53,774 research outputs found

    Bilateral Differentiation of Color and Morphology in the Larval and Pupal Stages of \u3ci\u3ePapilio Glaucus\u3c/i\u3e (Lepidoptera: Papilionidae)

    Get PDF
    A sharply delineated, bilateral differentiation of color patterns and morphology were observed in a final (5th) instar larva of a subspecies backcross of a female Papilio glaucus glaucus with a hybrid male (P. g. glaucus x P. g. canadensis). Color and morphological differences were detectable in the pupa as well. In addition, a bilateral size difference was evident in both the pupa and the resulting adult butterfly. Such observations within a single living individual attest to the bilateral independence (also evident in perfect gynandromorphs) and general flexibility of the developmental control in this species of Lepidoptera

    Learning causal models that make correct manipulation predictions with time series data

    Get PDF
    One of the fundamental purposes of causal models is using them to predict the effects of manipulating various components of a system. It has been argued by Dash (2005, 2003) that the Do operator will fail when applied to an equilibrium model, unless the underlying dynamic system obeys what he calls Equilibration-Manipulation Commutability. Unfortunately, this fact renders most existing causal discovery algorithms unreliable for reasoning about manipulations. Motivated by this caveat, in this paper we present a novel approach to causal discovery of dynamic models from time series. The approach uses a representation of dynamic causal models motivated by Iwasaki and Simon (1994), which asserts that all “causation across time" occurs because a variable’s derivative has been affected instantaneously. We present an algorithm that exploits this representation within a constraint-based learning framework by numerically calculating derivatives and learning instantaneous relationships. We argue that due to numerical errors in higher order derivatives, care must be taken when learning causal structure, but we show that the Iwasaki-Simon representation reduces the search space considerably, allowing us to forego calculating many high-order derivatives. In order for our algorithm to discover the dynamic model, it is necessary that the time-scale of the data is much finer than any temporal process of the system. Finally, we show that our approach can correctly recover the structure of a fairly complex dynamic system, and can predict the effect of manipulations accurately when a manipulation does not cause an instability. To our knowledge, this is the first causal discovery algorithm that has demonstrated that it can correctly predict the effects of manipulations for a system that does not obey the EMC condition

    A random wave model for the Aharonov-Bohm effect

    Get PDF
    We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) are responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it at half-integer flux. Other features of the Aharonov-Bohm vortex distribution are also explored.Comment: 16 pages, 5 figure

    Psychology ethics down under: A survey of student subject pools in Australia

    Get PDF
    A survey of the 37 psychology departments offering courses accredited by the Australian Psychological Society yielded a 92% response rate. Sixty-eight percent of departments employed students as research subjects, with larger departments being more likely to do so. Most of these departments drew their student subject pools from introductory courses. Student research participation was strictly voluntary in 57% of these departments, whereas 43% of the departments have failed to comply with normally accepted ethical standards. It is of great concern that institutional ethics committees apparently continue to condone, or fail to act against, unethical research practices. Although these committees have a duty of care to all subjects, the final responsibility for conducting research in an ethical manner lies with the individual researcher

    Survival of fossils under extreme shocks induced by hypervelocity impacts

    Get PDF
    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34?km?s?1, corresponding to mean peak pressures of 0.2–19?GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon

    Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator

    Get PDF
    The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process
    • …
    corecore