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Abstract

In this thesis, a study is made of the global solar oscillations known as p —modes, modelled by 

a plane-parallel stratified plasma, within which is embedded a horizontal layered magnetic field. 

A magnetohydrodynamic formalism is used to investigate the models. The main aim of the thesis 

is to model the turnover effect in the frequency shifts of the p —modes observed over the course of 

the solar cycle.

Radial oscillations (modes of degree zero) of the Sun are studied for several atmospheric tem­

perature and magnetic field profiles. It is found that the turnover in frequency shifts may be 

obtained by an increase in the strength of the atmospheric horizontal magnetic field (assumed to 

be uniform), coupled with a simultaneous increase in atmospheric temperature.

The effect of a thin superadiabatic layer in the upper convection zone on p —mode frequencies 

is also considered. For this model we study modes of general degree, and find that the observed 

rise and subsequent downturn in the frequency shifts can be duplicated, in the absence of a mag­

netic field, by simultaneously steepening the temperature gradient of the superadiabatic layer and 

increasing the atmospheric temperature. In the presence of a magnetic field, where the atmosphere 

is permeated by a uniform horizontal magnetic field, turnover is reproduced by a combination of 

an increase in magnetic field strength, a steepening of the temperature gradient in the superadia­

batic region, and an increase in atmospheric temperature. The unstable superadiabatic layer also 

gives rise to convective modes, which are considered briefly.

Finally, a model incorporating a magnetic layer residing at the base of the convection zone is 

constructed and its influence on the frequencies of p —modes assessed. By simply changing the 

magnetic field strength of this layer, we are unable to reproduce the observed solar cycle variations 

in p —mode frequencies.

The buried magnetic layer supports surface and body magnetoacoustic waves, and a brief study 

is made of their properties.
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C hapter 1

In trod u ction

1.1 T he Sun and Solar O scillations

Since man first began to  try  and understand the universe around him, the Sun has 

occupied a central position for his questioning. Ancient peoples worshipped the Sun as a 

god, and many cultures have used its motion as a way of forming a yearly calender; a  basic 

understanding of its relative motion which we still rely on today. Since the invention of the 

telescope, the full splendour of the Sun has become apparent, furthering m ankind’s wish 

to  understand it. Today, the Sun still commands central attention as it provides us with 

our very own ‘stellar laboratory’ from which to understand some of the most fundam ental 

physical processes of the universe.

On a universal scale, the Sun is a very ordinary and unexceptional star, but it is 

the only one which we can resolve as a  disc and hence observe in any great detail. As a 

result of its proximity we can observe the many surface features th a t it exhibits such as 

sunspots, prominences and flares. We can also make detailed measurements of its magnetic 

field and the stream  of particles which this is responsible for, the solar wind.

The Sun consists of an ionised gas, which is compressible and therefore capable 

of supporting sound waves. The fact th a t it is strongly stratified by gravity and has an 

abundance of magnetic field configurations means tha t it may sustain waves associated 

with these forces.

For waves to occur, a restoring force is necessary. In the case of sound waves, 

the restoring force is pressure. Gravity gives rise to a restoring buoyancy force within 

the plasma, and magnetism adds restoring forces acting through magnetic pressure and



m agnetic tension. Any study of waves on the Sun is necessarily complicated by the fact 

th a t more often than  not aU of these restoring forces are present at the same time.

The Sun is highly dynamic in nature and so waves are always presents For example, 

there are the running penumbral waves which are seen to  propagate from the umbrae of 

sunspots; flares give rise to  M oreton waves which travel across the solar disc at speeds of 

up to  250,000 miles per hour; and prominences are observed to contain a  range of modes 

of oscillation. By attem pting to understand the multitude of wave phenomena th a t occur 

on the Sun, we gain a clearer understanding of the forces which give rise to them , and the 

nature of the object in which the waves occur.

In this introductory chapter, we briefly describe the structure of the Sun (Section 

1.2) and its magnetic field (Section 1.3). In Section 1.4 we introduce the basic equations 

used in the investigations th a t we undertake. The main interest of this thesis is in global 

solar oscillations and how magnetism influences them; this topic is introduced in Section 

1.5. In Section 1.6 we describe a special type of wave phenomena, magnetic surface waves. 

Finally, Section 1.7 gives an outline of the thesis.

1.2 T he Structure o f th e  Sun

The Sun is a huge ball of ionised gas, a  plasma, with a mass equal to  300,000 Earths 

and a radius over 100 times th a t of the Earth. It is composed primarily of hydrogen (90%) 

and helium (10%). Its interior is highly opaque and we see only its outer surface layers. As 

a result, the structure of the interior is inferred from m athem atical models combined with 

highly accurate measurements of global oscillations detected at the solar surface; this is the 

subject of helioseismology.

Energy is generated in the core of the Sun where tem peratures are in the region of 

1.5xlO^°K. Almost 99% of the energy is generated in the core which contains approximately 

half of the mass of the Sun, and extends outwards to  about a quarter of its radius.

The high energy photons produced in the core do not propagate away into space 

immediately, but are contained by the large opacities found at these depths. They are 

continually being absorbed and re-emitted by ions of lower tem peratures as they make their 

outward progress from the core. The region in which this process occurs is known as the 

radiative zone, a stable region extending from the core to  a distance of approximately 70% 

of the solar radius. It is estimated th a t it takes photons about 10^ years to  traverse the



radiative zone.

At the outer extremes of the radiative zone, radiation alone does not transport 

energy efficiently. The tem peratures are such th a t the electrons begin to combine with 

other elements so th a t photons are absorbed more easily. As the radiative conductivity is 

reduced, the magnitude of the tem perature gradient is increased until the tem perature is 

decreasing so rapidly th a t convective instabilities occur. As a result, turbulent convection 

sets in giving rise to  the bulk motion of plasma in a cellular pattern . Convection is the 

main process of energy transport in this region, known as the convection zone, extending 

from the radiative zone outwards for a  further 2 0 0 , 0 0 0  km.

