2,400 research outputs found
Color and Variability Characteristics of Point Sources in the Faint Sky Variability Survey
We present an analysis of the color and variability characteristics for point
sources in the Faint Sky Variability Survey (FSVS). The FSVS cataloged ~23
square degrees in BVI filters from ~16--24 mag to investigate variability in
faint sources at moderate to high Galactic latitudes. Point source completeness
is found to be >83% for a selected representative sample (V=17.5--22.0 mag,
B-V=0.0--1.5) containing both photometric B, V detections and 80% of the
time-sampled V data available compared to a basic internal source completeness
of 99%. Multi-epoch (10--30) observations in V spanning minutes to years
modeled by light curve simulations reveal amplitude sensitivities to
0.015--0.075 mag over a representative V=18--22 mag range. Periodicity
determinations appear viable to time-scales of an order 1 day or less using the
most sampled fields (~30 epochs). The fraction of point sources is found to be
generally variable at 5--8% over V=17.5--22.0 mag. For V brighter than 19 mag,
the variable population is dominated by low amplitude (<0.05 mag) and blue
(B-V<0.35) sources, possibly representing a population of gamma Doradus stars.
Overall, the dominant population of variable sources are bluer than B-V=0.65
and have Main Sequence colors, likely reflecting larger populations of RR
Lyrae, SX Phe, gamma Doradus, and W UMa variables.Comment: 34 pages, 16 figures, accepted in A
An EUV Study of the Intermediate Polar EX Hydrae
On 2000 May 5, we began a large multi-wavelength campaign to study the
intermediate polar, EX Hydrae. The simultaneous observations from six
satellites and four telescopes were centered around a one million second
observation with EUVE. Although EX Hydrae has been studied previously with
EUVE, our higher signal-to-noise observations present new results and challenge
the current IP models. Previously unseen dips in the light curve are
reminiscent of the stream dips seen in polar light curves. Also of interest is
the temporal extent of the bulge dip; approximately 0.5 in phase, implying that
the bulge extends over half of the accretion disk. We propose that the magnetic
field in EX Hydrae is strong enough (a few MG) to begin pulling material
directly from the outer edge of the disk, thereby forming a large accretion
curtain which would produce a very broad bulge dip. This would also result in
magnetically controlled accretion streams originating from the outer edge of
the disk. We also present a period analysis of the photometric data which shows
numerous beat frequencies with strong power and also intermittent and wandering
frequencies, an indication that physical conditions within EX Hya changed over
the course of the observation. Iron spectral line ratios give a temperature of
log T=6.5-6.9 K for all spin phases and a poorly constrained density of
n_e=10^10-10^11 cm^-3 for the emitting plasma. This paper is the first in a
series detailing our results from this multi-wavelength observational campaign.Comment: 27 pages, 7 figures, accepted for publication in Ap
A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change
Accurate quantification of ecosystem services (ES) at regional scales is increasingly important for making informed decisions in the face of environmental change. We linked terrestrial and aquatic ecosystem process models to simulate the spatial and temporal distribution of hydrological and water quality characteristics related to ecosystem services. The linked model integrates two existing models (a forest ecosystem model and a river network model) to establish consistent responses to changing drivers across climate, terrestrial, and aquatic domains. The linked model is spatially distributed, accounts for terrestrial–aquatic and upstream–downstream linkages, and operates on a daily time-step, all characteristics needed to understand regional responses. The model was applied to the diverse landscapes of the Upper Merrimack River watershed, New Hampshire, USA. Potential changes in future environmental functions were evaluated using statistically downscaled global climate model simulations (both a high and low emission scenario) coupled with scenarios of changing land cover (centralized vs. dispersed land development) for the time period of 1980–2099. Projections of climate, land cover, and water quality were translated into a suite of environmental indicators that represent conditions relevant to important ecosystem services and were designed to be readily understood by the public. Model projections show that climate will have a greater influence on future aquatic ecosystem services (flooding, drinking water, fish habitat, and nitrogen export) than plausible changes in land cover. Minimal changes in aquatic environmental indicators are predicted through 2050, after which the high emissions scenarios show intensifying impacts. The spatially distributed modeling approach indicates that heavily populated portions of the watershed will show the strongest responses. Management of land cover could attenuate some of the changes associated with climate change and should be considered in future planning for the region
Toward Fulfilling the Promise of Molecular Medicine in Fragile X
Fragile X syndrome (FXS) is the most common inherited form of mental retardation and a leading known cause of autism. It is caused by loss of expression of the fragile X mental retardation protein (FMRP), an RNA-binding protein that negatively regulates protein synthesis. In neurons, multiple lines of evidence suggest that protein synthesis at synapses is triggered by activation of group 1 metabotropic glutamate receptors (Gp1 mGluRs) and that many functional consequences of activating these receptors are altered in the absence of FMRP. These observations have led to the theory that exaggerated protein synthesis downstream of Gp1 mGluRs is a core pathogenic mechanism in FXS. This excess can be corrected by reducing signaling by Gp1 mGluRs, and numerous studies have shown that inhibition of mGluR5, in particular, can ameliorate multiple mutant phenotypes in animal models of FXS. Clinical trials based on this therapeutic strategy are currently under way. FXS is therefore poised to be the first neurobehavioral disorder in which corrective treatments have been developed from the bottom up: from gene identification to pathophysiology in animals to novel therapeutics in humans. The insights gained from FXS and other autism-related single-gene disorders may also assist in identifying molecular mechanisms and potential treatment approaches for idiopathic autism.Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.)National Institute of Mental Health (U.S.)FRAXA Research Foundatio
