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Abstract Combinatorial optimization problems are typically NP-hard, due
to their intrinsic complexity. In this paper, we propose a novel chaotic particle
swarm optimization algorithm (CS-PSO), which combines the chaos search
method with the particle swarm optimization algorithm (PSO) for solving
combinatorial optimization problems. In particular, in the initialization phase,
the priori knowledge of the combination optimization problem is used to op-
timize the initial particles. According to the properties of the combination
optimization problem, suitable classification algorithms are implemented to
group similar items into categories, thus reducing the number of combina-
tions. This enables a more efficient enumeration of all combination schemes
and optimize the overall approach. On the other hand, in the chaos perturbing
phase, a brand-new set of rules is presented to perturb the velocities and posi-
tions of particles to satisfy the ideal global search capability and adaptability,
effectively avoiding the premature convergence problem found frequently in
traditional PSO algorithm. In the above two stages, we control the number
of selected items in each category to ensure the diversity of the final combi-
nation scheme. The fitness function of CS-PSO introduces the concept of the
personalized constraints and general constrains to get a personalized inter-
face, which is used to solve a personalized combination optimization problem.
As part of our evaluation, we define a personalized dietary recommendation
system, called Friend, where CS-PSO is applied to address a healthy diet
combination optimization problem. Based on Friend, we implemented a series
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of experiments to test the performance of CS-PSO. The experimental results
show that, compared with the typical HLR-PSO, CS-PSO can recommend di-
etary schemes more efficiently, whilst obtaining the global optimum with fewer
iterations, and have the better global ergodicity.

Keywords Combinatorial Optimization - Particle swarm optimization -
Chaos Search - Personalization Recommendation

1 Introduction

Particle swarm optimization algorithm (PSO) is a heuristic optimization tech-
nology, presented by Kennedy and Eberhart [1], which mimics the swarm be-
havior of bird flocks in performing their tasks, and to discover an optimal
solution based on an objective function [1-3]. With fewer parameters, PSO
algorithm can achieve a faster convergence, whilst being simpler and easier
to implement [4]. PSO has already been applied to many fields, such as elec-
tric power systems, job scheduling of workshops, wireless sensor networks,
route planning, robotics, etc. [5-9]. However, the performance of PSO still has
space for improvement. For example, due to the fast convergence of PSO, it
is easy to fall into local optima in solving multi-modal optimization problems,
potentially leading to the premature convergence of particle swarms. In the
initialization and updating phase, the stochastic strategy of PSO generates a
group of particles and finds the optimal solution through multiple iterations.
During the iterations, the positions and velocities of particles are randomly
updated, resulting in a low computational efficiency. There are mainly two
ways to improve performance of the PSO: the first adjusts the parameters and
procedure of PSO, such as dynamically adjusting the search step length, op-
timizing the update strategy of the particles, and so on [10,11]. Alternatively,
the combination with other intelligent optimization algorithms, such as the
genetic algorithm (GA), and the simulated annealing algorithm [12,13]. Most
related research [15-19] about the improvement of PSO now mainly focus on
the continuous optimization problems, while the combinatorial optimization
problems (e.g. the combination of integer programming and the 0/1 knapsack,
etc.) do not attract enough attentions and the current research results are
usually suitable to certain scenarios, which are not pervasive.

In order to solve combinatorial optimization problems more efficiently, we
propose a novel chaotic particle swarm optimization algorithm (CS-PSO). The
main contributions of this paper are as follows. First of all, the chaos initializa-
tion and the chaos perturbing of the chaos search method are introduced into
PSO in place of the random initialization and the random perturbing. The er-
godicity, regularity and randomness of the chaos search method can contribute
to address the PSO issues, including the local optimum and the poor search
efficiency. In the initialization phase, the priori knowledge of the combination
optimization problem is used to optimize the initial particles. Furthermore,
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the quality of the particles and the search efficiency of the algorithm are im-
proved. In the chaos perturbing phase, a brand-new set of perturbing rules is
presented to perturb the velocities and positions of particles sufficiently to re-
alize the ideal global search capability and adaptability, effectively solving the
premature problem of particles. Subsequently, we designed the fitness func-
tion of CS-PSO, which utilizes the concept of the personalized constraints and
general constrains to produce a personalized interface, which is used to solve
a personalized combination optimization problem. Finally, we built a person-
alized dietary recommendation system, Friend, which is based on CS-PSO to
address a healthy diet combination optimization problem. Friend is able to
recommend more reasonable dietary schemes, which proves that CS-PSO has
an enhanced performance compared to other improved PSO algorithms, such
as the typical PSO for generating healthy lifestyle recommendations (HLR-
PSO) [20].

