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Abstract
One of the fundamental purposes of causal models is using them to predict the effects of manip-
ulating various components of a system. It has been argued by Dash (2005, 2003) that the Do
operator will fail when applied to an equilibrium model, unless the underlying dynamic system
obeys what he calls Equilibration-Manipulation Commutability. Unfortunately, this fact ren-
ders most existing causal discovery algorithms unreliable for reasoning about manipulations.
Motivated by this caveat, in this paper we present a novel approach to causal discovery of dy-
namic models from time series. The approach uses a representation of dynamic causal models
motivated by Iwasaki and Simon (1994), which asserts that all “causation across time" occurs
because a variable’s derivative has been affected instantaneously. We present an algorithm that
exploits this representation within a constraint-based learning framework by numerically cal-
culating derivatives and learning instantaneous relationships. We argue that due to numerical
errors in higher order derivatives, care must be taken when learning causal structure, but we
show that the Iwasaki-Simon representation reduces the search space considerably, allowing us
to forego calculating many high-order derivatives. In order for our algorithm to discover the
dynamic model, it is necessary that the time-scale of the data is much finer than any temporal
process of the system. Finally, we show that our approach can correctly recover the structure of
a fairly complex dynamic system, and can predict the effect of manipulations accurately when
a manipulation does not cause an instability. To our knowledge, this is the first causal discovery
algorithm that has demonstrated that it can correctly predict the effects of manipulations for a
system that does not obey the EMC condition.
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1. Introduction
One of the fundamental purposes of causal models is the prediction of the effects of manipu-
lating various components of a system. It has been argued by Dash (2005, 2003) that the Do
operator will fail when applied to an equilibrium model unless the underlying dynamic system
obeys what he calls Equilibration-Manipulation Commutability (EMC), a principle which is
illustrated by the graph in Figure 1. In this figure, a dynamic system S, represented by a set
of differential equations, is depicted on the upper-left. S has one or more equilibrium points
such that, under the initial exogenous conditions, the equilibrium model S̃, represented by a set
of equilibrium equations, will be obtained after sufficient time has passed. There are thus two
approaches for making predictions of manipulations on S on time-scales sufficiently long for
the equilibrations to occur. One could start with S̃ and apply the Do operator to predict manip-
ulations. This is path A in Figure 1, and is the approach taken whenever a causal model is built
from data drawn from a system in equilibrium. Alternatively, in path B the manipulations are
performed on the original dynamic system which is then allowed to equilibrate; this is the path
that the actual system takes. The EMC property is satisfied if and only if path A and path B lead
to the same causal structure.

Figure 1: Equilibration-Manipulation Commutability provides sufficient conditions for an equi-
librium causal graph to correctly predict the effect of manipulations.

As an example of a system that obeys the EMC condition, consider a body of mass m
dangling from a damped spring. The mass will stretch the spring to some equilibrium position
x = mg/k where k is the spring constant. As we vary m and allow the system to come to
equilibrium, the value of x gets affected according to this relation. The equilibrium causal
model S̃ of this system is simply m→ x. If one were to manipulate the spring directly and
stretch it to some displacement x = x̂, then the mass would be independent of the displacement,
and the correct causal model is obtained by applying the Do operator to this equilibrium model.

Alternatively, one could have started with the original system S of differential equations of
the damped simple-harmonic oscillator by explicitely modeling the acceleration a = mg− kx−
αv, where α is the dampening constant, and the velocity v. S can likewise be used to model the
manipulation of x by applying the Do operator to a, v, and x simultaneously, ultimately giving
the same structure as was obtained by starting with the equilibrium model. For examples of
systems that do not obey the EMC condition, we refer the reader to Dash (2005, 2003) and the
model shown later in this paper.

Unfortunately, requiring a system to obey the EMC condition renders most existing causal
discovery algorithms unreliable for reasoning about manipulations, unless the details of the

258



LEARNING CAUSAL MODELS THAT MAKE CORRECT MANIPULATION PREDICTIONS

underlying dynamics of the system are explicitly represented in the model. Most classical
causal discovery algorithms in AI make use of the class of independence constraints found in
the data to infer causality between variables, assuming the faithfulness assumption (e.g., Spirtes
et al., 2000; Pearl and Verma, 1991; Cooper and Herskovits, 1992). These methods will not be
guaranteed to obey EMC if the observation time-scale of the data is long enough for some
process in the underlying dynamic system to go through equilibrium. On the other hand, there
have been previous approaches for learning dynamic causal models and Bayesian networks.
Friedman et al. (1998) learn the structure of first-order Markov model by using time series data,
and it would be straightforward to extend these approaches to higher-order Markovian models.
However, the search space rapidly gets very large when searching for arbitrary dependencies
across time.