Above the convection zone, radiation may escape directly from the Sun and the 

m aterial returns to  convective stability. This region is where the bulk of the light th a t we 

see is em itted from, called the photosphere. The photosphere is thin with a width of only 

500 km. At the top of the photosphere the tem perature drops to  a minimum at around 

4170°K, refered to  as the tem perature minimum.

The region lying above the tem perature minimum is known as the chromosphere, 

where the tem perature begins to  rise slowly. The chromosphere has a  thickness of approxi­

mately 2 0 0 0  km above which the tem perature rises exceedingly quickly to several hundred 

thousand degrees Kelvin over what is known as the transition region.

Finally, above the transition region lies the corona where the tem perature rises 

to several million degrees. The corona extends into space beyond the E arth . Near surface 

features of the corona are solar prominences, coronal loops and coronal holes.

For a fuller description of the solar structure, see Priest (1982).

1.3 T he Solar M agnetic F ield

Many of the features observed on the Sun owe their existence to its magnetic field. 

It may influence the plasm a in many ways, some of which are passive while others are active. 

For example, it may passively channel the plasma in a flow, or act as a therm al blanket 

insulating one volume of plasma from a neighbouring, thermally different, volume. Alter­

natively, the magnetic field introduces forces which may actively m anipulate the plasm a to 

form various structures or may store energy and then suddenly, and violently, release it. 

Additionally, the magnetic field supports waves and drives instabilities.

The magnetic field and plasma of the solar atmosphere are very strongly inter­



dependent. There are several ways of gauging the relative importance of each in solar 

applications. Firstly, we have the magnetic Reynolds number Rm given by

Rm =  — , (1-1)
V

where r) (=l//Lio<r, where po is the magnetic permeability of free space and cr the electrical 

conductivity) is the magnetic diffusivity, u is a characteristic flow speed of the plasma, 

and T is a characteristic length scale for changes in the field and in the flow. For most 

solar phenomena the length scales are large (rv IMm) and as a result R^. is enormous 

(py 1 0 ® — 1 0 ^^), so for most processes the magnetic field and the plasma act as if they are 

‘frozen’ together. To determine which forces dominate however, a  commonly used param eter 

is the plasma /3, usually defined by the ratio of the plasma pressure to the magnetic pressure. 

In a  low P plasma, the magnetic field is dominant, while in a  high P plasma the fluid will 

dominate over the magnetic field. An example of a low P plasma is the corona where the 

relatively strong magnetic fields occupy a highly rarefied plasma, while in the interior of the 

Sun extremely high gas pressures serve to  ensure dominance of the plasma over magnetic 

fields of even the highest strengths.

The solar magnetic field is believed to be generated in a shallow layer a t the 

base of the convection zone. The field is thought to be generated by a dynamo action, 

perhaps in the form of f l u x  tubes (self contained tubes of intense magnetic flux). The 

magnetic field is subject to instabilities which allow flux to break free from this reservoir. 

The flux tubes then rise under magnetic buoyancy and through the action of the turbulent 

forces of the convection zone to  eventually emerge at the solar surface. At the surface, the 

cellular structure of the granules and supergranules serve to  aggregate the flux at the cell 

boundaries. At these margins, features such as sub-telescopic intense magnetic flux tubes 

with field strengths of l- 2 kG and the larger sunspots, with field strengths of around 3kG, 

are formed.

Above this, in the chromosphere, the flux tubes expand rapidly with height owing 

to  the rapid decrease of the plasma pressure. As a result, the magnetic field begins to  fill 

the entire atmosphere, whereas below this the atmosphere is largely devoid of magnetic flux 

(except in the intense flux tubes and sunspots). This gives rise to  a  magnetic field th a t is 

in the form of a magnetic canopy which is roughly horizontal in nature (Giovanelli 1980; 

Giovanelli and Jones 1982; Jones and Giovanelli 1983).

In the corona features such as coronal loops, prominences, flares and coronal mass
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Figure 1.1; A schematic representation of the solar magnetic field from the photosphere 

outwards, taken from Spruit and Roberts (1983).

ejections are observed, aU resulting from the presence of the magnetic field. The high 

tem perature of the corona is also thought to  result from the magnetic field through such 

processes as, for example, magnetic reconnection and the damping of Alfvén waves. A 

schematic representation of the solar magnetic field is given in Figure 1.1, taken from Spruit 

and Roberts (1983).

AU of the magnetic features observed on the Sun tend to show a cyclic nature 

in their number, size and intensity. For some years the Sun wiU be quiet, with very few 

coronal features and few sunspots. Gradually, activity on the Sun wiU increase with more 

sunspots being observed, with the latitudes at which they emerge foUowing a distinctive 

pattern . Also, prominences become more abundant and the occurrence of flares becomes 

more common. The activity wiU peak for a maximum period, when the Sun is highly active, 

after which the activity wiU decrease sharply. The process then begins once again. This 

pa ttern  of behaviour is known as the solar cycle, with an average period of 11 years. The 

most recent maximum occurred in 1989, and at the time of writing we are again approaching 

this phase in the Sun’s cycle.

For a more detailed description of the Sun’s magnetic field and its variation with 

the solar cycle, see Priest (1982).



1.4 B asic E quations

Before introducing the theoretical work carried out on solar oscillations, we shall 

present the basic equations which describe the physical processes governing the motions of 

a plasma typically found in the Sun.

W ithin the Sun, the predominant forces likely to influence a plasma element are

fluid and magnetic ones. As a result, the equations which describe the motion of such a

plasm a element arise from the combination of fluid mechanics and electromagnetism. The 

field studying the interaction between a plasma and a magnetic field, combining these two 

areas of physics, is known as magnetohydrodynamics, or MHD.

The field of magnetohydrodynamics relies upon various assumptions (see, for ex­

ample, Priest 1982). Primarily, the plasma is taken to be a single continuous fluid, assumed 

to  be in therm odynam ic equilibrium. The plasma is assumed to  be compressible and of 

infinite conductivity. Also, as most physical velocities found on the Sun are much less than 

the speed of light, relativistic effects are ignored. The basic equations are then formed 

by combining Maxwell’s equations with the laws of fluid mechanics (for a more in depth 

discussion of the equations, see Priest 1982).