The rest of the paper is organized as follows: Section 2 presents the re-
lated works, Section 3 discusses CS-PSO in detail, and Section 4 describes the
prototype personalized dietary recommendation system called Friend applied
with CS-PSO. Experiments and performance analysis are presented in Sec-
tion 5, and finally, Section 6 concludes the paper by summarizing the main
contributions of this paper and commenting on future directions of our work.

2 Related Work

PSO is a bio-inspired optimization meta-heuristic, which is inspired by the
foraging behavior exhibited by birds, which is based on the assumption that a
flock of birds are randomly distributed in an area with only one piece of food,
as shown in Figure 1(a). The dot on the tree represents the available food,
and its position is unknown to each bird, although they know their distance
from it. Furthermore, the nearest bird to the food can notify other birds to fly
to it. The food is assumed to be the optimal value, as shown in Figure 1(b),
where each bird is seen as a particle, and the distance between a bird and the
food is a value of the objective function. Therefore, the birds flock foraging
process can be defined as a function optimization process. In Figure 1(b), X;
is the closest particle to the goal, and it is set as the current global optimal
particle. Its distance from goal is Nbest;, which is the global optimal value
[1,2]. The main idea of PSO [20] is that in a set of particles, each particle is
defined with a position and a velocity, searching for the global optimum of an
NP-hard problem. The particles iteratively update their positions according to
their individual local optimal position and the global optimal position visited
so far. The new position of a particle (e.g. particle i ) is defined as:

Xilt+1) = Xi(t) + Vilt + 1), (1)

where ¢ is the current (temporal) status, ¢ + 1 is the status post-updating,
X;(t) is the current position of the particle, and V;(¢ + 1) is the new velocity
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Fig. 1 Simulation of bird flocks foraging.

of the particle. Note that time difference At = (¢ +1) —t is indeed a time unit.

The velocity of particle i is defined as:
Vit +1) = wVi(t) + crr (X7 — Xi(t)) + car2 (X9 — Xi(1)), (2)

where V;(t) is the current velocity of the particle, X7 is the best position so
far visited by the particle (i.e. the local best position), X9 is the global best
position so far visited by a particle at the swarm level, and w, ¢y, and ¢y are
constants that weight the importance of each component of the velocity. finally
r1 and 7o are the random values within [0, 1].

There is much research focusing on the improvement of the performance of
the original PSO. In [21], the authors propose a new modified particle swarm
optimization algorithm based on sub-particle circular orbit and zero-value in-
ertial weight (MDPSO). MDPSO utilizes the trigonometric-function-based on
non-linear dynamic learning factors, and on a prediction method of population
premature convergence, which can achieve a better balance between the local
exploring ability and the global converging ability of particles [21]. However,
MDPSO is mainly suitable for solving the composition optimization prob-
lem of Web Service, and it is not, therefore, universal. In [22], the authors
propose a general particle swarm optimization model (GPSO), which can be
naturally extended to solve discrete and combinatorial optimization problems.
GPSO uses the genetic updating operator, further improving the quality of
solution and the stability of convergence, and significantly saving the compu-
tational cost [22]. However, the genetic updating operator brings randomness
into GPSO, which cannot guarantee the diversity of the final solution. In [23],
the authors propose a hybrid particle swarm optimization algorithm with the
Fiduccia-Mattheyses algorithm (FM), inspired by GA, utilizing the regenera-
tion mechanism of particle’s position of Discrete Particle Swarm Optimization
(DPSO). In particular, it is based on genetic operations to update the po-
sition of the particle defined as two-point crossover and random two-point
exchange mutation operators to avoid generating infeasible solutions. To im-
prove the ability of local exploration, FM is applied to update its position. A
mutation strategy is also built into the proposed algorithm to achieve better
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diversity and break away from local optima [23]. However, similar to [21], the
algorithm is not universal, and cannot solve the multi-objective optimization
problems. In [24], the authors propose a novel multi-state particle swarm op-
timization algorithm (MSPSO) to solve discrete combinatorial optimization
problems, which is different from the binary particle swarm optimization al-
gorithm (BinPSO). In MSPSO, each dimension variable of each particle can
attain various states, and it has been applied to two benchmark instances of
the traveling salesman problem (TSP). The experimental results show that
MSPSO outperforms BinPSO in solving the discrete combinatorial optimiza-
tion problem [24]. However, MSPSO utilizes the concept of multi-state, leading
to the exponentially growing requirements of storage space and computation
time. Therefore, the efficiency is affected when MSPSO is applied to solving
high dimensional combinatorial optimization problems. In [25], the authors
attempt to apply chaos search method to PSO, whilst using its ergodicity,
regularity and randomness to search the current global best particle in the
chaotic way, replacing a stochastic selected individual from the current “pop-
ulation”. The performance of PSO is improved with the chaos search method,
which motivates our work. The evolution process is quickened, and the abilities
to seek the global optimum, the convergence speed and accuracy are all im-
proved [25]. In [26] and [27], improved PSO algorithms with the chaos search
method are presented and applied to the optimization of logistics distribution
route and vehicle routing problem with specific time windows, respectively.
However, these results all simply adopt the chaos search method, not further
improving the mechanism of chaos initialization and chaos perturbing or pro-
viding the personalized interface. Therefore, the diversity of the final solution
cannot be guaranteed, and the search efficiency is still unsatisfactory [26,27]. In
[30], the authors introduce a simulation infrastructure for building/analyzing
different types of scenarios, which allows the extraction of scheduling metrics
for three different algorithms, namely the asymptotically optimal one, FCFS
and a traditional GA-based algorithm. These are combined them into a sin-
gle hybrid algorithm addressing asymptotic scheduling for a variety of tasks
realted to Big Data processing platforms. A distributed and efficient method
for optimizing task assignment is introduced in [31], which utilizes a combi-
nation of genetic algorithms and lookup services. In [32] an algorithm based
on a variety of e-infrastructure nodes exchanging simple messages with link-
ing nodes is discussed, with the aim to improve the energy efficiency of the
network performance.