Our approach, by contrast, uses an alternative representation of a dynamic system, ex-
plicitely modeling derivatives (or differences) of variables. It is beyond the scope of this paper
to perform a quantitative comparison of prediction to these other approaches, however, we argue
here that the representation that we learn helps us constrain the search space, and we expect that
this reduction in complexity will make our algorithm perform better in practice and be more
efficient than methods that try to learn fixed-order Markov structures for all variables.

2. Representation and Assumptions
Our approach uses a representation of dynamic causal models inspired by Iwasaki and Simon
(1994), which asserts that all “causation across time" occurs because a variable’s derivative
has been affected instantaneously. Iwasaki and Simon called these models “mixed causal struc-
tures". We use a slightly modified version of them and we call them “differential-based dynamic
causal models" (DBD causal models, for short).

We use the notation X (n) to denote the n-th order derivative (or discrete version thereof) of
variable X , and we use the convention that X (0) = X .

Definition 1 (DBD graphs) Differential-based dynamic causal graphs over a set of time-
dependent variables X are discrete-time directed acyclic causal graphs, in which all “change
across time" of a variable X occurs because there exists some n such that X (n) is being caused
contemporaneously. That is, an edge exists from variable Yt → Xt+1 only if Yt = X (1)

t or Yt = Xt ,
in which case the parent set of Xt+1 is {Xt ,X

(1)
t }.

The reason we constrain the parent set of Xt+1 to be {Xt ,X
(1)
t }when X1

t is determined, is simply
that, by definition,

Xt+1 = Xt +X (1)
t dt.

DBD models are unique in that they focus on uncovering contemporaneous causal relations
that impact derivatives of some variables. They are motivated by real physical systems based
on classical mechanics. For example, systems governed by Newton’s 2nd Law are archetypical
causal systems: some “force" acts on a body, “causing" it to accelerate. The acceleration of the
object, in turn, causes it to change velocity, which can cause the object to change position. The
DBD reprentation assumes that all causation can be described in terms of “forces" causing a
variable to change by impacting a derivative of some order instantaneously.

We show an example DBD graph in Figure 2. We will also use this example to illustrate the
algorithm in one of the next sections. In the graph, two kinds of arcs are used: solid arcs that
denote instantaneous causation, and dashed arcs that denote causation across time. The dashed
arcs were called integration links by Iwasaki and Simon (1994) because they always point from
a derivative of order n to a derivative of order n− 1. The variables that have derivatives in
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Figure 2: The DBD graph we used to simulate data.

the model are called dynamic, as they are solely responsible for the dynamics of the system.
Assuming this representation, the learning algorithm has to find out which variables are dynamic
and find the instanteneous causal arcs between variables and derivatives. It is important to
note that our algorithm only learns contemporaneous causality, all dynamic behavior is then
determined by integration over time.

In a dynamic structure, different causal equilibrium models may exist over different time-
scales. Which equilibrium models will be obtained over time are determined by the time-scales
at which variables equilibrate. The causal structures are derived from the equations by applying
the causal ordering algorithm (Iwasaki and Simon, 1994) and by assuming that at fast time-
scales, the slower moving variables are relatively constant. In the example of Figure 2, the
time-scales could be such that τ6≪ τ3≪ τ1, where τi is the time-scale of variable Xi, in which
case, at time t ∼ τ6 it would be safe to assume that X3 and X1 are approximately constant. Under
these time-scale assumptions, Figure 3 shows the different (approximate) models that exist for
the graph in Figure 2.

