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Abstract

Online Social Media platforms, such as Facebook and Twitter, enable all
users, independently of their characteristics, to freely generate and consume
huge amounts of data. While this data is being exploited by individuals and
organisations to gain competitive advantage, a substantial amount of data is
being generated by spam or fake users. One in every 200 social media mes-
sages and one in every 21 tweets is estimated to be spam. The rapid growth
in the volume of global spam is expected to compromise research works that
use social media data, thereby questioning data credibility. Motivated by the
need to identify and filter out spam contents in social media data, this study
presents a novel approach for distinguishing spam vs. non-spam social media
posts and offers more insight into the behaviour of spam users on Twitter.
The approach proposes an optimised set of features independent of historical
tweets, which are only available for a short time on Twitter. We take into
account features related to the users of Twitter, their accounts and their
pairwise engagement with each other. We experimentally demonstrate the
efficacy and robustness of our approach and compare it to a typical feature
set for spam detection in the literature, achieving a significant improvement
on performance. In contrast to prior research findings, we observe that an
average automated spam account posted at least 12 tweets per day at well
defined periods. Our method is suitable for real-time deployment in a social
media data collection pipeline as an initial preprocessing strategy to improve
the validity of research data.
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1. Introduction

Online social media is one of the defining phenomena in this technology-
driven era. Platforms, such as Facebook and Twitter, are instrumental in
enabling global connectivity. 2.46 billion users are estimated to be now
connected and by the year 2020 one-third of the global population will be
connected[1]. Users of these platforms freely generate and consume informa-
tion leading to unprecedented amounts of data. Several domains have already
recognised the crucial role of social media analysis in improving productivity
and gaining competitive advantage. Information derived from social media
has been utilised in health-care to support effective service delivery [2, 3],
in sport to engage with fans [4], in the entertainment industry to comple-
ment intuition and experience in business decisions [5] and in politics to
track election processes, promote wider engagement with supporters [6] and
predict poll outcomes. However, alongside the benefits, the rapid increase
in social media spam contents questions the credibility of research based on
analysing this data. A report by Nexgate [7] estimates that on average one
spam post occurs in every 200 social media posts and a more recent study
reports that approximately 15% of active Twitter users are automated bots
[8]. The growing volume of spam posts and the use of autonomous accounts
(social bots) to generate posts raises many concerns about the credibility and
representativeness of the data for research.

In this study, we focus on Twitter and we propose a novel, effective
approach to detect and filter unwanted tweets, complementing earlier ap-
proaches in this direction [8, 9, 10, 11]. Previous studies rely on historical
features of tweets that are often unavailable on Twitter after a short pe-
riod of time, hence not suitable for real-time use. Our approach utilises an
optimised set of readily available features, independent of historical textual
features on Twitter. The employed features are categorised as related to the
Twitter account, the user or referring to the pairwise engagement between
users. A number of machine learning models have been trained. Recursive
feature elimination has been employed in order to ascertain the robustness
and the discriminative power of each feature. In comparison to an earlier
study [9], the proposed features exhibit stronger discriminative power with
more consistent performance across the different learning models. Spam
posting users exhibit some evasive tactics, such as posting on average of 4
tweets per day, and tricks to balance the follower-followee relationship [9].
Our analysis shows that an average automated spam posting account posts
at least 12 tweets per day within well-defined activity periods. The activity
pattern resembles the staircase function exhibiting surges of intermittent ac-
tivities. Our study contributes (a) a new set of lightweight features suitable
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for real-time detection of spammers on Twitter and (b) an additional dataset
source1 offering an insight into the behaviour of spam users on Twitter to
support further studies.

The paper is structured as follows: Section 2 offers a high-level overview
of spamming on social media and Section 3 presents a survey of the relevant
literature. The Dataset and the feature selection process are presented in
Sections 4 and 5, respectively. Section 6 presents the experimental results
and Section 7 discusses relevant findings. Finally, Section 8 concludes this
work and suggests some directions for further future research.

2. Online social media spamming

Online spamming activities come in different forms such as malware dis-
semination, posting of commercial URLs, fake news or abusive contents,
automated generation of large volume of contents [8] and following or men-
tioning random users [9]. Another form of online spamming is the growing
use of machine learning models to generate fake reviews on products and
services [12] and the use of social bots to influence the opinion of users [13].
The volume of global spam is growing tremendously, with an estimated rate
of 355% in 2013 [7]. Specifically on Twitter, for every 21 tweets, one is spam
and about 15% of active users are autonomous agents, i.e. social bots [8].
The growth rate of spam volume can be attributed to the lack of physical
contact between the communicating parties. This makes it difficult to ascer-
tain the actual identity of the user and the legitimacy of the contents being
posted. Evidently, utilising data directly from social media platforms with-
out effective filtering may mislead the analysis and lead to wrong conclusions
due to unrepresentative data. Numerous sophisticated approaches have been
developed in this direction and are reviewed in Section 3. However, at the
same time, spammers evolve rapidly to evade detection systems. As a result,
some approaches may be rendered obsolete and ineffective in responding to
the new tricks introduced by the spammers.

3. Literature Review

Spam entails any form of activity that causes harm or disrupts other
online users. The increasing amount of spam tweets can be attributed to hu-
mans’ inclination to spread misleading information, even if such information
originated from unreliable sources, such as a social bot account. Recently,

1We are not able to provide the fully-hydrated tweets, i.e. accompanied with full details,
due to sharing restrictions but we provide the relevant IDs and computed features.
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Vosoughi et al. [14] discover that both genuine and false news spread at equal
rate. False news on Twitter spread rapidly. Social bots are deployed to ac-
celerate the process and human users further amplify the content. To detect
spam tweets, numerous detection systems have been proposed, using various
techniques that are reviewed in this section.

The pioneering work of [15] on spam detection utilised directed graph
models to analyse follower – friend relationships on Twitter and define fea-
ture sets for effective spam detection. In broad context, approaches for spam
detection can usually be classified under the following categories: social graph
analysis [16, 17, 18], text analysis and activity patterns [19], analysis of user
profile meta-data, URL usage and the effect of URL obfuscation [20, 21, 22],
analysis of interaction behaviour [23, 8, 9], and URL blacklisting and its effect
[24].

Recently, in November 2017, Twitter increased the maximum number of
characters in a tweet for most users, after just over a month of testing [25].
Up to that time, users were limited to 140 characters per tweet thereby mak-
ing URLs and URL shortening services widespread. Thomas [20] and Lee et
al. [21] analysed streams of URLs used by spam users and studied how spam-
mers exploit URLs obfuscation to redirect users to malicious sites. Grier et
al. [24] analysed a large number of distinct URLs pointing to blacklisted sites
due to their involvement in scam, phishing and malware activities. Although
the approach is effective, it is often slow and fails to detect URLs that point to
malicious sites but have not been blacklisted previously. Gao [19] also studied
URL usage on Facebook to detect spamming activity and observed that this
form of spamming is mostly associated with compromised accounts rather
than accounts created solely for spam activity. Benevenuto [22] studied the
statistical properties of user accounts and how URL shortening services affect
spam detection mechanisms. However, the universal use of URLs and URL
shortening by the vast majority of Twitter users makes it difficult to directly
identify potentially nefarious links on a large scale. In general, the use of
URLs relies on historical information, limiting the possibilities for real-time
detection.