3 Chaotic Particle Swarm Optimization Algorithm
3.1 Basic Idea

The current PSO algorithms designed for solving combinatorial optimization
problem generally exhibit the following issues:



6 Xiaolong Xu et al.

— Most PSO algorithms are only suitable for one particular scenario, and
they are not universal.

— Most PSO algorithms are not based on multi-objective, or do not provide
a personalized interface. So, they cannot effectively solve discrete, multi-
objective and personalized combinatorial optimization problems.

— With the increasing of the particle dimension, the requirements of storage
space and computation time will grow exponentially, which will lower the
efficiency when solving the high dimensional combinatorial optimization
problem.

The CS-PSO proposed here adopts the chaos search method [28]. The chaos
initialization and the perturbation of the chaos search method is used instead
of the random initialization and the random perturbing. In the initialization
phase, CS-PSO optimizes the initial particles according to the characteristics of
combination optimization problems. Via item classification, similar items are
grouped into the same category, thus reducing the number of combinations.
Therefore, it is possible to enumerate all combination schemes and improve
the search efficiency. In the chaos perturbing phase, a new set of perturbing
rules is designed to perturb velocities and positions of particles sufficiently, so
that CS-PSO has good global search capability and adaptability, and the pre-
mature convergence problem of particles is also effectively solved. In the above
two phases, CS-PSO controls the number of selected items in each category
to ensure the diversity of the final combination scheme. The fitness function
of CS-PSO, utilizes the concept of the personalized constraints and general
constrains to get a personalized interface, which can be used to solve the cor-
responding personalized combinatorial optimization problem.

3.2 Chaos Search Method

Definition 1 (Chaos Search) Chaos search is the random movement with
pseudo randomness, ergodicity and regularity, which is determined by a deter-
ministic equation [28].

Through the chaos iteration, a set of random sequences with the ergodicity and
the pseudo randomness are generated. Usually, the logistic mapping equation
[29] is used to generate pseudo random sequences:

Z:ant1 = pon(l —ap), n=0,1,2,... (3)

where Z is a chaotic variable, corresponding to «, , and p is the control
parameter. If p = 4, the logistic map will show entirely chaotic dynamics, and
the trajectory of chaotic variable are dense over the whole search space. We
assume that the initial value of Z, namely «y, is not equal to 0, 1.25,0.5,0.75, 1,
otherwise it would be eventually periodic.
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3.3 Model of Combinatorial Optimization Problem

Definition 2 (Combinatorial Optimization) Combinatorial optimization
refers to the process of optimizing an object via the combination of a finite set
of components.

