480 research outputs found

    Initial data for black hole-neutron star binaries, with rotating stars

    Get PDF
    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole--neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as SBH/MBH2=0.99S_{\rm BH}/M_{\rm BH}^2=0.99.Comment: 25 pages, 12 figure

    Large scale mitochondrial sequencing in Mexican Americans suggests a reappraisal of Native American origins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Asian origin of Native Americans is largely accepted. However uncertainties persist regarding the source population(s) within Asia, the divergence and arrival time(s) of the founder groups, the number of expansion events, and migration routes into the New World. mtDNA data, presented over the past two decades, have been used to suggest a single-migration model for which the Beringian land mass plays an important role.</p> <p>Results</p> <p>In our analysis of 568 mitochondrial genomes, the coalescent age estimates of shared roots between Native American and Siberian-Asian lineages, calculated using two different mutation rates, are A4 (27.5 ± 6.8 kya/22.7 ± 7.4 kya), C1 (21.4 ± 2.7 kya/16.4 ± 1.5 kya), C4 (21.0 ± 4.6 kya/20.0 ± 6.4 kya), and D4e1 (24.1 ± 9.0 kya/17.9 ± 10.0 kya). The coalescent age estimates of pan-American haplogroups calculated using the same two mutation rates (A2:19.5 ± 1.3 kya/16.1 ± 1.5 kya, B2:20.8 ± 2.0 kya/18.1 ± 2.4 kya, C1:21.4 ± 2.7 kya/16.4 ± 1.5 kya and D1:17.2 ± 2.0 kya/14.9 ± 2.2 kya) and estimates of population expansions within America (~21-16 kya), support the pre-Clovis occupation of the New World. The phylogeography of sublineages within American haplogroups A2, B2, D1 and the C1b, C1c andC1d subhaplogroups of C1 are complex and largely specific to geographical North, Central and South America. However some sub-branches (B2b, C1b, C1c, C1d and D1f) already existed in American founder haplogroups before expansion into the America.</p> <p>Conclusions</p> <p>Our results suggest that Native American founders diverged from their Siberian-Asian progenitors sometime during the last glacial maximum (LGM) and expanded into America soon after the LGM peak (~20-16 kya). The phylogeography of haplogroup C1 suggest that this American founder haplogroup differentiated in Siberia-Asia. The situation is less clear for haplogroup B2, however haplogroups A2 and D1 may have differentiated soon after the Native American founders divergence. A moderate population bottle neck in American founder populations just before the expansion most plausibly resulted in few founder types in America. The similar estimates of the diversity indices and Bayesian skyline analysis in North America, Central America and South America suggest almost simultaneous (~ 2.0 ky from South to North America) colonization of these geographical regions with rapid population expansion differentiating into more or less regional branches across the pan-American haplogroups.</p

    Magnetic effects on the low-T/|W| instability in differentially rotating neutron stars

    Get PDF
    Dynamical instabilities in protoneutron stars may produce gravitational waves whose observation could shed light on the physics of core-collapse supernovae. When born with sufficient differential rotation, these stars are susceptible to a shear instability (the "low-T/|W| instability"), but such rotation can also amplify magnetic fields to strengths where they have a considerable impact on the dynamics of the stellar matter. Using a new magnetohydrodynamics module for the Spectral Einstein Code, we have simulated a differentially-rotating neutron star in full 3D to study the effects of magnetic fields on this instability. Though strong toroidal fields were predicted to suppress the low-T/|W| instability, we find that they do so only in a small range of field strengths. Below 4e13 G, poloidal seed fields do not wind up fast enough to have an effect before the instability saturates, while above 5e14 G, magnetic instabilities can actually amplify a global quadrupole mode (this threshold may be even lower in reality, as small-scale magnetic instabilities remain difficult to resolve numerically). Thus, the prospects for observing gravitational waves from such systems are not in fact diminished over most of the magnetic parameter space. Additionally, we report that the detailed development of the low-T/|W| instability, including its growth rate, depends strongly on the particular numerical methods used. The high-order methods we employ suggest that growth might be considerably slower than found in some previous simulations.Comment: REVTeX 4.1, 21 pages, 18 figures, submitting to Physical Review

    Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    Get PDF
    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasi-local angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of 2×104\sim 2\times 10^{-4}. Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin- and orbit-precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to 0.1%\sim 0.1\%. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.Comment: 20 pages, 22 figure

