123 research outputs found

    The influence of thermal and magnetic layers on solar oscillation frequencies

    Get PDF
    In this thesis, a study is made of the global solar oscillations known as p-modes, modelled by a plane-parallel stratified plasma, within which is embedded a horizontal layered magnetic field. A magnetohydrodynamic formalism is used to investigate the models. The main aim of the thesis is to model the turnover effect in the frequency shifts of the p-modes observed over the course of the solar cycle. Radial oscillations (modes of degree zero) of the Sun are studied for several atmospheric temperature and magnetic field profiles. It is found that the turnover in frequency shifts may be obtained by an increase in the strength of the atmospheric horizontal magnetic field (assumed to be uniform), coupled with a simultaneous increase in atmospheric temperature. The effect of a thin superadiabatic layer in the upper convection zone on p-mode frequencies is also considered. For this model we study modes of general degree, and find that the observed rise and subsequent downturn in the frequency shifts can be duplicated, in the absence of a magnetic field, by simultaneously steepening the temperature gradient of the superadiabatic layer and increasing the atmospheric temperature. In the presence of a magnetic field, where the atmosphere is permeated by a uniform horizontal magnetic field, turnover is reproduced by a combination of an increase in magnetic field strength, a steepening of the temperature gradient in the superadiabatic region, and an increase in atmospheric temperature. The unstable superadiabatic layer also gives rise to convective modes, which are considered briefly. Finally, a model incorporating a magnetic layer residing at the base of the convection zone is constructed and its influence on the frequencies of p-modes assessed. By simply changing the magnetic field strength of this layer, we are unable to reproduce the observed solar cycle variations in p-mode frequencies. The buried magnetic layer supports surface and body magnetoacoustic waves, and a brief study is made of their properties

    Genome-wide association studies for diabetic macular edema and proliferative diabetic retinopathy

    Get PDF
    Background: Diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) are sight threatening complications of diabetes mellitus and leading causes of adult onset blindness worldwide. Genetic risk factors for diabetic retinopathy (DR) have been described previously, but have been difficult to replicate between studies, which have often used composite phenotypes and been conducted in different populations. This study aims to identify genetic risk factors for DME and PDR as separate complications in Australians of European descent with type 2 diabetes. Methods: Caucasian Australians with type 2 diabetes were evaluated in a genome wide association study (GWAS) to compare 270 DME cases and 176 PDR cases with 435 non retinopathy controls. All participants were genotyped by SNP array and after data cleaning, cases were compared to controls using logistic regression adjusting for relevant covariates. Results: The top ranked SNP for DME was rs1990145 (p = 4.10 x 10(-6), OR = 2.02 95%CI [1.50, 2.72]) on chromosome 2. The top-ranked SNP for PDR was rs918519 (p = 3.87 x 10(-6), OR = 0.35 95%CI [0.22, 0.54]) on chromosome 5. A trend towards association was also detected at two SNPs reported in the only other reported GWAS of DR in Caucasians; rs12267418 near MALRD1 (p = 0.008) in the DME cohort and rs16999051 in the diabetes gene PCSK.2 (p = 0.007) in the PDR cohort. Conclusion: This study has identified loci of interest for DME and PDR, two common ocular complications of diabetes. These findings require replication in other Caucasian cohorts with type 2 diabetes and larger cohorts will be required to identify genetic loci with statistical confidence. There is considerable overlap in the patient cohorts with each retinopathy subtype, complicating the search for genes that contribute to PDR and DME biology

    Genetic study of Diabetic Retinopathy: recruitment methodology and analysis of baseline characteristics