A typical case of combinatorial optimization is the “quality-cost” model of
manufactured products, where a specific product consists of m components,
and each of them can be chosen from a variety of options. The parameters
of each optional component include a weight representing its quality and the
index of cost, with the constraint that the total expenditure of the product
does not exceed the available budget. There are a variety of examples where
combinatorial optimization plays a crucial role. These include, for example,
the assembling of the different parts of a car, such as an engine, chassis, tyres,
transmission, electrical equipment, etc., whilst optimizing quality versus cost.
The “quality-cost” model of combinatorial optimization problem is defined as
m  ng

max E E Ws, 5T, 5

i=1j=1

m Uz
such that Z Z cijti; <O (4)

i=1 j=1
n;
Za:w-,Vi S {1,2,...,771}
j=1

where

— ¢ is the index of category,

— j is the index of item,

— m is the total number of categories,

— n; is the total number of items in the i—th category,

— w ; is the weight of the j—th item in the i—th category,

— ¢;,5 is the cost of the j—th item in i—th category.

— O is the object cost, which means the manufacturing cost shall not exceed
the object cost and the quality of the product shall be the optimal; z; ; €
{0, 1}, Vi is the mapping value of the item.

Note that if the j—th item in the i—th category is selected then z;; = 1,
g

otherwise z; ; = 0. Zx” =1 implies that only one item is selected from
j=1

each category.

3.4 Chaos Initialization

Chaos initialization refers to the process of a chaotic variable of the logistic
map, which randomly identifies a value as its initial value of particle.
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The parameters of chaos initialization are as follows:

1. All items are divided into m categories, which are defined as vectors, B;,

fori=0,1,...,m — 1, for category i.
2. The total number of items in category 7 is defined as N;, fori = 0,1,...,m—
1, which implies that BL = (Ii70, Lidy--- ami,Ni—l)-

3. According to the above points, the position of particle ¢ can be obtained,
which is defined as a vector X; = (By, B, ..., Bm—1) . The dimension of

m—1
particle i is Z N;.

i=0
Suppose that only one item is selected from each category. Therefore, m ran-
dom values are sequentially generated within the interval [0,1], and each of
them is mapped onto an item of each category. Via these m random values, the
position of the first particle can be obtained. Take category By as an example,
so that the chaos initialization process is as follows:

1. Suppose there are Ny items in By, the chaos search space [0, 1] is divided
into Ny subspaces.

2. The random function is used to generate a random number between 0 and
1, described as kg o, which is assigned to the chaotic variable as the initial
value of the By category.

3. The parameter kg is subsequently assessed to identify which subspace it
belongs to. Supposing that kg belongs to the pu—th subspace, zg, = 1,
and others variables of By are all initialized to 0. It means that the u—th
item is selected in By = (0,0,...,1,...,0).

By repeating the above procedure m times, m random values kg o, ko1, - - -, Ko,m—1

are generated sequentially, and each random value is mapped to a correspond-

ing item of each category. The initializations of other categories By, ..., B _1

can be completed in the same way. By, B1,...,B,,_1 are combined together

to get vector X;. Supposing that there are n particles, the n x m initialization
chaotic variables matrix K can be defined as:

koo .. kom-1

K — .
kn—1,0 - kn—1,m—1

In the initialization phase, the velocity V; and the local best position P; of

particle ¢ are all equal to X, that is:

Xi:‘/;:Pi(i:O,l,...,n—l) (5)

3.5 Chaos Perturbing

Definition 3 (Chaos Perturbation) In the updating process of particles,
their velocities and positions will be perturbed sufficiently and the search space
will be traversed as sufficient as possible.
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Definition 4 (Fitness Value) Fitness value is a value obtained through a
fitness function, which is a quantitative indicator and used to evaluate the
advantage and disadvantage of individual.

Take particle ¢ as an example. The parameters of chaos perturbing are as
follows:

1. The local best fitness value is defined as f;(i =0,1,...,n—1).
2. The global best fitness value is defined as F.

3. The local best position is defined as P;(i =0,1,...,n —1).

4. The global best position is defined as G.

Subsequently, the positions of n particles are obtained, and their fitness value
is initialized to 0. In particular, a higher value of the fitness value will have a
positive impact on the position of particles. During the updating process of f;
and P;(i=0,1,...,n— 1), F and G can be obtained.