Danezis and Mittal [18] utilised a social network model to infer legitimate
user accounts that are being controlled by an adversary. Lee et al. [9] cre-
ated social honeypot accounts mimicking naive Twitter users to entice spam
posting users. Users who fall prey by engaging with these accounts are as-
sumed to be in violation of usage policy. Users identified using this method
were analysed to distinguish different user types focusing on link payloads
and features that can capture the dynamics of follower-following networks of
users. Varol et al. [8] employed many features related to users, content and
the network to develop a system for social bot account detection.
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Sedhai and Sun [26] analyse the distribution of spammy words, i.e. terms
with higher probability of occurrence in spam than in non-spam tweets, in
tweets to detect spam. Chen et al. [27] provides an in depth analysis of decep-
tive words used by spammers on Twitter. The work of Chao and Chen [28]
is motivated by Twitter Spam Drift, i.e. the property of statistical features
of spam tweets to change over time. Twitter Spam Drift is caused because
spammers continuously adopt and abolish various evasive tricks. Features
related to this phenomenon were utilised in training machine learning clas-
sifiers. Li and Liu [29] analysed how the effect of unbalance datasets can be
mitigated in detection tasks.

Standard machine learning methods are sometimes considered as inad-
equate in capturing the variability of spamming behaviour. Wu et al. [30]
utilised a deep learning technique based on Word2Vec [31] to capture the
variation of spam-related challenges. While it is essential to allow detection
models to continuously learn features strong enough to distinguish spam from
non-spam, methods that solely rely on textual information are be inadequate
to draw the distinction between a habitual spam posting account and a non-
spam posting account. Hand-crafted features related to the account and the
user need to be considered. In this study, a set of hand-crafted features are
leveraged in tandem with features learn by deep neural networks. Features
studied by humans and encoded to classifiers can achieve better performance
and low false positive rates [32].

The use of a large number of features introduces extra overheads to the
detection system, some of which may be unavailable for real-time use. Sub-
rahmanian et al. [13] offer insights into techniques utilised in identifying
influence bots, i.e. autonomous entities determined to influence discussions
on Twitter. Influence bots comprise a category of social bot accounts that
seek to assert influence on topical or new discussions thereby generating un-
representative or fake data.

The surveyed studies on spam detection largely rely on either histori-
cal tweets of a user to extract features which contribute to an extra over-
head for the detection system [33] or limited features learnt by unsupervised
techniques. Our proposed approach relies on readily available features in
real-time for better performance and wider applicability.

4. Dataset

This section discusses the collection and validation of datasets utilised in
our experiments: Honeypot, the automatically annotated spam-posts detec-
tion dataset (SPDautomated) and the manually annotated spam-posts detection
dataset (SPDmanual). Table 1 presents statistics about these datasets. The
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Dataset
Size of Size of

Class Collection Verified?Original Preprocessed
Data Datasets

Honeypot 19,297 19,276 Legitimate Automated No
Honeypot 23,869 22,223 Polluter Automated No

SPDautomated 10,318 8,515 Legitimate Automated Yes
SPDautomated 25,568 9,831 Spam Automated No

SPDmanual 2,000 1,300 Legitimate Manual Yes
SPDmanual 2,000 700 Spam Manual No

Table 1: Summary of datasets: The size of original data refers to data collected before some
preliminary preprocessing steps such as discarding non-English tweets and duplicates.

Honeypot dataset [9] is publicly available and useful for studying spam ac-
tivity on Twitter. It was utilised both as a dataset per se and for collecting
the SPD datasets using keywords. Keywords play a crucial role in retriev-
ing specific documents from large corpora [34] and this study speculates that
keywords extracted from the Honeypot dataset can be used in retrieving large
quantities of similar data.

In Table 1, Legitimate refers to data from genuine users whose accounts
have been verified by Twitter. A verified account is certified by Twitter to be
genuine and such information is available from the meta-data section of the
tweets. In contrast to the randomised approaches utilised in [9] to ascertain
user legitimacy on Twitter, we used accounts verified by Twitter in building
the legitimate part of the SPD datasets to avoid the potential risk of a high
false positive rate.

SPDmanual is a manually annotated dataset created to supplement evalu-
ation. It contains tweets randomly selected from the full set of tweets that
have been downloaded between February, 2017 and June, 2017 via the tra-
ditional Twitter API2 using relevant keywords as query terms. It consists of
1,700 tweets of legitimate users and 300 tweets of spam users.

For our analysis, we took a sample of 2000 accounts for manual anno-
tation resulting in the disproportionate ratio of 700:1300 (spam:non-spam).
Unbalanced datasets often affect the performance of detection systems [29],
including ours. To mitigate that, we applied the SMOTE resampling tech-
nique [36] to balance the data by upscaling the minority class. Addition-
ally, we further query the accounts of spam users to retrieve more spam
tweets. This technique was used before training Word2Vec. The cost and
labour intensiveness of annotations as well as the general unbalanced ratio
of spam/non-spam on Twitter contributes to this disproportionate ratio in

2 The dedicated channel provided by Twitter to enable access to public datasets [35].
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Figure 1: Collection and validation of the spam part of the SPDautomated dataset from
Twitter

SPDmanual.
SPDautomated contains tweets that have been collected between February,

2017 and June, 2017, and have been automatically marked as legitimate or
spam. Tweets posted by users whose accounts have been verified as Legiti-
mate by Twitter were marked as legitimate. Tweets that contained at least
two of the most representative keywords in the Polluter part of the HoneyPot
dataset were marked as spam.

Keywords, both for querying Twitter and validating spam, are obtained
by applying Latent Semantic Analysis (LSA) on the Honeypot dataset [37].
LSA is useful in capturing the semantics and relevance of terms to a document
[38]. Prevalent keywords from LSA concepts include free, new, lots, win,
follow, trade, good, great, make, create, twitter, followers, check,gain, buy,
account, get, making, online, want. See Table A.2 for full list. A block
diagram of the collection and validation process is shown in Figure 1. Table
2 shows some example tweets that satisfy this criterion.

4.1. Validation of SPDautomated

Labelling data in SPDautomated as spam is based on the hypothesis that
spam users are more likely to use at least two of the terms obtained via
LSA on the part of the Honeypot dataset that is known to be spam [9]. To
validate this, we compute and compare in the legitimate and the spam part
of SPDautomated:

• the distribution of the co-occurring keywords

• lexical richness and lexical density

7



Id Tweet

T1
RT @user: Retweet to win up to 121+ followers must be following
me

T2 Retweet this for 81+ free follows

T3
Retweet for 125 free follows ’\n’Retweet and Fav this if you have
my post notifications on! For 125 free followers

T4 Watch and like this video for free 80 followers url

T5 Retweet to win up to 130+ free followers ’ ’@user

T6 RT @user: Retweet this to gain followers faster

T7 Follow everyone who FAV this

T8
@user @user @user @user @user @user follow everyone who likes this

#SolarEclipse2017 \

Table 2: Examples of collocational bigrams from the spam part of SPDautomated. Keywords
returned by LSA on the Honeypot dataset are shown in bold face. Actual users mention
were replaced with the ‘user’ placeholder to preserve anonymity.