Let us consider a plasma with density p, pressure P , and tem perature T , moving 

under the influence of gravity g. Assume also th a t the plasma fluid is moving with a 

velocity u , within a magnetic field B . The plasma is governed by conservation of mass, 

i.e. no m aterial is being destroyed or created in a control volume. This gives rise to the 

equation of mass continuity,

+ /)V • u =  0. (f-2)

The derivative D / D t  is the tem poral rate  of change as one moves with a fluid element. It

is known as the advective (or convective) derivative:

W hen considering a plasma element, we also assume th a t there is no exchange of 

heat between the element and the surrounding plasma. We therefore have a simple adiabatic 

energy equation,

D P  j P D p
Dt p Dt^

(1.4)



where 7  is the adiabatic index of the plasma ( 7  is the ratio of the specific heat a t constant 

pressure to  the specific heat at constant volume).

A further assumption is th a t the plasma acts as an ideal gas, giving an equation 

of s ta te  of the form

P  =  RpT,  (1.5)

where R  (=  fcs/mau, where k s  is Boltzm ann’s constant and rriav is the mean particle mass 

of the plasma) is the gas constant.

W ith the neglection of diffusivity in Maxwell’s equations, we are able to derive an 

equation for the magnetic induction of the plasma of the form

^  = V X (u X B). (1.6)

W ith no diffusive term  being present, this equation implies th a t the fluid and the magnetic 

field are effectively frozen together, a good approximation for most solar applications (as 

we have pointed out in Section 1.3).

The motion of the plasma is governed by the pressure, magnetic and gravitational 

forces acting upon it. We therefore have a momentum equation of the form

P ^  =  - V P  +  />g +  j x B ,  (1.7)

where j  is the current density, given by Ampere’s law

//j = V X B. (1.8)

The j  X B term  arising in Equation (1.7) is known as the Lorentz force. It may be 

decomposed by means of a triple vector identity into the form

j  X B = i ( B  . V)B -  V ( g )  . (1.9)

The first term  on the right hand side of Equation (1.9) represents a tension force parallel to 

B (and hence anisotropic) which arises when the field lines are curved; the second term  on 

the right hand side of Equation (1.9) represents the gradient of an isotropic pressure force. 

The component of the magnetic pressure parallel to  the magnetic field must cancel with the 

corresponding component of tension as the Lorentz force is given by j  X B and hence must 

be normal to B.



Finally, the magnetic field is constrained by the condition th a t there are no sources 

or sinks of magnetic flux. Hence

V - B  =  0. (1.10)

These are the basic equations th a t we shall use throughout this thesis,

1.5 G lobal O scillations o f  th e  Sun

Almost forty years ago, it was discovered th a t the visible surface of the Sun did not 

behave in a random  way but in fact exhibited a regular oscillatory motion. The oscillations 

were first seen in Doppler images of the Sun obtained at the Mount Wilson Observatory, 

with a dominant period of 5 minutes and with velocity amplitudes of 1 m s“  ̂ (Leighton 

1960; Leighton et al. 1962). The discovery of these oscillations was later confirmed by Evans 

and Michard (1962). Subsequently, several observational studies were made of the oscilla­

tions in order to  determine their characteristics and their causes. However, observational 

da ta  was hard to interpret at the time because of the restriction to  a single dimension of 

power spectral analysis techniques. This problem was overcome with the application of 

two dimensional power spectra to  the oscillations. A two dimensional power spectrum , also 

known as a diagnostic diagram, plots the observed power as a function of the frequency and 

the horizontal wavenumber of the wave. The first diagnostic diagram to be constructed from 

the observational da ta  was presented by Deubner (1975), using da ta  collected by the magne- 

tograph of the Fraunhofer Institu te attached to  the domeless Coudé refractor in Anacapri. 

From an application of diagnostic diagrams to the solar oscillations, a much greater under­

standing of the waves was gained; for example the obvious spatial and tem poral coherence 

of the waves, and the indication th a t the oscillations were evanescent in the chromosphere. 

Today, it is known th a t the surface of the Sun displays thousands of individual waves, each 

with its own distinct frequency (Libbrecht, W oodard and Kaufmann 1990; Elsworth et al. 

1990).

1 .5 .1  F o r m a tio n  o f  th e  m o d e s

The observation th a t the visible surface of the Sun oscillated in a regular manner 

posed an interesting problem for theoreticians. An initial model, for example, attem pted
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Figure 1.2; A diagnostic diagram showing the frequency v of the p —modes versus degree 

/. Each Ridge corresponds to  modes of different radial order, n. (Figure reproduced from 

Duvall et al. (1987)).

to explain the five minute oscillations as a response of the photosphere to convective over­

shooting of the granules: the theory of ‘photospheric ringing’ (Schmidt and Zirker 1963; 

Meyer and Schmidt 1967). There were several flaws to this model, however, as it predicted 

th a t the generated acoustic waves should propagate isotropicaUy in the horizontal as well 

as the vertical direction. This model had to be ruled out therefore as observations had al­

ready shown th a t the 5 minute oscillations were mainly vertical motions. Also, observations 

showed that there was no correlation between the appearance of a granule and the onset of 

oscillations (Frazier 1968). Various other models have been applied to this problem, such as 

chromospheric gravity modes (Uchida 1965). All of these models were shown to be incorrect 

as they predicted a different power spectra in the diagnostic diagram to tha t observed.

The explanation for the 5-minute oscillations was finally provided by Ulrich (1970) 

and, independently, Leibacher and Stein (1971). These workers predicted tha t the obser­

vations displayed a visible indication of the trapping of acoustic waves in a resonant cavity 

beneath the photosphere. In a plot of frequency against horizontal wavenumber they pro­

duced very distinctive parabolic dispersion curves with separately spaced power ridges. 