We define two velocity vectors VP and V7, where VP = XP — X, VJ =
X7 — X;. Consequently, the new velocity of the particle i is updated with
Vit + 1) = wV(t) + c1r VP + cara V7 (6)

The subtraction between two positions, for an example between X? and
X, is defined as

X7 = Xi = (V)00 155 V7 gy ) (7)
o Rand(1) if o7 ; = z; j;
d 0 otherwise.

where Rand(1) is used to randomly generate either 0 or 1. According to the
chaos initialization, we know that just one item or a few items are selected in
every category. In fact, most of the variables are equal to 0. As a consequence,
the updating rule of velocity is re-defined as

D _ {Ui,j(t) lf Ui,j(t) = ’Uf)]» = ’Ugj

v - .
©J -1 otherwise.

The addition between a position X;(¢) and a velocity V;(t 4+ 1) is also re-
defined as:

Xi(t+1)=X;(t) + Vit +1) = (2ot + 1),z 1 (t +1),...,2;;(t+1)) (8)

.'1:1',7_7 lf Uz‘d(t) =1
C(.’ﬂi,J) lf ’Ui’](t + ].) =0
o= J(xi]) ?f v;;(t+1) = —1 and v; ;(t) # vzj = Uij
i, J(xfﬂ) if v; j(t+1)=—1and v; ;(t) = vij + vﬁj
J(@};) ifvij(t+1) = =1 and v; ;(t) = v] ; # v}
C(ziz) if vij(t+1) = —1 and v; ;(t) # v] ; # v{

where



10 Xjaolong Xu et al.

— ¢ is the number of particle,
Jj is the index of position X;(¢),

— x;,; is the variable with index j from the i—th current position,
— xfyj is the variable with j from the i—th local best position,

— 29 ; 1s the variable with j from the global best position,

2y
— C(xz;,;) is a perturbing function of x; ; with j from the position of particle
i, and finally
— J(x;) and J(x ;) are simple assessments based on the process initializa-
tion.

The detailed perturbing process of the function is defined as follows:

1. First, according to the parameter j, we can determine the associated item
of the corresponding category 25,5 In particular, the assertion

“If j >ZN and j <ZN”

implies that xl g is assomated with the chaotic variable k;
2. The logistic map is used to iterate k;j once and generate a new chaotic
variable k; j,.
3. Subsequently, the subspace k; j, is assessed to understand which subspace
it belongs to. Suppose that k; ;, belongs to the p—th subspace, z; , = 1 and
S

the others variables of the category By, are equal to 0. If j — Z N; =p(s <m),

i=0
then z; ;(t+1) = 1. Otherwise, z; ;(t+1) = 0, and By, = (0,0,...,1,...,0).

In order to ensure the suitability of the final solution, the following rules are
assumed (without loss of generality, consider the variable J(x7 ;) ):

L. If 27 ; = 1, then x; j(t + 1) = 1 and other variables of the corresponding
category are assigned to 0.

2. If xf,j =0, and z; ; = 0, then the only action carried out is to assign 0 to
x;;(t+1)

3. If o} ; =0, and z; ; = 1, then z; ;(t + 1) = C(z; ).

3.6 Design of the Fitness Function

The fitness function is used to evaluate the performance of a combination
scheme under certain constraints. Therefore, the properties of the fitness func-
tion will directly affect the combinatorial optimization results. More specifi-
cally, most combinatorial optimization problems are multi-constraints based.
In this article, we use both personalized constraints and general constraints,
where the former are used to design the fitness function, and the latter are
used as its constraints. We also combine the satisfaction of personalized con-
straints into the score model and the average of scores is identified with the
fitness value. The bigger the fitness value is, the higher degree of satisfaction of
personalized constraint will be, and the better the position of particle is con-
sidered to be. Suppose a combinatorial optimization problem with constraints
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A, B and C, and both A and B are the personalized constraints, the C' is a
piece of general constraint. The fitness value is calculated as

S(A)+ S(B)

FArSS), )
if constraint C' is satisfied, where S(A) is the score of A, and S(B) is B. The

algorithm can be applied to different scenarios, with different constraints and
fitness functions.

F =

3.7 Pseudo Codes of CS-PSO

Algorithm 1 shows the pseudo codes of CS-PSO. In particular, N is the number
of particle, M is the total number of categories, NJ| is the number of items
of each category, K is the matrix of chaotic variable, S is the personalized
constraints, and C' is the general constraints.

