24 research outputs found

    Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials

    Get PDF
    Background: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. Methods: Systematic review with meta-analysis of efficacy within 1–4 weeks and at follow up at 1–12 weeks after the end of treament. Results: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. Conclusion: TENS, EA and LLLT administered with optimal doses in an intensive 2–4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK

    Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.

    Get PDF
    BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK

    Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials,”

    Get PDF
    ABSTRACT Objective: The aim of this study was to review the biological and clinical short-term effects of low-level laser therapy (LLLT) in acute pain from soft-tissue injury. Background Data: It is unclear if and how LLLT can reduce acute pain. Methods: Literature search of (i) controlled laboratory trials investigating potential biological mechanisms for pain relief and (ii) randomized placebo-controlled clinical trials which measure outcomes within the first 7 days after acute soft-tissue injury. Results: There is strong evidence from 19 out of 22 controlled laboratory studies that LLLT can modulate inflammatory pain by reducing levels of biochemical markers (PGE 2 , mRNA Cox 2, IL-1␀, TNF␣), neutrophil cell influx, oxidative stress, and formation of edema and hemorrhage in a dosedependent manner (median dose 7.5 J/cm 2 , range 0.3-19 J/cm 2 ). Four comparisons with non-steroidal anti-inflammatory drugs (NSAIDs) in animal studies found optimal doses of LLLT and NSAIDs to be equally effective. Seven randomized placebo-controlled trials found no significant results after irradiating only a single point on the skin overlying the site of injury, or after using a total energy dose below 5 Joules. Nine randomized placebo-controlled trials (n = 609) were of acceptable methodological quality, and irradiated three or more points and/or more than 2.5 cm 2 at site of injury or surgical incision, with a total energy of 5.0-19.5 Joules. Results in these nine trials were significantly in favor of LLLT groups over placebo groups in 15 out of 18 outcome comparisons. Poor and heterogeneous data presentation hampered statistical pooling of continuous data. Categorical data of subjective improvement were homogeneous (Q-value = 7.1) and could be calculated from four trials (n = 379) giving a significant relative risk for improvement of 2.7 (95% confidence interval [CI], 1.8-3.9) in a fixed effects model. Conclusion: LLLT can modulate inflammatory processes in a dose-dependent manner and can be titrated to significantly reduce acute inflammatory pain in clinical settings. Further clinical trials with adequate LLLT doses are needed to precisely estimate the effect size for LLLT in acute pain

    Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Get PDF
    Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 ”g/”l [SEM 0.12], - LLLT = 0.048 ”g/”l [SEM 0.01]), IL-1ÎČ (placebo-control = 2.292 ”g/”l [SEM 0.74], - LLLT = 0.12 ”g/”l [SEM 0.03]), IL-6 (placebo-control = 3.946 ”g/”l [SEM 0.98], - LLLT = 0.854 ”g/”l [SEM 0.33]), IL-10 (placebo-control = 1.116 ”g/”l [SEM 0.22], - LLLT = 0.352 ”g/”l [SEM 0.15]), and COX-2 (placebo-control = 4.984 ”g/”l [SEM 1.18], LLLT = 1.470 ”g/”l [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy

    A systematic review with procedural assessments and meta-analysis of Low Level Laser Therapy in lateral elbow tendinopathy (tennis elbow)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent reviews have indicated that low level level laser therapy (LLLT) is ineffective in lateral elbow tendinopathy (LET) without assessing validity of treatment procedures and doses or the influence of prior steroid injections.</p> <p>Methods</p> <p>Systematic review with meta-analysis, with primary outcome measures of pain relief and/or global improvement and subgroup analyses of methodological quality, wavelengths and treatment procedures.</p> <p>Results</p> <p>18 randomised placebo-controlled trials (RCTs) were identified with 13 RCTs (730 patients) meeting the criteria for meta-analysis. 12 RCTs satisfied half or more of the methodological criteria. Publication bias was detected by Egger's graphical test, which showed a negative direction of bias. Ten of the trials included patients with poor prognosis caused by failed steroid injections or other treatment failures, or long symptom duration or severe baseline pain. The weighted mean difference (WMD) for pain relief was 10.2 mm [95% CI: 3.0 to 17.5] and the RR for global improvement was 1.36 [1.16 to 1.60]. Trials which targeted acupuncture points reported negative results, as did trials with wavelengths 820, 830 and 1064 nm. In a subgroup of five trials with 904 nm lasers and one trial with 632 nm wavelength where the lateral elbow tendon insertions were directly irradiated, WMD for pain relief was 17.2 mm [95% CI: 8.5 to 25.9] and 14.0 mm [95% CI: 7.4 to 20.6] respectively, while RR for global pain improvement was only reported for 904 nm at 1.53 [95% CI: 1.28 to 1.83]. LLLT doses in this subgroup ranged between 0.5 and 7.2 Joules. Secondary outcome measures of painfree grip strength, pain pressure threshold, sick leave and follow-up data from 3 to 8 weeks after the end of treatment, showed consistently significant results in favour of the same LLLT subgroup (p < 0.02). No serious side-effects were reported.</p> <p>Conclusion</p> <p>LLLT administered with optimal doses of 904 nm and possibly 632 nm wavelengths directly to the lateral elbow tendon insertions, seem to offer short-term pain relief and less disability in LET, both alone and in conjunction with an exercise regimen. This finding contradicts the conclusions of previous reviews which failed to assess treatment procedures, wavelengths and optimal doses.</p