    Get PDF
    ARC and NHMRC funded authors may self-archive the author accepted version of their paper (authors manuscript) after a 12-month embargo period from publication in an open access institutional repository.BACKGROUND: Diabetic retinopathy (DR) is a blinding disease of increasing prevalence, caused by a complex interplay of genetic and environmental factors. Here we describe the patient recruitment methodology, case and control definitions, and clinical characteristics of a study sample to be used for genome-wide association (GWAS) analysis to detect genetic risk variants of DR. METHODS: 1669 participants with either type 1 (T1) or type 2 (T2) diabetes mellitus (DM) aged 18 to 95 years were recruited in Australian hospital clinics. Individuals with T2DM had disease duration of at least 5 years, and were taking oral hypoglycemic medication, and/or insulin therapy. Participants underwent ophthalmic examination. Medical history and biochemistry results were collected. Venous blood was obtained for genetic analysis. RESULTS: 683 diabetic cases (178 T1DM and 505 T2DM participants) with sight-threatening DR, defined as severe non-proliferative DR (NPDR), proliferative DR (PDR) or diabetic macular edema (DME) were included in this analysis. 812 individuals with DM but no DR or minimal NPDR were recruited as controls (191 with T1DM and 621 with T2DM). The presence of sight-threatening DR was significantly correlated with DM duration, hypertension, nephropathy, neuropathy, HbA1C and BMI. DME was associated with T2DM (p<0.001), whereas PDR was associated with T1DM (p<0.001). CONCLUSIONS: Adoption of a case-control study design involving extremes of the DR phenotype makes this a suitable cohort, for a well-powered GWAS to detect genetic risk variants for DR.This work was funded by a grant from the Ophthalmic Research Institute of Australia, and Project Grant #595918 from the National Health and Medical Research Council (NHMRC) of Australia. JEC is supported in part by a NHMRC Practitioner Fellowship and KPB by a Career Development Fellowship. Research conducted at Moorfields Eye Hospital was funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology

    Monte Carlo techniques for real-time quantum dynamics

    Full text link
    The stochastic-gauge representation is a method of mapping the equation of motion for the quantum mechanical density operator onto a set of equivalent stochastic differential equations. One of the stochastic variables is termed the "weight", and its magnitude is related to the importance of the stochastic trajectory. We investigate the use of Monte Carlo algorithms to improve the sampling of the weighted trajectories and thus reduce sampling error in a simulation of quantum dynamics. The method can be applied to calculations in real time, as well as imaginary time for which Monte Carlo algorithms are more-commonly used. The method is applicable when the weight is guaranteed to be real, and we demonstrate how to ensure this is the case. Examples are given for the anharmonic oscillator, where large improvements over stochastic sampling are observed.Comment: 28 pages, submitted to J. Comp. Phy

    Simulation of metallic nanostructures for emission of THz radiation using the lateral photo-Dember effect

    Full text link
    A 2D simulation for the lateral photo-Dember effect is used to calculate the THz emission of metallic nanostructures due to ultrafast diffusion of carriers in order to realize a series of THz emitters.Comment: Corrected version of a paper given at 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz

    Evaluating the Association Between Keratoconus and the Corneal Thickness Genes in an Independent Australian Population

    Get PDF
    PURPOSE. A recent genome-wide association study (GWAS) identified six loci associated with central corneal thickness that also conferred associated risk of keratoconus (KC). We aimed to assess whether genetic associations existed for these loci with KC or corneal curvature in an independent cohort of European ancestry. METHODS. In total, 157 patients with KC were recruited from public and private clinics in Melbourne, Australia, and 673 individuals without KC were identified through the Genes in Myopia study from Australia. The following six single-nucleotide polymorphisms (SNPs) that showed a statistically significant association with KC in a recent GWAS study were selected for genotyping in our cohort: rs4894535 (FNDC3B), rs1324183 (MPDZ-NF1B), rs1536482 (RXRA-COL5A1), rs7044529 (COL5A), rs2721051 (FOXO1), and rs9938149 (BANP-ZNF469). The SNPs were assessed for their association with KC or corneal curvature using logistic or linear regression methods, with age and sex included as covariates. Bonferroni corrections were applied to account for multiple testing. RESULTS. Genotyping data were available for five of the SNPs. Statistically significant associations with KC were found for the SNPs rs1324183 (P ¼ 0.001; odds ratio [OR], 1.68) and rs9938149 (P ¼ 0.010; OR, 1.47). Meta-analysis of previous studies yielded genomewide significant evidence of an association for rs1324183, firmly establishing it as a KC risk variant. None of the SNPs were significantly associated with corneal curvature. CONCLUSIONS. The SNPs rs1324183 in the MPDZ-NF1B gene and rs9938149 (between BANP and ZNF4659) were associated with KC in this independent cohort, but their association was via a non-corneal curvature route

    Improving mortality rate estimates for management of the Queensland saucer scallop fishery