Algorithm 1 The CS-PSO Algorithm
1: Input: N; M; N[; K;S;C
: Output: G
3: Bestp = 100
4: fori=0to N —1do
5:  //chaos initialization
6.
7
8

[\

X[i] = V[i] = P[i] = Initialize(K[i])
//calculate the fitness value
:  F[i] = ComputerFitness(X[i], S, C])
9: end for
10: //obtain the index of the global best particle
11: index =Get_Global_Best(F'[i])
12: F9 = F[index]
13: G = X|index]
14: while FY9! =Best_F) and (Iterations! =MaxCount) do
15:  fori=0to N —1do

16: //update speed of each particle

17: V[i] = UpdateSpeed(X|[i], V[i], P[], G)
18: //update position of each particle

19: X[i] = UpdatePos(X[¢], P[i], G, V[i], K[3])
20: F[i] = ComputerFitness(X[i], S, C])

21: end for

22:  index=Get_Global_Best(F[i])
23:  F9 = F[index]

24: G = X[index]

25: end while

26: return G

4 A CS-PSO Application: A Healthy Diet Scheme

As a case study, we will consider a healthy diet scheme, which includes a bal-
ance of nutrients and an appropriate variety of different types of food. Clearly,
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0 Calories Intake . o Nutrient Intake 0 Cost

(a) ©) ©

Fig. 2 Score model of personalized constraints.

this can be viewed as a typical combinatorial optimization problem. The main
nutrients include water, protein, carbohydrate, lipids, dietary fiber, vitamins
and minerals. The main categories of food include staple food, vegetables,
fruits, eggs, seafood, milk, etc. In order to ensure the diversity of diet and
satisfy users, the healthy diet scheme would better recommend a food item of
each category that users prefer.

CS-PSO can be utilized in this context and it involves the following ele-
ments:

1. For m types of food items category, every category is defined as a vector
By, fori=0,...,m—1.
2. The total number of food items in each category is defined as N;, for
1=0,....m—1.
3. The vector of the diet particle is defined as X; = (By,...,Bm—1) and
m—1
B; = (zi0,---,%iN,—1), and the dimension of a particle is Z N;
i=0

The chaos initialization and the chaos perturbing are the same as the above,
while the fitness function needs to be redesigned and further developed. We
consider three constraints, namely calories, nutrients, costs. User’s preferences
is assumed to be a general constraint, which has to be satisfied prior to the
initialization of the process. On the other hand, the constraints of calories,
nutrients, costs are used as the personalized constraints. The fitness function

is defined as:
(Se+ Sn+5p)

; (10)

F =

~ [100(R/S) ifR<S
S.or S, = {100(1_ (R-1S)/S) if R > S.

g — 100 ifR< S
P 1100(1—-(R-95)/S) if R>S.
where S, S, and S, are the scores of the above four constraints, R is the

recommended value corresponding to each constraint, and S is the standard
value corresponding to each constraint. Figure 2(a) shows the score model of
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(51,52,...)
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Calculating the fitness

function value <
(F1,F2,)
Searching the best Chaos disturbing
fitness function value
(F_best) T
| y
i P
/// “\\\\\ /// \\\
F_best==Optimum? N—>/ Count++ Count<=Maximum? >
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Output the best OUTP;t thj
diet scheme current best diet
| scheme

End

Fig. 3 The workflow of the diet recommendation system with CS-PSO.

the constraint of calorie intake. If the calorie of recommended food is equal to
S, then the score value is 100, otherwise the score value is less than 100. The
bigger the distance from the S, the less the score value will be. Figure 2(b)
shows that the score model of the constraint of nutrient intake is similar with
the former. Figure 2(c) shows the score model of the constraint of cost. If the
cost of recommended food is less than or equal to S, then the score is 100,
otherwise the score is less than 100. The workflow of the diet recommendation
system with CS-PSO includes the following steps, as shown in Figure 3:

Step 1. The chaos initialization generates n diet particles. Based on the user’s
preferences, a food item of each category is initialized as the position of
diet particle.
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Table 1 BMI For Asian Adults

Figure Standard Related Disease Risk

thinness < 18.5 Risk of developing problems
such as nutritional deficiency
and osteoporosis

regular 18.5-22.9 Low risk (healthy range)
overweight > 23 Moderate risk of developing heart
obesity 23-24.9 disease, high blood pressure, stroke,
obesity - class I 25-29.9 diabetes
obesity - class II > 30 High risk of developing heart disease,
obesity - class 111 > 40 high blood pressure, stroke, diabetes

Step 2. According to the user’s basic background, including height, weight,
gender, age and activity level, the amount of required calories and nutrients
are calculated. And the constraint of cost can be provided by user. These
values are used as the standard values corresponding to each constraint.