One obvious approach to learning the graph of Figure 2 (assuming no derivative variables
are present in the data), is to try to learn an arbitrary-order dynamic Bayesian network, for
example using the method of Friedman et al. (1998). Figure 4 shows the second order Markov
graph that a perfect DBN oracle would produce for this system. The problem with learning an
arbitrary Markov model to represent this dynamic system is that there are no constraints as to
which variables may affect other variables across time, so in principle, the search space could
be unneccessarily large. The DBD representation, on the other hand, implies specific rules for
when variables can affect other variables in the future (when they instantaneously effect some
derivative of the variable). Given that a derivative X (n) is being instantaneously caused, DBDs
also provide constraints on what variables can effect all X (i) for i ̸= n.

We now state three conjectures concerning DBD models that are useful in explicating these
constraints. Conjecture 1 is used to constrain the search space by limiting the number of possible
dynamic variables. Conjecture 2 states that only one of the derivatives of a variable, or the
variable itself, can have an incoming arc. Conjecture 3 is used to direct additional edges that
are not oriented by the regular PC algorithm: If one of the derivatives of a variable has an
incoming edge and the variable itself has an undirected edge, then the edge of the variable must
be outgoing. This is necessary, otherwise it would conflict with Conjecture 2.

Conjecture 1 Every non-exogenous root node that is present in the independence structure at
time t = 0 is a dynamic variable.

Conjecture 2 Let A, B and C be different variables in a DBD model, and Ȧ any order derivative
of A. If the model contains an arc A← B, then it does not contain the arc Ȧ←C.
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Figure 3: The different equilibrium models that exist in the sytem over time. (a) The indepen-
dence constraints that hold when t ∼ 0. (b) The independence constraints when t ∼ τ6.
(c) The independence constraints when t ∼ τ3. (d) The independence constraints after
all the variables are equilibrated, t & τ1.

Figure 4: The second order Markov graph of the system. Thick dashed lines represent first-
order Markov relations. Thin dotted lines represent second-order relations.

We use the standard notation X−Y to indicate that either X → Y or Y → X .

Conjecture 3 Let A, B and C be different variables in a DBD model, and Ȧ any order derivative
of A. If A−B and Ȧ−C, then the edge A−B must be oriented A→ B.

Our algorithm is based on the PC algorithm (Spirtes et al., 2000), although we could have
used any other causal discovery algorithm as well. Besides the assumptions required for the PC
algorithm, we make several additional assumptions. First, we assume that the system is stable,
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i.e., every dynamic variable must be part of a feedback loop. This implies that the highest order
derivative of each dynamic variable must have at least one incoming arc. Second, exogenous
variables are held constant over time and thus easily detectable in a data set. Third, in order
for our algorithm to discover the dynamic model, it is necessary that the time-scale of the data
is much finer than any temporal process of the system. This ensures that we are learning the
dynamic model and not an equilibrium model. Finally, we assume that, apart from variable
derivatives, the system is causally sufficient (i.e., there are no latent common causes).

3. The Algorithm
We present an algorithm that exploits the DBD representation within a constraint-based learning
framework. The aim is to learn DBD models like the one given in Figure 2 directly. The input
data1 consisted of multiple time series that were generated first by parametrizing the model of
Figure 2 with linear equations with independent Gaussian error terms, then by choosing diffe-
rent initial conditions for exogenous and dynamic variables and simulating 10000 discrete time
steps. The integral equations have no noise, because they involve a deterministic relationship.

All derivatives of variables have been omitted from the data; thus, part of the challenge was
that our method had to infer from the data which variables were changing due to the presence
of derivatives and which were changing due to contemporaneous causation. Since calculat-
ing higher order derivatives using differences is sensitive to numerical errors, we opt for an
incremental approach that gradually adds derivatives to the data set only when necessary, and
exploits constraints given by our conjectures about feasible structures in these DBD graphs.

Our algorithm can be described in a few sentences: First we start with the original variables
given in the data set and try to learn the instantaneous independence structure S0

0 beteween non-
derivative variables. This structure (plus our conjectures above) constrain which variables may
be affected by derivatives. There may be multiple possible sets S1

0,S
1
1, . . . ,S

1
m of variables that

could be consistent with S0
0 and our conjectures. We then try to learn additional structure Si+1

j
with these new sets of variables assuming all links in Si

j are correct. We recursively traverse
the tree until we reach a set of maximum-order derivative models Sn

j , where n is an input into
the algorithm. In instances where the structure from Si+1

j contradicts structure from Si
j, we

assume Si
j is correct. The output of the algorithm is then the complete set of consistent n-th

order graphs.
To illustrate the algorithm, we will use the example model from Figure 2. To find out which

variables are dynamic, we run the PC algorithm on a data set containing only non-derivative va-
riables. The resulting structure will be the graph in Figure 3-a. The following four disconnected
graphs will be discovered, and using Conjecture 1 we can find which variables are dynamic:

∙ X1; this variable has to be dynamic, because it is not exogenous.