N-gram proportions
Dataset bigrams trigrams four-grams

Honeypotspam
B1: 1.26× 10−3 T1: 1.83× 10−3 F1: 4.40× 10−4

B2: 3.51× 10−4 T2: 0.0 F2: 0.0

Honeypotnon-spam
B1: 4.07× 10−4 T1: 2.50× 10−4 F1: : 0.0
B2: 3.3× 10−3 T2: 0.0 F2: 0.0

SPDspam
B1: 6.04× 10−2 T1: 1.05× 10−2 F1: 6.42× 10−3

B2: 2.21× 10−2 T2: 2.87× 10−2 F2: 4.74× 10−3

SPDnon-spam
B1: 2.34× 10−7 T1: 0.0 F1: 0.0

B2: 0.0 T2: 0.0 F2: 0.0

Table 3: Relative frequencies of n-grams that consist of some spammy words in the dataset;
in particular the n-grams B1, B2, T1, T2, F1 and F2, that are shown in bold face in table
A.1.

• the distributions of user mentions and URLs

Table 4 shows the results.

4.1.1. Distribution of co-occurring keywords

Spammers heavily leverage certain deceptive words to lure users [27].
Words normally preceded by free, follow and gain have high probability of
occurrence in spam tweets [26].

In this study, we aim to capture important n-grams used by spammers
by leveraging a public spam dataset. To select the best n-grams as well as
the number of co-occurring terms sufficient for identifying spam tweets, we
first apply Latent Semantic Analysis (LSA) as a decomposition technique
to discover the most representative keywords in the corpus and compared
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Data
% Name % digits % containing % LexRich % LexRich

Similarity in names spam bigrams unfiltered filtered
Legitimate 82.59 14.07 1.05 97.43 86.74

Spam 26.27 88.84 89.51 90.94 49.46

Table 4: Percentage distributions of relevant metrics computed in the two parts of
SPDautomated, i.e. legitimate and spam

with a list of known spammy words3. Based on the list of spammy words,
we compute the relative frequencies of various spammy n-grams (bigrams,
trigrams and four-grams) in the corpus. Table 3 shows the relative frequencies
of spammy n-grams in various datasets. Figure A.3 shows an example of
common spammy n-grams. In table 3 we observe that bigrams have higher
relative frequencies in spam datasets and the individual terms that they
consist of occur in the spammy list, in table A.1. Accordingly, a tweet is
highly probable to be a spam if it contains at least bigrams of spammy
words and has low lexical richness.

We observe in Table 4 that only 1.05% of the tweets in the legitimate
part of SPDautomated contain two or more keywords, extracted using LSA
from the Polluter part of the HoneyPot dataset. In contrast, more than
89.5% of the tweets in the spam part of SPDautomated contain keyword pairs.
This distribution is a strong indicator of a probable spam tweet and also
minimises the risk of labelling legitimate users as spammers. Table 2 shows
examples of frequent co-occurring keywords sampled from SPDautomated.

4.1.2. Lexical richness and density

In quantitative linguistics, lexical richness measures the wealth of vocab-
ulary in a given text [39]. Basic measures, such as Type Token Ratio (TTR)
and Mean Word Frequency, are utilised to assess the quality of lexicons in
spam and non-spam corpora. We hypothesise that spam users will have low
lexical diversity and sophistication compared to genuine users. Legitimate
users are expected to use rich and diverse lexicons in tweets depending on
the discussion topic. In contrast, spam users focus on specific targets such
as promoting a certain product or marketing to increase the number of their
followers. Users engaging with this behaviour are highly likely to recycle
specific sets of similar words.

Type-token ratio (TTR) measures the richness of a lexicon in a document
[40]. It is useful in understanding how distinct words are utilised in the
legitimate and the spam part of SPDautomated. For a dataset D, TTR can be

3Compiled by [26] and shown in Table A.1, in the Appendix.
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computed as follows:

TTR =
unique tokens in D

tokens in D
(1)

We also compute lexical density (LD) [40] as follows:

LD =
words in D excluding stopwords

tokens in D
(2)

Table 4 shows the result of computing these metrics in both datasets.
However, lexical richness is insufficient for the purpose, because it does

not capture term semantics [41]. Some spammy words are not exclusive to
spammers,as non-spam users may also use them in different context. To cap-
ture the semantics of words in spam and non-spam datasets, we experimented
with word embeddings as classification features. Table 10 shows evaluation
results of various classifiers trained on word embedding features and features
without word embeddings and tested on SPDautomated. Table A.3 summarises
the datasets used in training our Word2Vec model [31].

4.1.3. Users mention

Random mentioning of users [42] is a common tactic employed by spam-
mers in an effort to expand the visibility or their network of followers [9, 23].
In Table 4, lexical richness, i.e. %LexRich (unfiltered), in the spam set is
marginally higher than expected. Noting the high proportion of user men-
tions in spam data, lexical richness (% LexRich (filtered)) or lexical density is
computed without considering the user mentions and URLs in both datasets.
The computation in the spam dataset led to a very low score suggesting that
the large number of user mentions and URLs are responsible for the rela-
tively high TTR score in the spam dataset.

TTR in the legitimate dataset is not affected by filtering out user men-
tions and URLs and is indicative of the richness and diversity of the lexicon
used by genuine users. The low TTR score in the spam dataset indicates
that the same words are being used repetitively usually not really matching
the discussion topic. Table 4 also shows metrics related to naming conven-
tions by computing the degree of similarity between the username and the
screenname of each user and the proportion of digits in their names. This
topic is discussed further in Section 5.

5. Features

The Twitter platform facilitates global connections and interactions of
diverse users [43]. Figure 2 presents an overview of the platform and its
relevant attributes that enable users to connect and form the basis of our
feature extraction.
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Figure 2: An overview of Twitter: three different categories of attributes that support
global interconnectivity of users are shown. The features utilised in this study are derived
from these categories directly or indirectly.

5.1. Accessibility, dynamism and categorisations of features

Tweets are available only for a short time, approximately seven days,
after being posted. Many real time spam detection systems that rely on
historical features from past tweets, are affected by this constraint and may
be practically less effective. Readily available, dynamic features offer an
enhanced opportunity to distinguish spam from non-spam tweets in real-
time. To leverage this potential, features are categorised as follows:

• User Profile Features (UPF) include information about the user, such
as their user name, screen name, location and description

• Account Information Features (AIF) consist of information such as ac-
count creation time (account age) and account verification flag (verified
or not verified)

• Pairwise engagement features subcategorised into:

– Engage-with Features (EwF) include features that describe user
activities on Twitter and users can influence or choose how to al-
ter their values. Features under this group include friends count,
statuses count, tweet type, tweet creation time, tweet creation fre-
quency, etc.
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– Engaged-by Features (EbF) are similar to features in the EwF
group . The main difference is that features under this group
cannot be influenced by users directly. For instance, a user re-
lies on other users to increase their favourites count or to attract
more followers. Features in this group include followers count,
favourites count, number of retweet (RT), etc.