Step 3. The fitness values of all diet particles are calculated and assessed.
According to the analysis of the above three constraints, calculate the score
of each constraint, and then the fitness value equal with the average of three
scores. The greater the fitness value, the better the diet particle. Therefore,
the global optimal particle position and the corresponding fitness value can
be obtained.

Step 4. The fitness value of the global best particle is assessed to evaluated
whether it is optimal. If so, then end the process. Otherwise, assess whether
it reaches the maximum number of iterations. If it does, then go to the end
of the process. Otherwise, go to Step 5.

Step 5. The chaos perturbing component is used to update diet particles,
and then go to Step 3.

4.1 Prototype of the System

In this section, we will introduce a personalized dietary recommendation sys-
tem, called Friend, where CS-PSO is used to address the healthy diet combi-
nation optimization problem. The system provides the interface for users to
input their personal physiological data, which is used to calculate their body
mass indexes (BMI), their personal standard values of calories and standard
values of nutrients. The calculation of BMI is:
w

BMI = 2 (11)
where w is the weight of a person, and h is the height of a person. Table 1
shows the BMI for Asian adults

As shown in Figure 4, Friend, is composed of the following classes:

— MainActivity is the main interface of Friend for users to input their per-
sonal physiological data,
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Fig. 4 Classes of Friend.

— StandardInfo and DBManager select the appropriate personalized standard

®getFoodInfo() : int[]

values of calories and nutrients from the database,

— RecommActivity is an activity, which receives the personalized data from
the interface of MainActivity, and the recommended diet scheme will show

in this activity,

— BF_PS0 is a class, which is mainly used for the initialization of the diet

particles,

— Agent is a class, which is mainly used for updating of the diet particles,

— Finally, FoodInfo and DBManager are responsible for selecting the recom-
mended diet from the database.

CS-PSO is achieved via RecommActivity, BF_PSO, Agent and FoodInfo, which
interact with each other to provide the scheme of diet recommendation.

Figure 5 shows the user interfaces of Friend. Consider breakfast for exam-

ple, as shown in Figure 5(a). Friend requires users to input their personalized

information, including age, gender, activity level, weight, height and budget

on food and food preference. After providing the above information, users

need to click the recommendation button, it will generate the scheme of diet
recommendation as shown in Figure 5(b) and Figure 5(c).
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Fig. 5 User interfaces of Friend.

Table 2 Schemes of Diet Recommendation with HLR-PSO

Scheme Food Items Amount of Food Calories (Kcal)
watermelon 250.0g 35
yoghurt (brand A) 100.0g 63
1 pure milk (brand A) 460ml 258
yoghurt (brand B) 200.0g 184
sweet potato 300.0g 267
cucumber 130.0g 18
2 orange 182.0g 61
grapefruit 139.0g 44
strawberry 500.0g 150
dumpling 100g 250
watermelon 250.0g 35
3 orange 200.0g 70
grape 500.0g 185

5 Experiments and Performance Analysis

HLR-PSO is a typical PSO for generating healthy lifestyle recommendations,
and has good performance. Therefore, we applied HLR-PSO and then CS-PSO
to Friend to compare their performances in the following three aspects: the
diversity of the recommended food items, the times of iteration for finding the
global best value, and the ergodicity of algorithm.

5.1 Diversity

Tables 2 and 3 show the schemes of diet recommendation with HLR-PSO and
CS-PSO respectively.

As shown in Table 2 and 3, the schemes of diet recommendation with
CS-PSO are more reasonable than the schemes of diet recommendation with
HLR-PSO. Scheme 1, recommended with HLR-PSO, includes three types of
dairy products, and both scheme 2 and scheme 3 include three types of fruits
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Table 3 Schemes of Diet Recommendation with CS-PSO

Scheme Food Items Amount of Food Calories (Kcal)
noodle 100g 284
1 peach 200.0g 83
milk(brand B) 250.0ml 173
dumpling 100g 253
2 cherry 500.0g 200
yoghurt(brand B) 100.0ml 87
Chinese style baked roll 80g 234
3 grape 500.0g 185
milk (brand C) 200.0ml 173