∙ X8; this variable is exogenous and, therefore, not dynamic.

∙ X5→ X7← X3; X5 is exogenous, X7 is instanteneously caused and not dynamic, X3 is not
exogenous and, therefore, dynamic.

∙ X2−X6→ X4← X9; either X2 or X6 is dynamic, X4 is not, and X9 is exogenous.

Summarizing, X1, X3, and either X2 or X6 are dynamic variables so there are only two competing
models.

1. Downloadable from http://www.causality.inf.ethz.ch/repository.php?id=16
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In the second step, for each of the competing models, the first order derivatives of the dy-
namic variables are added to the data set and the PC algorithm is executed again. The competing
model in which X2 is a dynamic variable will lead to an inconsistent structure, because there
will be a v-structure into X2, namely dX3 → X2 ← X6. This violates Conjecture 2 and so the
structure is inconsistent. The other competing model is consistent, although no derivative of X3
has an incoming edge. Therefore, as the last step, we add the second derivative of X3 to the data
set and run PC again to retrieve the original structure. We used Conjecture 3 as an extra rule to
orient edges.

4. Prediction of Manipulations
The following results2 were obtained by using the data and applying the instructions described
in Appendix A. After running our algorithm on the data to obtain a causal structure, we esti-
mated the coefficients in the equations in order to be able to make quantitative predictions. In
the next step, we used the model and the values of the first four time steps in the data set to
make predictions for time steps {5, 50, 100, 500, 1000, 2000, 4000, 10000}. We do not attempt
to correct our predictions by using the data at times t > 4 when predicting later times, although
doing this is possible and should improve our results.

The results are shown in Figure 5. Due to space constraints we chose not to present six
tables, but instead calculated the average RMSE per time step for each manipulated variable.
The graph shows that the error for the first few time steps is relatively small, but for all varia-
bles (except X1) grows large in later times. Three variables in particular (X2, X7 and X4) had
astronomical errors in later times. These huge RMS errors are not indicative that our model
was poor. In fact, in our case, since we generated the model, we could verify that the structure
was exactly correct and the linear Gaussian parameters were very well identified. The reason
for the unstable errors is that in the model of Figure 2, manipulating any variable except X1 will
approximately break the feedback loop of a dynamic variable and thus will in general result
in an instability (Dash, 2003). Feedback variable X1 is a relatively slow process, so breaking
this feedback loop does not have a large effect on the feedback loops of X3 and X6. Thus our
absolute rms error is expected to also be unstable all manipulations but X1, simply because we
are predicting such large values.

Figure 5: Average RMSE for each manipulated variable.

More important than getting the correct RMS error for these manipulations is the fact that
our learned model correctly predicts that an instability will occur when any variable except X1

2. Results can be downloaded from http://pittsburgh.intel-research.net/~dhdash/
causalitydata/rmse.zip.
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is manipulated. In the absence of instability, our method has very low RMS error, as indicated
by the curve of variable X1 in Figure 5. This fact is significant, because the model retrieved
from our system when variable X1 is allowed to come to equilibrium will not obey the EMC
condition (Dash, 2005). Thus, to our knowledge, we have presented the first algorithm that has
demonstrated that it can correctly predict the effects of manipulations on systems that do not
obey this condition.