Furthermore, features can be classified as basic features or derived fea-
tures. The aforementioned features, i.e. under UPF, AIF, EwF and EbF,
are basic features, whereas derived features are computed using two or more
basic features or are based on further analysis, e.g. sentiment analysis or
entropy computation on textual data. Features can also be characterised as
static or dynamic. Static features cannot be changed once the account is cre-
ated e.g. user ID and account creation time, whereas dynamic features keep
changing depending on the user’s level of engagements on Twitter e.g. sta-
tuses count. All features and their properties are shown in Table 5.

5.2. Feature selection

The early work of [43] categorises features for Twitter-based study into
content-based, network-based and Twitter specific memes. These categorisa-
tions are further expanded in 2 and were utilised directly or indirectly in
previous related studies [15, 20, 21, 22, 8]. Statistical properties of tweet
metadata in relation to user, accounts and URLs usage have been effective
in spam detection systems [22]. Based on this categorisation, basic features
have been analysed for various Twitter-related tasks. For instance, basic
features on Twitter have been analysed to detect simple social bots accounts
which lack or repeat basic account information such screen names, profile
picture [23]. Retweets, user mentions and low reciprocity of friendship [8] or
the dynamism of follower-following networks overtime [9] have also been in-
vestigated. The sophistication level of automated accounts on Twitter varies
from random following and re-tweeting to advanced social bots that actually
generate content. Studies that focus on the detection of such accounts rely
on basic features on Twitter to define complex ones [13]. Varol et al. [8] de-
veloped a detection framework by leveraging numerous features. Our study
takes a similar direction by defining a novel set of additional features derived
from the basic ones, that have been discussed and exploited in many studies
concerning Twitter. The choice of features for experimentation is informed
by insights gained from a series of exploratory analysis to understand the
distribution of textual features, the composition of data, and the dynamism
of features, such as statuses count, friends count, followers count, favourites
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count, naming conventions and tweeting patterns. Figures A.1 and A.2 in
the Appendix present further exploratory results.

Account age is useful in capturing the frequency of user activity. From
our analysis, accounts with very high statuses and friends count but low
favourites count and followers count at young age are likely to be automated
spam posting accounts. For example, Figure 3 shows huge amounts of content
generated within short period. We utilised these observations in deriving
features, such as Activeness, Interestingness and Followership, as shown in
Table 5.

Naming conventions: The Username and screenname of a Twitter user
usually exhibit a high degree of similarity. Normally, screennames of legiti-
mate users contain segments of the username, are not very lengthy and rarely
begin with a digit. In some cases, usernames of legitimate users contain a
reasonably small number of digits in the middle or at the end. In spam ac-
counts, the mix of letters, digits, special characters and unusual symbols is
much more widespread. Often, names begin with digits or email addresses
and, as shown in Table 4, there is high discrepancy between usernames and
the corresponding screenname. Features, such as NameSim and NamesRatio
in 5, are inspired by this analysis. Other static features in the metadata of
a user account on Twitter, such as the Language and Location fields, may
be useful to some extent for identifying spam accounts, due to the fact that
most of these fields are either vacant or populated with meaningless content
for spam users. Genuine users often report a real location name, but spam
posting accounts often return irrelevant content or lengthy and unintelligible
sequences of characters or just email addresses.

Tweeting activity and posting behaviour: In an earlier study, spam posting
users have been observed to post four tweets per day on average [9]. We
observed that an automated spam posting account posts on average at least
12 tweets per day at well-defined periods. Usually, activity levels remain
constant within approximately four long-lasting periods. Figures 3 and 4
show examples of spam and legitimate user activity patterns from our June
2017 collection, respectively.

In contrast to automated spam-posting users, a legitimate user of Twit-
ter often follows random usage patterns and takes long breaks of inactivity.
Figure 4 represents the activity patterns of two different users with relatively
low traffic generation within the same period as the users in Figure 3. Table 5
shows the features proposed for prediction model training, the corresponding
feature groups and definitions.

The VerifiedAccount feature, labelled as f22, takes on binary values, ‘1’
for verified accounts or ‘0’ otherwise. These values reflect the target labels
in the user profile meta-data. The feature was used in the feature set for
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Figure 3: Example of activity patterns of spam-posting social bot accounts. All sub-figures
depict hyperactive automated users that generated very high traffic within a short period.
The activity distribution over time for most users resembles the staircase function. Some
users generate much higher traffic than other, e.g. Activity4 and Activity6 represent many
times more tweets than Activity5.

Figure 4: Example of activity patterns of two legitimate users

training classification models during our early experiments. The resulting
model overfitted the training data and, for this reason, the feature was later
removed due to its role in leaking the correct prediction into the test data
[44].

It is crucial for detection models to be able to continuously and auto-
matically learn features strong enough to distinguish spam from non-spam,
avoiding handcrafted features. Wu et al. [30] report good performance of a
spam detection system that learns suitable features using Word2Vec. How-
ever, such methods rely on textual information, only. Social media, including
Twitter, offer a wealth of information other than the textual content that are
important to draw the distinction between a habitual spam posting account
and a non-spam posting account. To improve the classification, we define
and experiment with a set of handcrafted features, including features about
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Id Features Groups Status Description/Definition

f1 AccountAge AIF static days since account creation
to date of collection

f2 FollowersCount EbF dynamic in user profile meta-data

f3 FriendsCount EwF dynamic in user profile meta-data

f4 StatusesCount EwF dynamic in user profile meta-data

f5 DigitsCountInName UPF static number of digits in screen
name

f6 TweetLen EwF dynamic number of characters in
tweet

f7 UserNameLen UPF static number of characters in user
name

f8 ScreenNameLen UPF static number of characters in
screen name

f9,10,11,12

Metric entropy for all
textual features: tweet,
user profile description,
user name and screen
name, respectively

UPF dynamic

to measure randomness in

text.
H(x)

|x|
: where |x| is

the length of a string, x, and
H(x) is the Shannon entropy

of text:
∑

i=1..k pi log2 pi
|x|

f13 URIsRatio EwF dynamic |characters in URLs|
|tweet length|

f14 MentionsRatio EwF dynamic |characters in user mentions|
|tweet length|

f15 NameSim UPF static % proportion of similarity in
User name and Screen name

f16 LexRichWithUU EwF dynamic
TTR in tweets:
|token types|
|total tokens| ∗ 100

f17 Friendship EwF dynamic
FriendsCount

FollowersCount

f18 Followership EbF dynamic
FollowersCount

FriendsCount

f19 Interestingness EbF dynamic
FavouritesCount

StatusesCount

f20 Activeness EwF dynamic
StatusesCount

AccountAge

f21 LexRichWithOutUU EwF dynamic |lexical worlds|
|total number of words|∗100

f22 VerifiedAccount* AIF static in tweet metadata

f23 FavouritesCount EwF dynamic in user profile meta-data

f24 NamesRatio UPF static |screenname length|
|username length|

Table 5: Features proposed and used in the current study, the corresponding groups and
definitions. The VerifiedAccount feature, f22, was excluded form our final feature set,
because in preliminary experiments it was shown to cause overfitting.

the account and the user that posted each tweet.
Handcrafted features can be used in tandem with features learn by deep

neural networks. Our study follows similar approaches to spam detection
systems [30, 28, 26] by adopting the unsupervised paradigm. Unsupervised
methods effectively counter the effect of Twitter Spam Drift, which affect
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detection systems [30, 28], by capturing the variability of spammer behaviour
effectively. Sedhai and Sun [26] used a semi-supervised framework for spam
detection at tweet level, whereas Chao and Chen [28] used both traditional
machine learning on handcrafted features and deep learning to automatically
learn some key features. We experimented with both handcrafted features
and features learnt by deep learning models and compare their performance,
as shown in table 10. To account for full variability, the more handcrafted
features are used, the better the classification performance and the lower the
false positive rate [32]. Significant performance improvements were achieved
at different levels in our study.