Table 4 Iteration Times of HLR-PSO

HLR-PSO Times Times Times Times Times Average

1-5 34 17 12 13 26

6-10 16 12 23 9 10
11-15 22 12 10 16 10 15.1
16-20 11 10 18 9 12

Table 5 Iteration Times of CS-PSO

HLR-PSO Times Times Times Times Times Average

1-5 3 4 6 4 4

6-10 4 5 6 2 4 4.1
11-15 3 2 4 5 4
16-20 4 4 4 5 5

respectively, which are all not appropriate according to the standards of a
healthy diet. However, scheme 2 includes three types of food, such as fruit and
milk, and both scheme 1 and scheme 3 include three types of food, including
cereal, fruit and milk respectively. As a consequence, CS-PSO can ensure the
diversity of food, while HLR-PSO cannot. The reason is that CS-PSO adopts
the prior knowledge of breakfast and food preferences of users.

5.2 Iteration Times

Using HLR-PSO and CS-PSO run 20 times respectively, we record the times
of iteration when find the global best value. The results are shown in Table 4
and 5.

The comparison between two algorithms about the times of iteration is

shown as Figure 6. In Figure 6, the times of iteration of CS-PSO are far less
than HLR-PSO.
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Fig. 6 The comparison of iteration times.

Table 6 The index of each category with HLR-PSO

HLR-PSO 1 2 3 4 5 6 7 8 9 10

staple 31 30 31 30 30 30 30 30 21 15
fruits 20 30 20 30 30 30 30 30 28 28
milk 30 256 30 25 25 25 25 25 30 29

1 12 13 14 15 16 17 18 19 20
milk 29 30 25 29 30 30 30 25 30 29
staple 32 31 30 32 31 22 22 30 31 32
fruits 28 20 30 28 20 28 28 30 20 28

Table 7 The index of each category with CS-PSO

CS-PSO 1 2 3 4 5 6 7 8 9 10

staple 4 2 23 1 2 7 4 14 14 30
fruits 260 29 15 29 29 4 26 19 21 30
milk 6 9 25 29 9 27 10 24 26 25

11 12 13 14 15 16 17 18 19 20
staple 16 25 31 5 32 24 7 4 2 24
fruits 7 28 20 1 28 12 4 26 7 12
milk 27 19 30 16 29 30 27 6 30 30

5.3 Ergodicity

We chose three categories of food, including staple food, fruits and milk. The
index of staple food is between 0 and 32, fruits are between 0 and 30 and milk
is between 0 and 30. HLR-PSO and CS-PSO run 20 times respectively, and
we recorded the index of each category. The experimental results are shown
in Tables 6 and 7.

As shown in Figure 7, the schemes traversed by HLR-PSO algorithm fall
into six categories: schemes 15, 28, 29 and 21, 28, 30 appear once; schemes 22,
28, 30 appear twice; schemes 30, 30, 25 appears 8 times; schemes 31, 20, 30
appear 5 times; schemes 32, 28, 29 appear 3 times, and these schemes mainly
concentrate on the latter three types. With the analysis of Figure 7 and Table
7, the schemes traversed by CS-PSO algorithm fall into 16 types: the schemes
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of 2,29, 9 and 4, 26, 6 and 7, 4, 27 and 24, 12, 30 appear twice; other schemes
all appear only once. The high frequency schemes in Table 6 appear only once
in Table 7, in the 10th, 13th and 15th values, respectively. We can conclude
that the traversal results by HLR-PSO are relatively more concentrated and
the traversal results are relatively fewer than CS-PSO. To sum up, CS-PSO
has the better ergodicity than HLR-PSO.

6 Conclusion

Combinatorial optimization problem is a type of NP-hard problem. The tradi-
tional combinatorial optimization algorithms cannot guarantee the diversity of
the final scheme, solve the multi-objective optimization problems effectively,
or satisfy the search efficiency, etc. In order to successfully address such prob-
lems and further improve the performance of PSO, we have introduced a novel
approach in solving combinatorial optimization problems, namely CS-PSO.
Furthermore, we have discussed its use as part of the diet recommendation
system Friend. The experimental results show that CS-PSO has the better
diversity, ergodicity and efficiency than HLR-PSO. In addition, CS-PSO can
not only be used in diet recommendation, but also be used in product design,
exercise programming, travel planning, etc. However, CS-PSO only considers
the combination of the overall scheme, without considering the logical struc-
ture of combination.

In future research, we are aiming to integrate the automated construction
mechanism of logical structure with combinatorial optimization problems. In
particular, this approach will further enhance the performance and accuracy
of the method discussed in this article, which is already supported by initial
evaluations.
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