The parabolic ridges were postulated to arise from the constructive interference of standing 

acoustic waves within the Sun. It was not until the observations of Deubner (1975), who 

was attem pting to carry out better tem poral and spatial analysis of the oscillations, which
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showed clearly the separately spaced parabolic power ridges, was the theory of trapped 

modes beneath the photosphere accepted. A present day high quality diagnostic diagram 

is shown in Figure 1.2.

The formation of trapped modes in an acoustic cavity within the solar interior 

can be understood in the following way. A resonant cavity may be seen as a region in 

which waves can propagate, in a vertical direction say, but is bounded above and below by 

non-propagating regions effectively trapping the waves. If there is a disturbance at some 

position within the solar interior, acoustic waves will propagate outwards in all directions. 

A wave th a t is propagating towards the centre of the Sun at a  non-zero angle to  the vertical 

wiU encounter progressively higher tem peratures and thus increasing sound speeds. As the 

wave is not propagating exactly vertically, the end of the wavefront nearer the centre of the 

Sun travels faster than  the end nearer the surface. The effect of this is to tu rn  the wave 

until at some depth it is propagating horizontally at which stage it begins to  propagate 

outwards towards the solar surface, as shown in Figure 1.3. The depth at which the wave 

becomes horizontal defines the lower boundary of the cavity.

Through the process of refraction, the wave finds itself propagating outwards to­

wards the solar surface, its direction becoming more vertical as it approaches the photo­

sphere. At the surface, a rapid decrease in the plasma density is present. Specifically, at 

the tem perature minimum the gas density decreases with height at a greater rate  than  at 

any other level of the Sun. A wave may behave in two different ways on encountering the 

solar surface. If the wave is above a certain frequency, the cutoff frequency (Lamb 1932), 

then it is free to propagate away into space and no cavity is formed. However, if the density 

scale height is such th a t it is less than  the vertical wavelength of the wave, the photosphere 

acts as an effective density discontinuity reflecting the wave back into the solar interior and 

so forming the upper boundary of the acoustic cavity. The acoustic cutoff frequency tha t 

divides these two behaviours has a value of around 5.43 mHz at the tem perature minimum.

These two conditions are not the only ones necessary for formation of a trapped 

wave within the cavity. The waves must also exhibit constructive interference; for certain 

waves, the repeated process of refraction and reflection bring them  back to  their original 

position. For constructive interference to occur the wave should return  to its original starting 

point after an integral number of reflections at the solar surface. This introduces the integer 

/, called the degree of the wave, equivalent to  the number of reflections the wave undergoes, 

and is essentially a measure of the horizontal wavelength. Also, the wave returning to  the
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Figure 1.3: The refraction of a  plane wave front propagating a t a non-zero angle to  the 

vertical (from Johnston 1994).

starting  point should be in phase with the original wave. This final condition determines 

the frequency of the wave and its overtones. These are classified by the integer n , called 

the radial order of the wave. The radial order is simply the number of nodes the wave has 

on a radius of the Sun. These continued processes lead to  a standing wave p a tte rn  being 

formed within the cavity. We caU the particular configuration of the standing wave with 

respect to the cavity a mode.

Acoustic modes with large horizontal wavelengths (and hence low I) travel to 

great depths within the solar interior as they are refracted more gradually. As a result 

some standing waves cover the entire Sun while others are confined to the solar surface 

(Figure 1.3). The description of standing mode formation given above applies only for 

modes propagating at a non-zero angle to the vertical. However, there are also modes for 

which the whole surface of the Sun is oscillating in phase; these are modes of degree zero 

(I = 0). The wavefront of these modes is spherical and as such refraction is not felt by the 

modes and their cavities span the entire Sun. We investigate this special case of zero degree 

modes in Chapter 2.

The properties of cavity formation and the degree I serve to select the frequency of 

each mode. It was realised th a t through a diagnostic study of the frequencies of these modes 

the internal structure of the Sun could be determined. Through the process of inversion 

(see Deubner and Gough 1984), it is possible to use the measured frequencies to  determine
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the internal sound speed profile of the Sun and thus infer, for example, the tem perature 

and density at various depths. Hence the field of Helioseismology  was born, analogous to 

the study of the E arth ’s internal structure through the seismology of earthquake waves.

1.5.2 Spherical harm onics

For the Sun, three dimensional standing waves give rise to approaching and re­

ceding areas of the surface. The velocity pattern  tha t appears for this can be divided into 

radial and angular parts. As mentioned earlier, the radial structure of the mode is described 

by the radial order n. The angular part, however, introduces two numbers owing to  the 

sphericity of the Sun. Firstly, we have the spherical harmonic degree, /, described above, 

and secondly there is the azimuthal order m  which, together with /, describes the spatial 

variation of the modes. The integer m  is simply the number of nodal lines perpendicular 

to  the solar equator. Ignoring the rotation of the Sun, m  is not required because in a 

non-rotating sphere modes of the same I and n, but different m, have the same frequency. 

We mention briefly here th a t the small differences in measured frequencies between modes 

of different m  is used to  determine the internal rotational velocity of the Sun.

For the integers I, n and m, the radial component of a perturbation is described by 

the eigenfunction ^ in spherical co-ordinates (r, 9, (f)), where r  is the radius, 9 the colatitude, 

and (j) the longitude. The general solution of the radial displacement is then given by

( l .H )

where Ain{r) is the radial dependence of the eigenfunction of the mode. The spherical 

harmonic Yi^(9,<f>) =  PJ^{cos 9) where Pp{cos9)  is the associated Legendre function. 

The angular frequency cVmnl depends in general on the values of /, m  and n  and is related 

to the cyclic frequency i/mni by LOmnl — The measurement of i/mnl provides the

basic da ta  of helioseismology, for use in the inversion process or for comparison with the 

calculated oscillation frequencies of solar models, for example. The degree I may take values 

0 ,1 ,2 ,... while the value of m is restricted to be between —I and +1, since Pp{cos9)  =  0  if 

|m| > I.