    Get PDF
    This research was undertaken on the Queensland saucer scallop (Ylistrum balloti) fishery in southeast Queensland, which is an important component of the Queensland East Coast Otter Trawl Fishery (QECOTF). The research was undertaken by a collaborative team from the Queensland Department of Agriculture and Fisheries, James Cook University (JCU) and the Centre for Applications in Natural Resource Mathematics (CARM), University of Queensland and focused on 1) an annual fishery-independent trawl survey of scallop abundance, 2) relationships between scallop abundance and physical properties of the seafloor, and 3) deriving an updated estimate of the scallop’s natural mortality rate. The scallop fishery used to be one of the state’s most valuable commercially fished stocks with the annual catch peak at just under 2000 t (adductor muscle meat-weight) in 1993 valued at about $30 million, but in recent years the stock has declined and is currently considered to be overfished. Results from the study are used to improve monitoring, stock assessment and management advice for the fishery

    Spinresolved collisions of electrons with rubidium atoms: a search for relativistic effects

    Get PDF
    The search for relativistic effects in electron-alkali scattering is currently a topic of considerable interest. The A2 spin asymmetry parameter is a direct measure of relativistic effects in the electron-atom collision process, as it is entirely dependent on the spin-orbit effect. We present measurements of the A2 spin asymmetry for the 5S 5P transition in rubidium at incident energies of 15, 20, 30 and 50 eV and for elastic scattering at 15, 20, 30, 50 and 80eV. Our results indicate that under these collision conditions, relativistic effects are measurable, in qualitative agreement with the available theory

    Beyond the Hype: A Real-World Evaluation of the Impact and Cost of Machine Learning-Based Malware Detection

    Full text link
    There is a lack of scientific testing of commercially available malware detectors, especially those that boast accurate classification of never-before-seen (i.e., zero-day) files using machine learning (ML). The result is that the efficacy and gaps among the available approaches are opaque, inhibiting end users from making informed network security decisions and researchers from targeting gaps in current detectors. In this paper, we present a scientific evaluation of four market-leading malware detection tools to assist an organization with two primary questions: (Q1) To what extent do ML-based tools accurately classify never-before-seen files without sacrificing detection ability on known files? (Q2) Is it worth purchasing a network-level malware detector to complement host-based detection? We tested each tool against 3,536 total files (2,554 or 72% malicious, 982 or 28% benign) including over 400 zero-day malware, and tested with a variety of file types and protocols for delivery. We present statistical results on detection time and accuracy, consider complementary analysis (using multiple tools together), and provide two novel applications of a recent cost-benefit evaluation procedure by Iannaconne & Bridges that incorporates all the above metrics into a single quantifiable cost. While the ML-based tools are more effective at detecting zero-day files and executables, the signature-based tool may still be an overall better option. Both network-based tools provide substantial (simulated) savings when paired with either host tool, yet both show poor detection rates on protocols other than HTTP or SMTP. Our results show that all four tools have near-perfect precision but alarmingly low recall, especially on file types other than executables and office files -- 37% of malware tested, including all polyglot files, were undetected.Comment: Includes Actionable Takeaways for SOC

    Physiotherapy for functional motor disorders: a consensus recommendation.

    Get PDF
    BACKGROUND: Patients with functional motor disorder (FMD) including weakness and paralysis are commonly referred to physiotherapists. There is growing evidence that physiotherapy is an effective treatment, but the existing literature has limited explanations of what physiotherapy should consist of and there are insufficient data to produce evidence-based guidelines. We aim to address this issue by presenting recommendations for physiotherapy treatment. METHODS: A meeting was held between physiotherapists, neurologists and neuropsychiatrists, all with extensive experience in treating FMD. A set of consensus recommendations were produced based on existing evidence and experience. RESULTS: We recommend that physiotherapy treatment is based on a biopsychosocial aetiological framework. Treatment should address illness beliefs, self-directed attention and abnormal habitual movement patterns through a process of education, movement retraining and self-management strategies within a positive and non-judgemental context. We provide specific examples of these strategies for different symptoms. CONCLUSIONS: Physiotherapy has a key role in the multidisciplinary management of patients with FMD. There appear to be specific physiotherapy techniques which are useful in FMD and which are amenable to and require prospective evaluation. The processes involved in referral, treatment and discharge from physiotherapy should be considered carefully as a part of a treatment package
    corecore