    The Thermal Effects of Therapeutic Lasers with 810 and 904nm Wavelengths on Human Skin

    Get PDF
    Objective: To investigate the effect of therapeutic infrared class 3B laser irradiation on skin temperature in healthy participants of differing skin color, age, and gender. Background: Little is known about the potential thermal effects of Low Level Laser Therapy (LLLT) irradiation on human skin. Methods: Skin temperature was measured in 40 healthy volunteers with a thermographic camera at laser irradiated and control (non-irradiated) areas on the skin. Six irradiation doses (2–12 J) were delivered from a 200mW, 810nm laser and a 60mW, 904nm laser, respectively. Results: Thermal effects of therapeutic LLLT using doses recommended in the World Association for Laser Therapy (WALT) guidelines were insignificant; below 1.58C in light, medium, and dark skin. When higher irradiation doses were used, the 60mW, 904 nm laser produced significantly (p<0.01) higher temperatures in dark skin (5.7, SD 1.88C at 12 J) than in light skin, although no participants requested termination of LLLT. However, irradiation with a 200mW, 810nm laser induced three to six times more heat in dark skin than in the other skin color groups. Eight of 13 participants with dark skin asked for LLLT to be stopped because of uncomfortable heating. The maximal increase in skin temperature was 22.38C. Conclusions: The thermal effects of LLLT at doses recommended by WALT-guidelines for musculoskeletal and inflammatory conditions are negligible (<1.58C) in light, medium, and dark skin. However, higher LLLT doses delivered with a strong 3B laser (200mW) are capable of increasing skin temperature significantly and these photothermal effects may exceed the thermal pain threshold for humans with dark skin color

    Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials,”

    No full text
    ABSTRACT Objective: The aim of this study was to review the biological and clinical short-term effects of low-level laser therapy (LLLT) in acute pain from soft-tissue injury. Background Data: It is unclear if and how LLLT can reduce acute pain. Methods: Literature search of (i) controlled laboratory trials investigating potential biological mechanisms for pain relief and (ii) randomized placebo-controlled clinical trials which measure outcomes within the first 7 days after acute soft-tissue injury. Results: There is strong evidence from 19 out of 22 controlled laboratory studies that LLLT can modulate inflammatory pain by reducing levels of biochemical markers (PGE 2 , mRNA Cox 2, IL-1␀, TNF␣), neutrophil cell influx, oxidative stress, and formation of edema and hemorrhage in a dosedependent manner (median dose 7.5 J/cm 2 , range 0.3-19 J/cm 2 ). Four comparisons with non-steroidal anti-inflammatory drugs (NSAIDs) in animal studies found optimal doses of LLLT and NSAIDs to be equally effective. Seven randomized placebo-controlled trials found no significant results after irradiating only a single point on the skin overlying the site of injury, or after using a total energy dose below 5 Joules. Nine randomized placebo-controlled trials (n = 609) were of acceptable methodological quality, and irradiated three or more points and/or more than 2.5 cm 2 at site of injury or surgical incision, with a total energy of 5.0-19.5 Joules. Results in these nine trials were significantly in favor of LLLT groups over placebo groups in 15 out of 18 outcome comparisons. Poor and heterogeneous data presentation hampered statistical pooling of continuous data. Categorical data of subjective improvement were homogeneous (Q-value = 7.1) and could be calculated from four trials (n = 379) giving a significant relative risk for improvement of 2.7 (95% confidence interval [CI], 1.8-3.9) in a fixed effects model. Conclusion: LLLT can modulate inflammatory processes in a dose-dependent manner and can be titrated to significantly reduce acute inflammatory pain in clinical settings. Further clinical trials with adequate LLLT doses are needed to precisely estimate the effect size for LLLT in acute pain

    Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials-2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials"</p><p>http://www.biomedcentral.com/1471-2474/8/51</p><p>BMC Musculoskeletal Disorders 2007;8():51-51.</p><p>Published online 22 Jun 2007</p><p>PMCID:PMC1931596.</p><p></p>positive treatment effect. The combined effect size for each intervention is placed below the trials, and combined overall effect of all 16 trials is plotted on the bottom

    Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials"</p><p>http://www.biomedcentral.com/1471-2474/8/51</p><p>BMC Musculoskeletal Disorders 2007;8():51-51.</p><p>Published online 22 Jun 2007</p><p>PMCID:PMC1931596.</p><p></p>s shown as columns, and error bars indicate 95% confidence limits. The horizontal dotted lines indicate subjective thresholds for mean perceptible improvement (lowest), mean slight improvement (middle) and mean important improvement (top). Abbreviations: LLLT (Low Level Laser Therapy), TENS/IF (Transcutaneous Electrical Nerve Stimulation and Interferential Currents), EA (Electro-acupuncture), PEMF (Pulsed Electro Magnetic Fields), MA (Manual Acupuncture), US (Ultrasound)

    Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials-6

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials"</p><p>http://www.biomedcentral.com/1471-2474/8/51</p><p>BMC Musculoskeletal Disorders 2007;8():51-51.</p><p>Published online 22 Jun 2007</p><p>PMCID:PMC1931596.</p><p></p> sample size is related to the y-axis
    corecore