The spherical harmonic function displays a complicated behaviour for general val­

ues of I and m. If m  =  0, there are no nodal lines perpendicular to  the equator and the 

mode is termed zonal. If  I = m  the mode is sectoral, and if / >  m  we have what is known 

as a tesseral harmonic.



13

The function A = Ain(r) is determined by an ordinary differential equation in 

r , the solution of which, under suitable boundary conditions, gives the eigenmodes and 

eigenfrequencies of the system. For a spherically symmetric model, where the modes are 

independent of m, the radial equation for adiabatic oscillations, ignoring any perturbation 

to the gravitational potential, is given by (see, for example, Deubner and Gough 1984)

dr"̂

where

+ $  =  0 , ( 1.12)

$  =  cIp  ̂divA, = ^ ( 1  -  2H'), ^  ^  ^

The param eters appearing in Equation (1.13) are the density scale height H ,  the buoyancy 

(or Brunt-Vaisala) frequency ujg, and a generalisation of the acoustic cutoff frequency 

(Lamb 1908). The prime ' denotes differentiation with respect to r. The Brunt-Vaisala 

frequency, like the acoustic cutoff frequency, describes different types of mode behaviour. 

If ùjg > 0, LJg is the natural frequency for buoyancy driven oscillations, but if LVg < 0, then 

ojg represents the complex growth rate of unstable convective modes (see Chapter 3). In a 

gravitationaUy stratified atmosphere, marginal stability to  convective motions is obtained 

when =  0 .

In this thesis, we shall not be concerned with spherical effects but will instead 

adopt an approach which uses a plane-parallel stratified model. This approximation is not 

valid for low-/ modes. Under this assumption the equivalent form of Equation (1.12) is 

given by

dx^

where x  is the coordinate in a horizontal direction and kx is the horizontal wavenumber. 

Comparison of Equations (1.12) and (1.14) shows th a t equivalent modes are being consid­

ered when

= Æ 5 ,  (1,15)
■^sun

where Rsun is the solar radius (Rsu7i=6.96 X lO^km). The horizontal wavelength of the 

wave is then given by = 2tç jkx.

4- $  = 0, (1.14)
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1.5.3 H elioseism ology

In Section 1.5.1 we have described the existence of the 5-minute oscillations as 

standing acoustic waves in a  cavity in the solar interior, and introduced their m athem atical 

description in terms of spherical harmonics in Section 1.5.2. The oscillations formed by 

this process are term ed p —modes with pressure being the dominant restoring force. This 

notation was first introduced by Cowling (1941). As mentioned earlier, the value of the 

Brunt-Vaisala frequency gives rise to  other fluid motions when 0. These modes have 

buoyancy as the restoring force on a displaced plasma element: these are term ed gravity 

modes (p—modes) for an atmosphere where ojg > 0 , whereas if < 0  they are convective 

modes (see Chapter 3, where we have term ed them -m odes). Finally, a  third global 

oscillation is the fundam en ta l  or / —mode. It lies between the p —modes and p —modes in 

a dispersion diagram and is analogous to  an interfacial surface gravity wave on deep water, 

with the dispersion relation =  gk^. The fluid motions associated with this mode are 

incompressible and the mode is effectively independent of the therm al structure of the Sun. 

Its energy is concentrated around the photosphere and is channelled horizontally, having no 

vertical propagation.

Possibly the greatest value of the p—mode frequencies in helioseismology has been 

in their use to determine the internal structure of the Sun. Modes of different horizontal 

wavenumbers reside in cavities of different depths, hence a spectrum  of frequencies provides 

information on the internal structure at all levels. For example, low I modes reside through­

out almost the whole of the solar interior while high I modes are confined to  layers near 

the surface and as such are only dependent on the structure of these depths. At present, 

helioseismology is one of only two methods capable of inferring the interior structure of 

the Sun. The other m ethod is the measurement of solar neutrinos which em anate from the 

nuclear reactions in the solar core. However, the observed neutrino flux is only about one 

third of th a t predicted by standard solar models (Davis, Evans and Cleveland 1978).

Not only are helioseismological da ta  sets used to infer the variation of, say, the 

sound speed within the solar interior, but the measured frequencies also provide a perfect 

benchmark against which to test the various models of solar structure. In a m ajority of 

models of the structure of the Sun, the model is derived from standard stellar evolution 

theory and then calibrated to the luminosity and the surface abundance of elements seen on 

the Sun. For these models the frequencies of their oscillations may be obtained numerically.
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For simplicity the standard solar model calculations assume th a t the Sun is spherically 

symmetric, tha t the oscillations are adiabatic and linear, and tha t magnetism and convection 

are negligible (Christensen-Dalsgaard 1986).

Standard solar models predict frequencies tha t are very close to those observed, 

but there are errors which are greater than the observational accuracy. This implies tha t 

something is missing from these models. A number of candidates tha t may possibly rectify 

these discrepancies have been suggested. For example, modifications to  the equation of state 

may be necessary, the addition of convection and turbulence would be of benefit, and the 

inclusion of other particles such as W IM Ps in the solar core. Also, Christensen-Dalsgaard et 

al. (1988) have reported th a t by using a sophisticated equation of state , the errors increase 

with increasing I. This might indicate the position of the problem since high / modes reside 

near the surface. In fact, the superadiabatic layer of the outer convection zone is poorly 

understood owing to  partial ionisation of the m aterial there. It is also the place of transition 

from optically thick to  optically thin radiation, and from high (3 to low (3 plasmas. From 

this we may see th a t much work remains in modelling and understanding the interior of 

the Sun. For a  description of helioseismological techniques see the review by Deubner and 

Gough (1984).

1 .5 .4  S o la r  c y c le  v a r ia t io n s  in  p—m o d e  fre q u en c ie s

The frequencies of the p —modes are measured to such an accuracy th a t the error 

is only about one part in ten thousand. The precision in these measurements has allowed 

observers to  notice small but systematic changes in the p —mode frequencies over the  solar 

cycle.