Force distributions in a triangular lattice of rigid bars
We study the uniformly weighted ensemble of force balanced configurations on
a triangular network of nontensile contact forces. For periodic boundary
conditions corresponding to isotropic compressive stress, we find that the
probability distribution for single-contact forces decays faster than
exponentially. This super-exponential decay persists in lattices diluted to the
rigidity percolation threshold. On the other hand, for anisotropic imposed
stresses, a broader tail emerges in the force distribution, becoming a pure
exponential in the limit of infinite lattice size and infinitely strong
anisotropy.Comment: 11 pages, 17 figures Minor text revisions; added references and
acknowledgmen
Pahs, Ionized Gas, and Molecular Hydrogen in Brightest Cluster Galaxies of Cool Core Clusters of Galaxies
We present measurements of 5-25 {\mu}m emission features of brightest cluster
galaxies (BCGs) with strong optical emission lines in a sample of 9 cool-core
clusters of galaxies observed with the Infrared Spectrograph on board the
Spitzer Space Telescope. These systems provide a view of dusty molecular gas
and star formation, surrounded by dense, X-ray emitting intracluster gas. Past
work has shown that BCGs in cool-core clusters may host powerful radio sources,
luminous optical emission line systems, and excess UV, while BCGs in other
clusters never show this activity. In this sample, we detect polycyclic
aromatic hydrocarbons (PAHs), extremely luminous, rotationally-excited
molecular hydrogen line emission, forbidden line emission from ionized gas ([Ne
II] and [Ne III]), and infrared continuum emission from warm dust and cool
stars. We show here that these BCGs exhibit more luminous forbidden neon and H2
rotational line emission than star-forming galaxies with similar total infrared
luminosities, as well as somewhat higher ratios of 70 {\mu}m / 24 {\mu}m
luminosities. Our analysis suggests that while star formation processes
dominate the heating of the dust and PAHs, a heating process consistent with
suprathermal electron heating from the hot gas, distinct from star formation,
is heating the molecular gas and contributing to the heating of the ionized gas
in the galaxies. The survival of PAHs and dust suggests that dusty gas is
somehow shielded from significant interaction with the X-ray gas.Comment: 27 preprint pages, 18 figures, accepted by Astrophysical Journa
Kepler-432: a red giant interacting with one of its two long period giant planets
We report the discovery of Kepler-432b, a giant planet ()
transiting an evolved star with an orbital period of days. Radial velocities (RVs) reveal that
Kepler-432b orbits its parent star with an eccentricity of , which we also measure independently with
asterodensity profiling (AP; ), thereby confirming
the validity of AP on this particular evolved star. The well-determined
planetary properties and unusually large mass also make this planet an
important benchmark for theoretical models of super-Jupiter formation.
Long-term RV monitoring detected the presence of a non-transiting outer planet
(Kepler-432c; days), and adaptive optics imaging revealed a nearby
(0\farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf.
The host star exhibits high signal-to-noise asteroseismic oscillations, which
enable precise measurements of the stellar mass, radius and age. Analysis of
the rotational splitting of the oscillation modes additionally reveals the
stellar spin axis to be nearly edge-on, which suggests that the stellar spin is
likely well-aligned with the orbit of the transiting planet. Despite its long
period, the obliquity of the 52.5-day orbit may have been shaped by star-planet
interaction in a manner similar to hot Jupiter systems, and we present
observational and theoretical evidence to support this scenario. Finally, as a
short-period outlier among giant planets orbiting giant stars, study of
Kepler-432b may help explain the distribution of massive planets orbiting giant
stars interior to 1 AU.Comment: 22 pages, 19 figures, 5 tables. Accepted to ApJ on Jan 24, 2015
(submitted Nov 11, 2014). Updated with minor changes to match published
versio
Activation of mGluR5 Induces Rapid and Long-Lasting Protein Kinase D Phosphorylation in Hippocampal Neurons
Metabotropic glutamate receptors (mGluRs), including mGluR5, play a central role in regulating the strength and plasticity of synaptic connections in the brain. However, the signaling pathways that connect mGluRs to their downstream effectors are not yet fully understood. Here, we report that stimulation of mGluR5 in hippocampal cultures and slices results in phosphorylation of protein kinase D (PKD) at the autophosphorylation site Ser-916. This phosphorylation event occurs within 30 s of stimulation, persists for at least 24 h, and is dependent on activation of phospholipase C and protein kinase C. Our data suggest that activation of PKD may represent a novel signaling pathway linking mGluR5 to its downstream targets. These findings have important implications for the study of the molecular mechanisms underlying mGluR-dependent synaptic plasticity.Howard Hughes Medical InstituteFRAXA Research FoundationNational Institute of Mental Health (U.S.)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.
- …