    A 700 year record of Southern Hemisphere extratropical climate variability

    Get PDF
    Annually dated ice cores from West and East Antarctica provide proxies for past changes in atmospheric circulation over Antarctica and portions of the Southern Ocean, temperature in coastal West and East Antarctica, and the frequency of South Polar penetration of El Niño events. During the period AD 1700–1850, atmospheric circulation over the Antarctic and at least portions of the Southern Hemisphere underwent a mode switch departing from the out-of-phase alternation of multi-decadal long phases of EOF1 and EOF2 modes of the 850 hPa field over the Southern Hemisphere (as defined in the recent record by Thompson and Wallace, 2000; Thompson and Solomon, 2002) that characterizes the remainder of the 700 year long record. From AD 1700 to 1850, lower-tropospheric circulation was replaced by in-phase behavior of the Amundsen Sea Low component of EOF2 and the East Antarctic High component of EOF1. During the first phase of the mode switch, both West and East Antarctic temperatures declined, potentially in response to the increased extent of sea ice surrounding both regions. At the end of the mode switch, West Antarctic coastal temperatures rose and East Antarctic coastal temperatures fell, respectively, to their second highest and lowest of the record. Polar penetration of El Niño events increased during the mode switch. The onset of the AD 1700–1850 mode switch coincides with the extreme state of the Maunder Minimum in solar variability. Late 20th-century West Antarctic coastal temperatures are the highest in the record period, and East Antarctic coastal temperatures close to the lowest. Since AD 1700, extratropical regions of the Southern Hemisphere have experienced significant climate variability coincident with changes in both solar variability and greenhouse gase

    KSC Launch Pad Flame Trench Environment Assessment

    Get PDF
    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench

    Refractory Materials for Flame Deflector Protection

    Get PDF
    Fondu Fyre (FF) is currently the only refractory material qualified for use in the flame trench at KSC's Shuttle Launch Pads 39A and 3913. However, the material is not used as it was qualified and has undergone increasingly frequent and severe degradation due to the launch blasts. This degradation is costly as well as dangerous for launch infrastructure, crew and vehicle. The launch environment at KSC is unique. The refractory material is subject to the normal seacoast environment, is completely saturated with water before launch, and is subjected to vibrations and aggressive heat/blast conditions during launch. This report presents results comparing two alternate materials, Ultra-Tek FS gun mix and Kruzite GR Plus, with Fondu Fyre. The materials were subjected to bulk density, porosity, compression strength, modulus of rupture and thermal shock tests. In addition, test specimens were exposed to conditions meant to simulate the launch environment at KSC to help better understand how the materials will perform once installed

    Study of Mill Island ice core (East Antarctica): A sensitive site for high resolution ocean climate signals?

    Get PDF
    第2回極域科学シンポジウム 氷床コアセッション 11月16日(水) 国立極地研究所 2階大会議

    Launch Pad Flame Trench Refractory Materials

    Get PDF
    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of failure mechanisms, load response, ejected material impact evaluation, and repair design analysis (environmental and structural assessment, induced environment from solid rocket booster plume, loads summary, and repair integrity), assessment of risk posture for flame trench debris, and justification of flight readiness rationale. Although the configuration of the launch pad, water and exhaust direction, and location of the Mobile Launcher Platform between the flame trench and the flight hardware should protect the Space Vehicle from debris exposure, loss of material could cause damage to a major element of the ground facility (resulting in temporary usage loss); and damage to other facility elements is possible. These are all significant risks that will impact ground operations for Constellation and development of new refractory material systems is necessary to reduce the likelihood of the foreign object debris hazard during launch. KSC is developing an alternate refractory material for the launch pad flame trench protection system, including flame deflector and flame trench walls, that will withstand launch conditions without the need for repair after every launch, as is currently the case. This paper will present a summary of the results from industry surveys, trade studies, life cycle cost analysis, and preliminary testing that have been performed to support and validate the development, testing, and qualification of new refractory materials

    Refractory Materials for Flame Deflector Protection System Corrosion Control: Flame Deflector Protection System Life Cycle Cost Analysis Report

    Get PDF
    A 20-year life cycle cost analysis was performed to compare the operational life cycle cost, processing/turnaround timelines, and operations manpower inspection/repair/refurbishment requirements for corrosion protection of the Kennedy Space Center launch pad flame deflector associated with the existing cast-in-place materials and a newer advanced refractory ceramic material. The analysis compared the estimated costs of(1) continuing to use of the current refractory material without any changes; (2) completely reconstructing the flame trench using the current refractory material; and (3) completely reconstructing the flame trench with a new high-performance refractory material. Cost estimates were based on an analysis of the amount of damage that occurs after each launch and an estimate of the average repair cost. Alternative 3 was found to save 32Mcomparedtoalternative1and32M compared to alternative 1 and 17M compared to alternative 2 over a 20-year life cycle
    corecore