Figure 1.4 displays the measured frequency shift as a function of mode frequency, 

averaged over aU observed modes. Figure 1.4 is reproduced from Libbrecht and W oodard 

(1991) and compares observational da ta  sets obtained in 1986, 1988 and 1989. Frequency 

differences between 1986 and 1988 are shown as circles, while the squares show differences 

between 1986 and 1989. The results of Figure 1.4 show that with an increase in solar activity 

(1986 was solar minimum and 1989 was on the rise phase towards solar maximum) there 

is a rise in p —mode frequencies up to frequencies of about 3.9 mHz. Above this frequency, 

some effect seems to stop the frequency increase, and the frequency shift falls steeply. The 

observed effect at about 3.9 mHz is called the ‘turnover’. The main aim of this thesis is to
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Figure 1.4: The observed frequency shift (in n llz), averaged over /, plotted against the 

original mode frequencies (in mHz). The circles represent the observed changes between 

1986 and 1988 while the squares represent the changes between 1986 and 1989; error bars 

are represented by the vertical lines. (Reproduced from Libbrecht and W oodard (1991)).

a ttem pt to pinpoint the physical processes occurring over the solar cycle which give rise to 

this distinctive behaviour.

The most well documented and observed global variation of the solar cycle is 

th a t of the magnetic field. Three magnetic regions have been investigated to  explain the 

modification of mode frequencies with this in mind: the strong fields believed to  reside in 

the convective overshoot region a t the base of the convection zone; the fibril fields of the 

photosphere; and the canopy fields of the chromosphere.

The effect of a  magnetic field at the base of the convection zone on low I p —mode 

frequencies has been considered by Roberts and Campbell (1986) and Campbell and Roberts 

(1986). They suggested th a t the frequency changes over the solar cycle observed by W oodard 

and Noyes (1985) could be explained by variations in the strength of the field. Their work 

implied a peak field strength of 5x10® — 1 0 ®G in the field at the base of the convection zone, 

which is large for dynamo theories but is not unrealistic in view of the high gas pressures 

a t th a t depth. We take up this problem in Chapter 4.

Other models have addressed the problem of the interaction of fibril fields beneath 

the photosphere with acoustic waves (e.g. Bogdan and Zweibel 1985; Zweibel and Bogdan 

1986; Bogdan and C attaneo 1989; Zweibel and Dappen 1989; and Rosenthal 1995). The
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approach used in these models is to  consider a population of scatterers (magnetic flux tubes) 

whose scattering properties are known and average the effect these have on acoustic wave 

frequencies. Zweibel and Bogdan (1986) found th a t frequency changes of the order 0.1%- 

0.3% were possible and Rosenthal (1995) was able to produce results in broad agreement 

with the observations with frequency shifts of the order 1 part in 10“*. Another study of 

photospheric fields and their influence on the frequencies of the p—modes has been carried 

out by Goldreich et al. (1991). They suggested th a t the positive component of the frequency 

shift was induced by a rise in strength of the photospheric magnetic field to an rms value 

of 200 G from solar minimum to maximum, and tha t the observed drop at high frequency 

was due to the increase in tem perature of the chromosphere combined with a chromospheric 

resonant cavity.

The importance of a chromospheric canopy field on influencing p —mode frequencies 

has been investigated by Campbell and Roberts (1989), Evans and Roberts (1990, 1992), 

Jain and Roberts (1994, 1996), Johnston (1994), and Johnston et al. (1994). A canopy 

type field confined to the chromosphere wiU affect most strongly modes trapped near the 

surface (i.e. interm ediate and high I modes). As a result it is sufficient to consider modes 

with short horizontal wavelengths, allowing plane-parallel models to be used. Campbell and 

Roberts (1989) used a model consisting of a field-free convection zone, with a stably stratified 

linear tem perature profile, overlain by an isothermal atmosphere perm eated by a horizontal 

magnetic field. The field is structured in such a way as to provide a constant Alfvén speed 

in the atmosphere, taken to represent the canopy field of the chromosphere. Campbell and 

Roberts (1989) showed th a t an increase in magnetic field strength decreased the p -m o d e  

frequencies but adm itted th a t their model underestimated the effect of a magnetic canopy.

Evans and Roberts (1990) and Jain and Roberts (1994) used the same interior 

profile of Campbell and Roberts (1989) but included a uniform magnetic field in the a t­

mosphere. In a model chromosphere of this kind, the Alfvén speed increases exponentially 

(with height) without bound and is at the other extreme of the magnetic field profile used 

by Campbell and Roberts (1989). Evans and Roberts (1990) were concerned with investi­

gating the changes in mode frequency brought about by changes in magnetic field strength. 

They showed that the frequencies of the p —modes increased with an increase in magnetic 

field strength, but this alone could not produce the observed turnover in the frequency 

shifts. Jain and Roberts (1994) combined increasing the magnetic field strength of the 

atmosphere with increasing tem perature in the same region. Through this they were able
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to  reproduce qualitatively the observed solar cycle variation in p —mode frequencies, but 

found th a t they required unrealistically large changes in chromospheric tem perature to  do 

so (A T  % 1500°K).

In this thesis, we continue the investigation into possible explanations for the 

observed solar cycle variations in p —mode frequencies.

1.6 M agn etoacou stic W aves

In an astrophysical plasma such as th a t found in the Sun, the magnetic field tends 

to give structure to the medium within which it resides. The magnetic structuring of the Sun 

is particularly evident from the surface outwards in features such as sunspots, intense flux 

tubes in the photosphere, prominences and spicules. Where the plasma is bounded in this 

fashion, surrounded by plasma of diflerent properties, we find surfaces rather than  a uniform 

medium. Also, the presence of gravity adds an extra complication through stratification 

of the plasma; this is of great importance beneath the photosphere although its effect is 

less pronounced in the corona. The magnetic field and gravity thus create inhomogeneity  

in the solar atmosphere which greatly influences the properties of solar oscillations. As 

mentioned, the magnetic field serves to give rise to surfaces, but stratification introduces 

several additional effects. Firstly, gravity may serve to amplify or dampen the amplitude 

of propagating waves. Secondly, it may cause evanescence in waves in some regions which 

are oscillatory in others; a good example of this behaviour is the p —modes studied in the 

subsequent chapters.

