the potential of attracting interest, thereby generating more ripples before dying
out. Sub-figure (b) shows how IRT can measure the ability of a tweet to attract interest.
The attributes in the figure constitute the status of a tweet and define its relevance in
terms of engagement magnitude or more ripples in sub-figure (a). Higher values denote a
more attractive tweet, and the lower categories imply, the higher chances all tweets will
possess.

tweets are produced within this period i.e. in comparison with other times of
the day. Leveraging this insight and the idea of tweet’s status can be a useful
strategy from a search and ads viewpoint, among other benefits. Indeed,
this is a complex phenomenon that requires many factors (such as collection
window, topical discourse and other implicit factors) to be accounted for to
improve searches. Other key factors capable of enhancing similarity compu-
tation irrespective of the similarity metrics are the popularity of topic and
the posting period.

5. Conclusion and Future work

The flexible roles of users as both producers and consumers of content
in modern social media are empowering as well as posing many challenges
regarding efficient access to relevant information. This paper presents a deep
learning strategy based on the idea of a tweet’s footprint to improve search
and navigation in social media platforms and an efficient searching algo-
rithm. Our approach circumnavigates the challenges in the time-consuming
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sequential search for similar items on Twitter by ensuring less search space
and improved efficiency. We demonstrate a pragmatic approach to study the
distribution and patterns of similar and dissimilar tweets by considering var-
ious bootstrap samples drawn from a collection of tweets. We quantify the
associated uncertainties and offer useful insights for practical applications.
We show how window size affects the distribution of similarity. Increasing
the window size to 1000+ was shown to result in high numbers of similar
tweets but that 400 - 500 is adequate, especially when the content is about
related topics. Concerning SBT and DVT, the window size often spans up
to 800 and 1500 respectively. This research is underpinned by statistical evi-
dence which strengthens the validity of the findings. Amongst other benefits,
our technique can be applied to various application domains such as topic
tracking and detection, clustering and ads.

Future work. The proposed SWAPS algorithm balances the trade-off between
speed and accuracy, which may omit some relevant items and compromise
performance. To maximise the algorithm’s functionality, future work will fo-
cus on deep reinforcement learning (DRL) to utilise the algorithm in crafting
a policy to be utilised by DRL agent. As influential Twitter users promote
the exponential growth of particular topics, it becomes challenging to search
for less popular topics. The platform then becomes biased towards those
influential users. Future research will allow an understanding of the most
appropriate time to analyse data from a wide range of specific sets of users,
not only the most famous or prolific ones.
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Appendix A. Some examples

Table A.4: Example of anchor tweets and corresponding circle members from DVT.

Type

Text

Posting time

Anchor

Circles

Circles

Circles

Circles

Circles

why did two of the biggest wrestlers in the
world pull out of the event in saudi arabia?
foreign office wants to for crimes against journalists.
first step - free the journalist detained

the best way to screw the saudi government out of
their money? give them and make them like it

this the series of bjp biggies who have used foul lan-
guage against congress leaders in front of media
perfect eression of the circularity of us policy toward
the saudi-iranian cold war

erdogan says that the order to assassinate khashoggi
came from the highest level of the saudi regime

[2018-11-02 19:56:30]
[2018-11-02 19:56:30]
[2018-11-02 19:56:34]
[2018-11-02 19:56:33]
[2018-11-02 19:56:35]

[2018-11-02 19:56:35]

Anchor

Circles

Circles

Circles

Circles

hulk hogan returns - brock wins the universal
title - shawn michaels still has it - 4 year olds
main event

president of turkey recep tayyip rrdogan writes in op-
ed: saudi arabia still has many questions to answer
about jamal

president of turkey recep tayyip rrdogan writes in op-
ed: saudi arabia still has many questions to answer
about jamal

hulk hogan coming out to real american in saudi ara-
bia is absolutely hysterical

i think the role of the uk govt is not only in bilateral
relationships with other governments but also on the
ground

[2018-11-02 19:56:57]

[2018-11-02 19:57:00]

[2018-11-02 19:57:00]

[2018-11-02 19:56:58]

[2018-11-02 19:57:01]

Anchor

Circles

Circles

Circles

how many mexican journalists have been
slaughtered by the powers that be? yet you
say nothing. the same

i’'m having a blast watching journalists scramble try-
ing to desperately elain away the robert rourke cam-
paign

i have never felt so much hatred and bigotry in my
life. every day the us media is attacking; to solve
the shia issue in nigeria, there is a need for frank
discussion between the govt imn leadership

i wait for the day that the saudi arabian money of is
shown to have bought the blind eyes of fifa

[2018-11-02 19:56:24]

[2018-11-02 19:56:25]

[2018-11-02 19:56:26]

[2018-11-02 19:56:27]
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Appendix B. Supplementary Figures
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Figure B.13: Summary of the process workflow depicting the data cleaning and transfor-

mation phases

b: similarity of anchor tweet vs. other tweets

a: similarity of anchor tweet vs. other tweets
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Figure B.14: Splitted Figure 1 in which the peaks denote tweets similar to the anchor
tweet where (a) shows period with higher proportion of similar tweets in comparison to

(b) with less similar tweets.
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Time (min)

d: Actual and predicted time on DVT

33.52
33.50

33.48

33.46

33.44

Size

Figure B.15: Expansion of Figure 10(d) to clearly show the period
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