5. Conclusions
We have described a first effort to construct an algorithm that can predict the effects of manipula-
tions on systems that do not obey the EMC condition. We accomplish this by learning dynamic
causal graphs in a representation very similar to that of Iwasaki and Simon. We have proposed
a set of conjectures which are effective at constraining the search space for high-order Marko-
vian relationships, which we expect will make this method more reliable and more efficient
than other methods for learning temporal models, especially when higher-order relationships
are present. We have shown that on a benchmark dataset generated from a fairly sophisticated
dynamic system having multiple inter-related processes operating at widely varying time-scales,
we were able to correctly learn the structure of the underlying system, and were able to predict
that manipulating some variables in that system would result in an instability. Finally, in the
absence of instabilities, we were able to predict with high accuracy the results of manipulating a
variable, even far into the future. Future work will involve performing quantitative comparisons
to other time-series methods. Also, although our conjectures formed useful heuristics for this
method, we have been able to construct counter-examples where at least one of them is incor-
rect, so more work is needed to prove our existing conjectures and finding additional constraints
on the search for derivatives.
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Appendix A. Pot-luck challenge: FACT SHEET .
Repository URL: http://www.causality.inf.ethz.ch/repository.php?id=16

Title: Mixed Dynamic Systems
Authors: Denver Dash, Mark Voortman, Marek Druzdzel
Contact name, address, email and website: Denver Dash, denver.h.dash@intel.com,
http://pittsburgh.intel-research.net/˜dhdash

Key facts:
Simulated time series data of 9 variables based on linear Gaussian models with no latent common causes,
but with multiple dynamic processes at varying time-scales.
Training Data: 9 Variables, 10000 time series, each time series sampled at 12 distinct times (relative to
when exogenous variables were first manipulated).
Testing Data: Manipulation data. Each of the 6 non-exogenous variables is manipulated and held fixed
for the duration of the time series. This is repeated 100 times for each of the 6 variables.

Summary: A Mixed Dynamic System is one that consists of multiple dynamic processes operating
at widely different time-scales. This data represents a 9 variable (labeled X1 . . .X9) dynamic system with
several dynamic processes acting on qualitatively different time scales from one another. The goal is to
learn a causal model of the system with the training data, and then correctly predict the effects of various
manipulations on the system (using the testing data for a quantitative measure of performance). This
dataset was meant to be both simple and extremely challenging. All relations are linear with independent
Gaussian error terms. There are no hidden confounders. However, we believe the inter-related dynamic
processes will make prediction of manipulations challenging.

Training Data: The training data consists of 9 tab-separated text files (labelled X1.tsv, X2.tsv, etc.)
one for each variable, and is arranged so that the rows in each file represent distinct time series for each
variable (there are 10000 of these). That time series has been sampled at a few points in time after the
exogenous variables of the system have been manipulated (all exogenous variables are held fixed for the
duration of the time series). Specifically, the variables have been measured at the following discrete time
intervals: t = {1, 2, 3, 4, 5, 50, 100, 500, 1000, 2000, 4000, 10000}, so there are 12 columns in each data
file. Variables X8, X5 and X9 are all exogenous as can be verified by looking at X9.tsv, etc.

Test Data: The test data is organized into several (6x9 = 54) data files labeled Xi-manipj.tsv (For
example X2-manip3.tsv shows the values of variable X2 when X3 has been manipulated and held fixed).
Each variable in the set of endogenous variables {X1, X2, X3, X4, X6, X7} is manipulated 100 times for
the entire 10000 time-step duration of each time series while the remaining variables are measured once at
each of the 12 predetermined time-intervals. Thus each Xi-manipj.tsv file has 100 rows and 12 columns,
and there are 9 files for each variable manipulated from the set {X1, X2, X3, X4, X6, X7}.

Evaluation: The objective of this problem is to use the first set of data labeled X*.tsv to build a model
which is then able to predict the effects of manipulation on the system as given by the X*-manipN.tsv
files. When predicting the effect of the manipulations, the goal is to predict the values of non-manipulated
variables at times 5–10000 (columns 5 – 12) using the values of the previous times as input. For example,
when predicting time 100 (column 7), you could use times 1, 2, 3, 4, 5, 50 (columns 1-6) as input. The
output of the evaluation should be one table for each variable in the set {X1, X2, X3, X4, X6, X7} of
manipulated variables. Each table should have 5 rows and 8 columns, one row for each variable in {X1,
X2, X3, X4, X6, X7} ∖X j, (where X j is the manipulated variable), and one column for each time in the
set {5, 50, 100, 500, 1000, 2000, 4000, 10000}. The entry of the table is the RMS error (over the 100
runs) between the predicted value of the variable at that time and the actual value in the test data.
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