6. Experimentation and results

This section discusses the experimental procedure and the results ob-
tained. All experiments are conducted using the Scikit-learn toolkit [45].

6.1. Parameter tuning and classification models

An effective classifier should be able to correctly classify previously un-
seen data by leveraging the experience gained from training on n labelled
samples, i.e. data instances and the corresponding class. The target of the
classification task at hand is to predict spam-posting users or normal legit-
imate users correctly, by accessing one of their tweets associated with user
account meta-data. Effective hyper-parameter tuning is key for significantly
improving the performance of machine learning models [46]. Thus, we tuned
the hyper-parameter values of all classification models, used in experiments
of our study, via grid search on standard 10-fold cross-validation.

6.2. Feature importance and correlation

During an initial analysis stage, a large number of features have been used
for training and some features were discarded due to their relatively low con-
tribution to the overall performance. Figures A.1 and A.2 in the appendix
provide more evidence about the feature selection process. A recursive fea-
ture elimination approach was adopted to measure the contribution of each
feature to the overall performance. The results of this process are graphically
illustrated in Figure 5.

Correlation analysis plays a crucial role in achieving optimum perfor-
mance. Features that correlate perfectly introduce redundancy and do not
add extra information into classification models [47]. We conducted univari-
ate feature analysis to understand the relevance of each feature in predicting
the target class. The results are shown in Figure 6 formatted as a heat-map
to visualise as colour intensity the correlation degree of each feature with the
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Figure 5: This figure shows the performance of features measured using recursive feature
elimination. The most informative feature is the lexical richness of tweets including user
mentions and URLs (LexRichWithUU). It contributed significantly to the overall perfor-
mance, as evidenced from the sharp drop in the figure. The complete set of the features
is provided in figures A.1 and A.2 in the appendix.

target class, i.e. AccountClass, and with other features. With the exception
of lexical richness, LexRichWithUU, and lexical density, LexRichWithOutUU,
which are derived from same root, there is no other pair of features with per-
fect correlation. Thus, the features shown in 6 comprise our feature set for all
experiments in this paper4. The main diagonal of the heatmap matrix rep-
resents perfect correlation because each feature is correlated with itself. The
column of the target (AccountClass) shows the intensity of the correlation of
each feature with the target.

6.3. Performance metrics

For evaluation, different metrics are utilised in order to avoid any type of
bias towards the majority class, especially when the dataset is imbalanced
[48]. In particular, we use the following metrics to summarise experimental
results: F-score, Precision, Recall, Accuracy, the Receiver Operating Charac-
teristics (ROC) curve and the area under the ROC curve (AUC). F-score,
the geometric mean of Precision and Recall, captures a model’s prediction
quality especially in sensitive areas, by requiring both Precision and Recall
to be high. The AUC offers a more encompassing metric, insensitive to the
imbalance between classes that sometimes provides better evaluation than

4In the preliminary stages of this study, we experimented with many more features,
mainly derived as combinations of the features in figure 6. Most of these features were
discarded due to correlating almost perfectly with others and, thus, not contributing to
the accuracy of the model.
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Figure 6: Visual representation of the univariate analysis of correlation of each feature
with the target, i.e. AccountClass and other features. Correlation magnitudes range from
1 to -1, with 1 denoting perfect positive correlation, 0 no correlation and -1 perfect negative
correlation. Features highly correlated with the target constitute the optimum features
set.

accuracy [49]. Specifically, the higher the AUC score, the larger the area
under the curve, well above the diagonal, e.g. Figure 7.

6.4. Experimental results

We conducted a series of experiments with different classification models
and assessed them using various metrics, as discussed in Section 6.3. Our first
experiment, aimed to investigate the effectiveness of the proposed features,
which we called Spam Post Detection (SPD) features, and compared the
suitability of different classification models for the task at hand. We trained
six different classification models: Maximum-Entropy (MaxEnt), Random
Forest, Extremely Randomized Trees (ExtraTrees), C-Support Vector Clas-
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Figure 7: Performance of different classification models evaluated on the SPDautomated

dataset using 10-fold cross-validation.

sification (SVC5), Gradient Boosting and Multi-layer Perceptron (MLP). We
also included additional model i.e. SVM + MLP which utilises the features
learnt by the MLP during training as input for training regime. Figure 7
shows the learning curves and corresponding AUC scores achieved by each
model on the best hyper-parameter values, as explained in Section 6.1. All
models were trained and evaluated on the SPDautomated dataset using 10-fold
cross-validation. The chart shows relative consistency in terms of perfor-
mance across the different classification models, which can be attributed to
the effectiveness of the proposed SPD features. Gradient Boosting is chosen
for subsequent use in our next experiments due to its higher performance.

Our second experiment compared the features proposed in this study,
SPD features, with the Honeypot features, proposed in Lee et al. [9]. Since
the study of Lee et al. [9] is our main baseline, we compared the two feature
sets on the Honeypot dataset and the SPDautomated dataset, using 10-fold
cross validation. The associated learning curves are shown in Figures 8 and
9, respectively. The figures show that SPD features perform better than
the Honeypot features for both datasets. The improvement is small for the
Honeypot dataset, whereas it is significant for the SPDautomated dataset

5Which is based on Support Vector Machines (SVM). SVM and SVC used interchange-
ably in this study.
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Figure 8: Learning curves of the SPD features and the Honeypot features on the Honeypot
dataset [9]. The SPD features achieve a slight improvement in performance.

It should be noted that the Honeypot dataset does not provide enough
information for computing all SPD features. As a result, the SPD features
line in Figure 8 is based on some SPD features, only. Features such as
Interestingness, Activeness, NameSim and Lexical Richness are not used in
this experiment. The lack of these features explains why the improvement
in performance is minimal.

In addition to the univariate correlation analysis of features, we investi-
gated the importance of features groups. Table 6 shows the features grouped
into three distinct groups: account, users and network features. In the addi-
tional experiment with Word2Vec, features learnt by the trained Word2Vec
model and some handcrafted features from the study are utilised, in particu-
lar lexical richness, activeness and interestingness. Tables 7, 8 and 9 present
experiment results for for Honeypot, SPDautomated and SPDmanual, respectively
on various feature groups. Best performing features in each group constitute
the optimum set of features i.e. SPDselected) for improved effectiveness and
efficiency.

Similarly, Table 10 shows the performance of various classifiers on in-
cluding or excluding Word2Vec features tested on SPDautomated. Combining
Word2Vec features and lexical richness features performs significantly bet-
ter than the Honeypot features baseline. The combination performs slightly
worse that the optimised feature set but uses a much smaller number of
features.
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Figure 9: Learning curves of the SPD features and the Honeypot features [9] on the
SPDautomated dataset. The SPD improve performance significantly.