The formation of interfaces through magnetic fields (or gravity) gives rise to  the 

existence of surface waves, waves which exist on a strong discontinuity but which spatially 

decay away from the interface. Surface waves exist alongside the body waves of the plasma 

which are also modified by the presence of a sharp change in physical conditions. The body 

waves are the main form of communication between different regions. Before discussing 

of surface wave phenomena, we present briefly the results describing the body waves of a 

u n i fo r m  medium.

In all wave analysis, an equilibrium plasma structure is perturbed and the resulting 

disturbance is investigated to see if it propagates as a wave. Consider an infinite equilibrium 

containing uniform gas pressure Pq, density po, tem perature To, and magnetic field Bq =
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(0 ,0 , jBo). Gravity is ignored. A perturbation in, say, pressure of the form

P{x, y, z, t) = Po + Pexp [i{u>t -  K  • r ) ] , (1.16)

where Pq is the equilibrium pressure, P  the amplitude of the disturbance, w the angular 

frequency, and K  (=  {kx ,ky ,kz))  the wave vector, applied to Equations (1.2)-(1.10), gives 

the dispersion relation (see, for example, Roberts 1985):

(w:» -  -  (c  ̂4 - =  0,  (1.17)

where K  =  jK[, Cs is the sound speed and Va the Alfvén speed.

Three forms of wave are present in the dispersion relation given by Equation 

(1.17). Firstly, there is an Alfvén wave, travelling along the magnetic field (and hence 

anisotropically) a t the Alfvén speed, given by the round bracketed term  in Equation (1.17). 

Additionally, there are two magnetoacoustic waves known as the fast and slow m agnetoa­

coustic waves. These waves have associated fast speed c / (=  (Cg +  ^^6 . slow cusp

speed Ct (=  CsVaJcf), and can be seen to  be hybrids of magnetic and sound waves. The 

fast magnetoacoustic wave is close in character to a sound wave whereas the slow wave is 

similar in nature to  an Alfvén wave. However, as we have mentioned, the assumption of 

uniformity is rarely appropriate in the solar atmosphere. The sharp transitions present in 

density, pressure and magnetic field modify the waves described above and magnetoacoustic  

sur face  waves  propagate along the surfaces produced by such structures.

There are many candidates for surface waves. For example, there is the running 

penumbral wave seen to em anate from the umbrae of sunspots and which propagates be­

tween the penum bra and the underlying, generally field-free, plasma. These have been 

modelled as magnetoacoustic-gravity modes by Nye and Thomas (1974, 19766) and as fast 

magnetoacoustic surface waves by Small and Roberts (1984). Also, there is the / —mode, a 

buoyancy driven mode analogous to  deep water waves.

1.7 O utline o f  th e  R em ain ing C hapters

In this opening chapter, we have given a brief description of the Sun, with regards 

to  the large diversity of oscillations th a t it may sustain, its structure, and its magnetic field. 

In particular, we have introduced and described the main area of interest in this thesis, the 

global solar oscillations known as p —modes and the variation of their frequencies over the
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solar cycle. The basic models presented are designed such th a t analytical methods may 

be used throughout. Through these models, we attem pt to determine the physical changes 

which give rise to the observed variations in p —mode frequencies, particularly the turnover 

seen at 3.9mflz (Figure 1.4).

In Chapter 2 , we consider a model specifically constructed to  investigate modes 

of degree zero, where / =  0. The model is used to analyse the effect of an overlying 

chromosphere on the frequencies of these modes. We do this by applying different magnetic 

field profiles and tem peratures in the chromosphere. The dispersion relations obtained are 

solved numerically and the results are compared to  observational da ta  for low degree modes.

In Chapter 3 we tu rn  our attention to  modes of general degree (/ ^  0) and in­

vestigate another potential surface layer which may be the site of the physical changes 

responsible for p —mode frequency variations. The region investigated is the thin supera- 

diabatic layer of the upper convection zone. A three layer model is used to  include this 

layer and a complicated dispersion relation is derived. We solve the dispersion relation 

numerically and evaluate the frequency shifts brought about by varying the tem perature 

profile of the superadiabatic layer and the tem perature of the photosphere above it. We 

also investigate the effects of magnetic fields present in the atmosphere but, for analytical 

convenience, use the somewhat crude profile of a uniform horizontal magnetic field. The 

inclusion of a  superadiabatic layer in the model gives rise to convective modes associated 

with this layer. In this chapter we also consider their sensitivity to  the physical variations 

applied to  the p —modes. Again, the results are compared to the relevant observations.

In Chapter 4 we move deeper into the Sun and develop a model which allows us 

to  calculate frequency changes in the p —modes brought about by a magnetic layer at the 

base of the convection zone. Again, a complicated dispersion relation is obtained which is 

solved numerically for different sub-convective magnetic field strengths. The main focus of 

attention is on general degree modes, but we also adapt the model of Chapter 2 to analyse 

the effect th a t this layer has on the radial modes.

The presence of a magnetic layer below the convection zone gives rise to  the surface 

and body modes associated with it. In Chapter 5 we make a brief investigation of their 

properties. A detailed study of compressible magnetoacoustic surface modes in the presence 

of gravity is, to our knowledge, stiU to be undertaken.

Finally, in Chapter 6  we summarise the main results of the thesis and present some 

suggestions for further investigations.
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C hapter 2

M od es o f  D egree Zero

2.1 In troduction

In Chapter 1, we discussed how the solar p —modes are formed by the trapping 

of acoustic waves within a cavity in the Sun’s interior. The cavity is formed at its lower 

boundary by the increase of the sound speed with depth, leading to the process of acous­

tic refraction, and at its upper boundary by the somewhat more complicated reflective 

properties of the photosphere and chromosphere.

