8 research outputs found

    Quantum Calculations of VX Ammonolysis and Hydrolysis Pathways via Hydrated Lithium Nitride

    No full text
    Recently, lithium nitride (Li3N) has been proposed as a chemical warfare agent (CWA) neutralization reagent for its ability to produce nucleophilic ammonia molecules and hydroxide ions in aqueous solution. Quantum chemical calculations can provide insight into the Li3N neutralization process that has been studied experimentally. Here, we calculate reaction-free energies associated with the Li3N-based neutralization of the CWA VX using quantum chemical density functional theory and ab initio methods. We find that alkaline hydrolysis is more favorable to either ammonolysis or neutral hydrolysis for initial P-S and P-O bond cleavages. Reaction-free energies of subsequent reactions are calculated to determine the full reaction pathway. Notably, products predicted from favorable reactions have been identified in previous experiments

    Ultrahydrophobic Textiles Using Nanoparticles: Lotus Approach

    No full text
    It is well established that the water wettability of ma-terials is governed by both the chemical composition and the geometrical microstructure of the surface.1 Traditional textile wet processing treatments do in-deed rely fundamentally upon complete wetting out of a textile structure to achieve satisfactory perform-ance.2 However, the complexities introduced through the heterogeneous nature of the fiber surfaces, the nature of the fiber composition and the actual con-struction of the textile material create difficulties in attempting to predict the exact wettability of a par-ticular textile material. For many applications the ability of a finished fabric to exhibit water repellency (in other words low wettability) is essential2 and po-tential applications of highly water repellent textile materials include rainwear, upholstery, protective clothing, sportswear, and automobile interior fabrics. Recent research indicates that such applications may benefit from a new generation of water repellent ma-terials that make use of the “lotus effect” to provide ultrahydrophobic textile materials.3,4 Ultrahydropho-bic surfaces are typically termed as the surfaces that show a water contact angle greater than 150°C with very low contact angle hysteresis.4 In the case of tex-tile materials, the level of hydrophobicity is often determined by measuring the static water contact angle only, since it is difficult to measure the contact angle hysteresis on a textile fabric because of the high levels of roughness inherent in textile structures

    Identity in Economics: A Review

    No full text

    1994 Annual Selected Bibliography: Asian American Studies and the Crisis of Practice

    No full text
    corecore