Feature
Features

Group

Account
AccountAge DescriptionLen LocationLen LocationEntropy
DescriptionEntropy

User

UserNameLen ScreenNameLen AllRatios LexicalRichness
TweetLen URLsInTweetLen Activeness TweetEntropy
LenAll StatusesCount URLsRatio NamesRatio
PosSentiment NegSentiment OverallSent DescPosSent
DescNegSent DescSentiment UserNameEntropy
SingleHashtagInTweetLen ScreenNameEntropy

Pairwise
(Network)

Engaged with: Engaged by:
FriendsCount MentionsInTweetLen FollowersCount Interestingness
MentionsRatio HashtagsInTweetLen Followership BidirFriendship
Friendship HashtagsRatio BirdirFollowership

Optimised

AccountAge FollowersCount TweetLen TweetEntropy
Friendship StatusesCount LenAll FriendsCount
NamesRatio Interestingness NameSim Followership
Activeness LexRichWithUU DescriptionEntropy
BirdirFollowership

Table 6: All Features and respective feature sets
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Classifier Features
Accuracy AUC Precision Recall F-score

% % % (0, 1) % (0, 1) % (0, 1)

Random
Forest

Honeypot 94.70 96.19 (90, 93) (91, 94) (92, 92)
SPDSelected 94.68 96.38 (93, 91) (92, 93) (93, 92)

ExtraTrees
Honeypot 93.74 96.37 (91, 91) (92, 89) (91, 90)
SPDSelected 93.86 95.32 (89, 90) (91, 89) (90, 90)

Gradient
Boosting

Honeypot 98.53 98.55 (99, 98) (98, 99) (99, 98)
SPDSelected 98.93 98.94 (99, 99) (99, 99) (99, 99)

MaxEnt
Honeypot 83.57 83.62 (86, 81) (83, 84) (84, 83)
SPDSelected 85.99 86.21 (90, 82) (83, 89) (86, 86)

MLP
Honeypot 89.53 89.54 (91, 88) (89, 90) (90, 89)
SPDSelected 93.70 90.28 (91, 90) (92, 89) (91, 90)

SVM
Honeypot 86.26 86.29 (88, 84) (86, 87) (87, 85)
SPDSelected 88.13 88.21 (90, 86) (86, 90) (88, 88)

SVM + MLP
Features

Honeypot 87.57 87.62 (90, 85) (87, 88) (88, 87)
SPDSelected 89.08 89.09 (90, 88) (89, 89) (89, 89)

Table 7: Evaluation results of all combinations of classifiers and feature sets applied on
the Honeypot dataset. ‘(0, 1)’ denotes performance on the spam part and the legitimate
part of each dataset, respectively.

To address the imbalance in the SPDmanual dataset, we utilised the SMOTE
technique [36], which up-samples the minority class during training the clas-
sifier. We observe that the set of features proposed in this paper, SPD, per-
forms better than the Honeypot [9] on all datasets. The lightweight version
of SPD features, as computed by the feature selection process in Section 6.2,
perform better than the Honeypot feature set when applied on SPDautomated

but worse than the Honeypot feature set when applied on Honeypot and
SPDmanual. The lightweight version of SPD features consistently perform
worse than the full SPD feature set, as expected.

6.5. Error analysis

Error analysis is carried-out to investigate cases that were not classified
correctly by the classification model. In this section, we discuss the reasons
that may have led to misclassification of some representative samples, shown
in Figure 11

In the study dataset that was used to design the SPD features proposed in
this study only tweets in English were considered. As a result, some tweets in
the SPD dataset, such as tweet #1 in Table 11, were not in English and were
misclassified. This can be attributed to the fact that although the original
language field in the meta-section of some user profiles was set as English,
the actual interaction language in the tweet is not English.

As shown in Figure 5, lexical richness and density are important classifi-
cation features. The occurrence of irrelevant tokens in a tweet, which were
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Classifier Features
Accuracy AUC Precision Recall F-score

% % % (0, 1) % (0, 1) % (0, 1)

Random
Forest

Honeypot 90.71 96.28 (91, 91) (92, 89) (92, 90)
SPDAccount 80.90 85.74 (86, 61) (90, 51) (88, 56)
SPDUser 85.81 91.37 (91, 69) (91, 69) (91, 69)
SPDNetwork 92.06 96.70 (95, 83) (95, 82) (95, 82)
SPDOptimised 98.46 98.87 (99, 99) (99, 99) (99, 99)
SPD all 94.41 98.13 (96, 88) (96, 87) (96, 88)

ExtraTrees

Honeypot 90.57 96.32 (91, 91) (92, 89) (91, 90)
SPDAccount 80.53 85.85 (86, 60) (89, 54) (87, 57)
SPDUser 86.22 91.48 (89, 73) (94, 61) (91, 67)
SPDNetwork 91.99 96.51 (94, 83) (94, 81) (94, 82)
SPDOptimised 98.63 99.89 (100, 97) (97,100) (99, 98)
SPDall 93.78 98.09 (96, 87) (96, 87) (96, 87)

Gradient
Boosting

Honeypot 94.93 94.94 (96, 94) (95, 95) (95, 95)
SPDAccount 82.17 87.13 (85, 66) (93, 46) (89, 54)
SPDUser 85.74 91.82 (88, 76) (94, 57) (91, 65)
SPDNetwork 91.62 96.41 (93, 85) (96, 77) (95, 81)
SPDOptimised 98.97 99.93 (99, 98) (98, 99) (98, 99)
SPDall 93.60 97.96 (96, 88) (97, 85) (96, 87)

MaxEnt

Honeypot 84.59 84.65 (87, 82) (84, 86) (85, 84)
SPDAccount 80.93 69.45 (86, 60) (90, 48) (88, 54)
SPDUser 81.00 68.56 (85, 61) (91, 46) (88, 52)
SPDNetwork 85.37 72.35 (86, 84) (97, 48) (91, 61)
SPDOptimised 97.12 97.13 (98, 96) (97, 98) (97, 97)
SPDall 91.54 87.67 (94, 82) (94, 81) (94, 82)

MLP

Honeypot 89.34 89.40 (91, 87) (89, 90) (90, 89)
SPDAccount 81.85 74.49 (87, 63) (89, 60) (88, 62)
SPDUser 85.51 79.62 (91, 69) (91, 69) (91, 69)
SPDNetwork 91.40 86.84 (94, 83) (95, 78) (94, 81)
SPDOptimised 98.42 98.43 (99, 98) (98, 99) (98, 98)
SPDall 94.17 91.83 (96, 87) (96, 88) (96, 88)

SVM

Honeypot 86.38 86.39 (88, 85) (86, 87) (87, 86)
SPDAccount 81.22 71.50 (87, 60) (89, 54) (88, 57)
SPDUser 82.08 68.54 (85, 68) (94, 43) (89, 53)
SPDNetwork 87.33 75.12 (87, 89) (98, 52) (92, 62)
SPDOptimised 97.35 97.38 (98, 97) (97, 98) (97, 97)
SPDall 91.50 88.82 (95, 79) (94, 83) (94, 81)

SVM +
MLP
Features

Honeypot 88.21 88.23 (90, 87) (88, 89) (89, 88)
SPDAccount 80.69 69.04 (85, 60) (91, 47) (88, 53)
SPDUser 84.38 74.99 (88, 70) (92, 58) (90, 63)
SPDNetwork 90.24 83.43 (92, 85) (96, 71) (94, 77)
SPDOptimised 97.71 97.74 (99, 97) (97, 98) (98, 98)
SPDall 93.70 90.95 (96, 85) (96, 85) (96, 85)

Table 8: Evaluation results of all combinations of classifiers and feature sets applied on the
SPDautomated dataset. ‘(0, 1)’ denotes performance on the spam part and the legitimate
part of each dataset, respectively.
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Classifier Features
Accuracy AUC Precision Recall F-score

% % % (0, 1) % (0, 1) % (0, 1)

Random
Forest

Honeypot 93.03 93.11 (91, 89) (89, 90) (91, 90)
SPDAccount 77.16 79.98 (75, 77) (74, 78) (75, 76)
SPDUser 84.29 92.89 (83, 84) (84, 84) (85, 85)
SPDNetwork 95.43 99.74 (92, 94) (94, 92) (93, 95)
SPDOptimised 97.79 98.03 (94, 98) (98, 94) (97, 97)
SPDall 96.29 97.97 (93, 99) (99, 93) (96, 96)

ExtraTrees

Honeypot 99.26 99.24 (99,100) (100, 98) (99, 99)
SPDAccount 75.43 79.49 (73, 78) (78, 72) (71, 75)
SPDUser 83.54 91.86 (85, 88) (84, 90) (82, 84)
SPDNetwork 95.80 97.97 (94, 96) (97, 93) (96, 96)
SPDOptimised 97.29 99.95 (94, 98) (98, 93) (97, 97)
SPDall 97.90 98.90 (96, 99) (73, 78) (98, 98)

Gradient
Boosting

Honeypot 89.38 59.19 (35, 93) (23, 96) (27, 94)
SPDAccount 78.13 79.40 (76, 78) (78, 75) (77, 76)
SPDUser 87.39 93.45 (85, 90) (91, 84) (88, 87)
SPDNetwork 89.99 95.83 (87, 95) (96, 83) (91, 89)
SPDOptimised 96.08 99.88 (97, 99) (99, 96) (98, 97)
SPDall 93.20 98.22 (89, 98) (99, 86) (94, 93)

MaxEnt

Honeypot 72.93 73.02 (76, 70) (69, 78) (72, 74)
SPDAccount 60.82 60.82 (60, 61) (61, 61) (61, 61)
SPDUser 67.37 67.39 (77, 63) (49, 86) (60, 72)
SPDNetwork 55.01 56.09 (64, 52) (32, 80) (43, 63)
SPDOptimised 75.40 75.51 (79, 72) (70, 81) (74, 76)
SPDall 75.40 75.51 (79, 72) (70, 81) (74, 76)

MLP

Honeypot 82.58 82.43 (84, 82) (81, 80) (81, 80)
SPDAccount 69.72 69.59 (70, 69) (73, 66) (71, 68)
SPDUser 80.22 80.25 (82, 78) (77, 83) (80, 81)
SPDNetwork 62.42 62.29 (63, 62) (57, 68) (60, 65)
SPDOptimised 82.94 82.95 (85, 81) (83, 83) (84, 82)
SPDall 92.58 92.65 (89, 97) (97, 88) (93, 92)

SVM

Honeypot 73.81 73.79 (73, 74) (73, 74) (73, 74)
SPDAccount 66.01 66.79 (60, 76) (82, 51) (70, 61)
SPDUser 73.30 72.92 (80, 69) (60, 86) (68, 77)
SPDNetwork 58.84 58.36 (62, 57) (77, 40) (49, 66)
SPDOptimised 75.65 75.58 (79, 73) (69, 82) (77, 74)
SPDall 80.47 80.46 (81, 80) (81, 80) (81, 80)

SVM +
MLP
Features

Honeypot 73.98 74.13 (76, 77) (77, 75) (73, 74)
SPDAccount 63.54 63.69 (61, 67) (67, 61) (63, 64)
SPDUser 71.32 70.96 (77, 68) (58, 84) (66, 75)
SPDNetwork 59.46 59.04 (62, 58) (43, 75) (51, 66)
SPDOptimised 76.64 76.58 (79, 75) (72, 81) (75, 78)
SPDall 87.64 87.49 (85, 91) (92, 83) (89, 87)

Table 9: Evaluation results of all combinations of classifiers and feature sets applied on
the SPDmanual dataset. ‘(0, 1)’ denotes performance on the spam part and the legitimate
part of each dataset, respectively.
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Classifier Features
Accuracy AUC Precision Recall F-score

% % % (0, 1) % (0, 1) % (0, 1)

Random
Forest

SPDWord2Vec 94.95 99.05 (95, 95) (95, 95) (95, 95)
SPDOptimised 98.46 99.87 (99, 99) (99, 99) (99, 99)

ExtraTrees
SPDWord2Vec 95.47 99.34 (96, 95) (96, 95) (96, 95)
SPDOptimised 98.63 99.89 (100, 97) (97, 100) (99, 98)

Gradient
Boosting

SPDWord2Vec 95.04 99.09 (95, 95) (95 ,95) (95, 95)
SPDOptimised 98.72 99.93 (99, 98) (98, 99) (98, 99)

MaxEnt
SPDWord2Vec 89.03 89.14 (92, 86) (87, 91) (89, 89)
SPDOptimised 97.12 97.13 (98, 96) (97, 98) (97, 97)

MLP
SPDWord2Vec 94.40 94.43 (96, 93) (93, 96) (94, 94)
SPDOptimised 98.42 98.43 (99, 98) (98, 99) (98, 98)

SVM
SPDWord2Vec 89.91 90.01 (93, 87) (87, 93) (90, 90)
SPDOptimised 97.35 97.38 (98, 97) (97, 98) (97, 97)

SVM + MLP
Features

SPDWord2Vec 92.08 92.24 (96, 88) (88, 96) (92, 92)
SPDOptimised 97.71 97.74 (99, 97) (97, 98) (98, 98)

Table 10: Evaluation results of Word2Vec features in comparison with our optimised
set of features for all classifiers. The Word2Vec feature group contains features learnt
by the Word2Vec model, and some handcrafted features lexical richness, activeness and
interestingness. ‘(0, 1)’ denotes performance on the spam part and the legitimate part of
the dataset, respectively.

Id Tweet

1
gain followers @ . . . . アメリカとカナダでまっています。\n地域
社会に溶けめずにいた民が、ディナ会での出会.

2 retweet this

3 like this

4 follow like & retweet

5 follow back follow you

6 gain followers . . . ’, 68), gain followers . . . ’, this ; retweet this

Table 11: Sample tokens from misclassified tweets

regarded as unique, leads to a richer lexicon, which in turn increases the
chance of classifying the tweet as legitimate. Tweets #2-#6 in Table 11 con-
tain some irrelevant symbols, which were counted as unique, increased the
corresponding lexical score and misled the classifier. Emoticons are also a
source of confusion for the classifier, especially when computing the lexicon
of unique tokens for a tweet and its similarity to lexicons of other tweets.

7. Discussion

This section presents an additional analysis of the manual annotations in
the SPDmanual dataset, a description of the different user groups and discusses
the distribution of relevant features in the dataset.
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Figure 10: User types in the SPDmanual dataset

Figure 11: Distribution of different users in the SPDmanual dataset. Known bots are
accounts that mention the word ‘bot’ explicitly as part of their name and share some basic
features similarities with normal users such as the level of name similarity (NameSim).
Known bots in the dataset account for less than 10% of all users.

7.1. Characterising users

A thorough inspection of the tweets in the spam and legitimate parts of
the SPDmanual dataset suggests that there are two kinds of users on Twitter:
human users and social bot (autonomous entity) users. Each user type con-
sists of a legitimate (non-spam) and a spam part, as depicted in Figure 10,
with the following characteristics:

7.1.1. Legitimate users

Legitimate users interact with moderate frequency, within the reasonable
and acceptable Twitter usage policy. This user group also contains genuine
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multiple users, i.e. accounts managed by organisations or useful social bots.
Users in this group tend to show a proportionate interaction level and (active-
ness), i.e. their statuses count matches their account age and the tweets they
post are of interest to followers, hence exhibit high interestingness. Followers
of users in this group often outnumber friends, sometimes even by twice as
much. This is expected, since most users subscribe or follow an account due
to their interest in it.

The username and screenname of useful social bot accounts often contain
the word ‘bot’ as part of name, e.g. AIBigDataCloudIoTBot and Troll Bot.
In some cases, groups of screennames share the same suffix separated by
the underscore character from a description of the account. Accounts in
this group achieve relatively high interestingness levels and an almost equal
proportion of friends and followers. They also exhibit moderate similarity
between their username and screenname and use a wide variety of words and
expressions, i.e. diverse lexicons.

7.1.2. Spam-posting users

Spam-posting users are hyperactive and generate irrelevant content, po-
tentially offensive to other users and in violation of Twitter’s terms of use6.
Accounts in this group exhibit very low interestingness and disproportionate
activeness levels i.e. the statuses count does not match the account age indi-
cating that they employ flooding techniques. Friends of users in this group
usually outnumber followers. The interaction patterns of spam-posting so-
cial bot accounts are often randomised rather than well-defined, as shown in
Figure 3. There is also a high level of inconsistency in naming conventions
and a high dissimilarity between usernames and corresponding screennames.
The screenname of spam-posting social bot accounts is often unintelligible,
mostly containing digits and special characters. Spam-posting users also ex-
hibit low lexicon richness due to the high proportion of URLs, retweets, and
user mentions. Spam users generally engage in subscribing to different con-
versations on Twitter (based on hashtags) and generate tweets not related
to the topic of discussion. Figure 11 shows a summary of user groups in
Twitter, human and social bot, legitimate and spam-posting. The filtering
mechanism developed in this study was succesfully applied in the work of [50]
to detect and remove irrelevant posts from spam and automated accounts.

6Detailed in [42].
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8. Conclusion and future work

This study offers an effective method for spam detection and new insights
into the sophisticatedly evolving techniques for spamming on Twitter. The
proposed spam detection method utilised an optimised set of readily available
features. Being independent of historical tweets which are often unavailable
on Twitter makes them suitable for real-time spam detection. The efficacy
and robustness of the proposed features set is shown by testing a number
of machine learning models and on dataset collected orthogonally from the
study data. Performance is consistent across the different models and there is
significant improvement over the baseline. It was also shown that automated
spam accounts follow a well-defined pattern with surges of intermittent ac-
tivities. The proposed spam tweet detection approach can be applied in any
real-time filtering application. For example, it is applicable to data collection
pipelines to filter out irrelevant content at an early pre-processing stage to
ensure the quality and representativeness of research data. The combination
of handcrafted features and features learnt in an unsupervised manner using
word embeddings is shown to significantly improve baseline performance and
to perform comparably to the best performing feature set using a smaller
number of features.

During the analysis of the data, we observed that spam users tend to be
selective in following other users thereby forming enclaves of spammers. This
is a high-level observation that we aim to explore further in the future. Ad-
ditionally, both the two broad user groups, i.e. human users and social bot
(autonomous entity) users contain spammers, whose spamming behaviour
tends to be similar. The distinction between legitimate human users vs. le-
gitimate social bots as well as human spammers vs. social bot spammers
needs to be investigated further. Another interesting dimension for future
work is to study the effect of the recent increase in the maximum length of
tweets [25] on spamming activity. Intuitively, automated spam accounts will
face difficulties in generating lengthier tweets intelligently, thereby making
these tweets easier to identify.
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Appendix

Supplementary Figure A.1: Features and their corresponding relative importance. Impor-
tance scores sum to one and LexRichWithOutUU scores the highest.

We train the Word2Vec model on various datasets, as shown in table A.3,
to learn the semantics and relationships of the spammy words, shown in table
A.2, as used by various users. The idea of training on multiple datasets is to
understand how the terms are semantically related. We utilised the learned
features in a new experiment. Results are shown in table 10.
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Supplementary Figure A.2: The complete set of proposed features and their relative im-
portance

Common spammy words
follow, everyone, fav, ifb, retweet, this, like, you, gain, followers, risingplanet,

risegain, trickfollowhp, proximalfollow, thegainfactor, simplegain,
dogfather mgwv, gainhub, teamstallion, trapadrive, gainwithxtiandela, 1m 000 ifb,

gaintweet24, comment, want, new, gainaccount98, instant, back, followtrain

Common spammy n-grams
bigrams trigrams four-grams

follow train T1: free new followers F1: follow everyone who fav this
B1: gain follower instant follow back follow back follow you

free followers T2: gain new followers F2: follow everyone who likes this
B2: follow everyone please fav this retweet for more followers

Supplementary Table A.1: Examples of spammy words and common n-grams in the
SPDautomated dataset. The distribution of N-grams in bold face in the datasets is re-
ported in Table 3. Italicised words are included in the stop-list and are not counted
towards N-gram length.
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Study Spammy terms
Sedhai and Sun [26] Followme, follow, follow back, back, ipad ipadgames,

please follow, please, followers, retweet, tfbjp,
teamfollowback, ipad, follow me, collected,
followback, gameinsight

This study follow, everyone, fav, ifb, retweet, this, like, you,
gain, followers, risingplanet risegain, trickfollowhp,
proximalfollow, thegainfactor, simplegain,
dogfather mgwv, gainhub, teamstallion,trapadrive,
gainwithxtiandela, 1m 000 ifb, gaintweet24,
comment, want, new , this

Supplementary Table A.2: Lists of spammy words.

Supplementary Figure A.3: An example of cummulative frequency distribution of some
common spammy n-grams in SPDautomated dataset
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Dataset Description
Honeypotspam Spam tweets made publicly available by Honeypot [9]
Honeypotnon-spam Legitimate users collected by Honeypot [9]
SPDspam Spam datasets collected for this study
SPDnon-spam Non-spam dataset from verified genuine users
Pretrained W2V A pre-trained Word2Vec model1 on a corpus of 15 million tweets [51]

Supplementary Table A.3: Summary of datasets utilised for Word2Vec model training
model for feature extraction.
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