The detailed structure of the solar atmosphere above the photosphere may be 

of prime importance in bringing about the slight changes in p —mode frequencies th a t are 

observed over the solar cycle. This is because the rate of evanescence in the modes, i.e. 

the rapidity with which the eigenmodes decay, is determined in this region. One would 

expect frequency shifts for low degree modes to  be slight as these modes are very deeply 

penetrating, but the upper boundary does dictate the line structure of the modes. By way 

of illustration, we may consider two extreme cases of an upper boundary: firstly, we may 

have a rigid wall as an upper boundary which implies an infinite rate  of evanescence, i.e. 

aU modes are trapped; or, at the other extreme, there may be an open upper boundary, 

analogous to  the open end of an organ pipe, where there is zero rate  of evanescence.

So then, with these two physical processes trapping acoustic waves in a cavity in 

the solar interior, we should expect to see many modes of different degree, radial order and 

frequency superimposed upon each other at any one time. However, there is one particular 

class of oscillation th a t stands out from the others, at least from a theoretical viewpoint, 

namely modes of degree zero (/ =  0 ).
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W hy are zero degree modes unique? The answer lies in th a t these modes are 

purely radial in nature and as a result no refraction takes place within the solar interior. 

The entire surface of the sun is oscillating in phase for this mode, with no nodal lines being 

present, and reflection is the only physical process forming a standing wave cavity.

To gain some insight into these modes, consider again the wavefront picture de­

scribed in Section 1.5.1. At any point in the sun, we will encounter a  spherical wavefront, 

every point of which is moving towards the centre of the sun with the same phase speed. 

As no part of the wavefront is deeper than  any other, the wave is not refracted by the 

increasing tem perature. This wave front will eventually pass through the centre of the sun 

and expand outwards again until it is reflected by the solar surface.

So, in term s of wave motion, we simply have a wave th a t is propagating radially 

towards or away from the centre of the sun. The wave does not undergo refraction but it 

is constrained by the reflective properties of the outer atmospheric layers. As a result the 

cavity for the standing waves formed is the entire sun.

How do we model such modes mathematically? Generally low-/ modes are difficult 

to  trea t because they are deeply penetrating and as such are sensitive to spherical effects. 

W ith I — 0 modes we may progress more readily. First of all, the radial nature of the modes 

allows us to write any disturbance in term s of just one variable, the depth, z. Also, to 

form standing waves, disturbances must be symmetrical about the centre of the sun. This 

simplifies the problem by letting us consider just one half of a waves transit across a solar 

diam eter and also allows a plane-parallel model to be used as a good approximation.

Therefore, we may model the convection zone and below as a polytropic fluid 

with a tem perature th a t increases linearly with depth, the gradient of which is chosen 

to  give marginal stability to convective motions (i.e. we assume th a t the lower region 

is adiabaticaUy stratified with the Brunt-Vaisala or buoyancy frequency, Wg, zero). The 

interior is similar to th a t considered in previous work on general degree p —modes (Campbell 

and Roberts 1989; Evans and Roberts 1990,1991; Jain and Roberts 1994) except for one 

detail. In the earlier work, the convection zone and below was modelled as being semi­

infinite. This was because those models were derived to study higher degree modes which 

are confined close to  the solar surface. For our model we consider a finite range of z on 

[ 0 , Z j ] ,  where Zd is some finite depth. This is purely because of the symmetrical nature of 

the modes about the centre of the sun.

In the atmosphere above the convective region we impose an isothermal chromo-
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sphere within which is embedded a horizontal magnetic field, B . The tem perature, Tat, of 

the atmosphere and the magnetic field strength B  are allowed to  vary so th a t their effect 

on mode frequencies can be investigated.

The chapter is organised as follows. In the following section (Section 2.2), we 

summarise the observational results concerning low degree modes and the evidence for solar 

cycle variations in mode frequencies. In Section 2.3, we introduce the equilibrium structure 

of the model and derive the equations governing motions. Section 2.4 wiU be concerned 

with the investigation of the simplest case th a t the model allows. This section furnishes us 

with a  set of base frequencies th a t we may use as a standard to measure frequency shifts 

against. This topic is pursued in section 2.5, where we consider the calculation of frequency 

differences arising from a variation in the physical param eters of the chromosphere. Section

2 . 5  discusses changes in mode frequency due to a change in atmospheric tem perature alone 

(Section 2.5.1). We allow for two extremes of chromospheric magnetic field profile, namely 

th a t of a canopy field tha t provides either a constant Alfvén speed (Section 2.5.2) or a 

u n i fo r m  magnetic field (Section 2.5.3). Section 2.6 shows how we may m anipulate the 

dispersion relations found and, finally, in Section 2.7 we discuss the results obtained.

2.2 T he O bserved P rop erties o f Low D egree M odes

The search for the frequencies of the radial oscillations of the Sun was initiated 

by Isaak and co-workers at the University of Birmingham. It was soon realised th a t better 

observing sites were required and in 1974 the apparatus was relocated to the Pic du Midi 

observatory in the French Pyrenees. They very quickly began collecting good quality data  

from their instrum ents (see, for example, Claverie et al. (1979)). The BISON (Birmingham 

Solar Oscillation Network) now has six observing stations around the globe including sites 

in Chile, South Africa and Australia, providing 24 hour data  collection. As a result, the 

BISON group probably boast the highest quality observational da ta  with accuracies in the 

measurement of the frequencies approaching one part in 1 0 0 0 0 0 .

The frequencies of low degree oscillations were first measured from space by the 

AC RIM (Active Cavity Radiometer Irradiance Monitor) instrum ent on board the Solar 

Maximum Mission (SMM) satellite. The collection of data  was undertaken during two peri­

ods in the early 1980’s; the first observations were made during 1980 (near solar maximum) 

and the second during 1984 (at a time near solar minimum).
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The first analysis of the da ta  from these two observation windows was carried out 

by W oodard and Noyes (1985). The timing of the observations allowed them  to analyse the 

AC RIM da ta  with regards to  finding any significant changes in the frequencies of / =  0 and 

/ =  1 modes over the 11 year solar cycle. By taking frequencies in the five-minute band and 

calculating the difference

A y =  y(1980) -  y(1984), (2.1)

W oodard and Noyes (1985) were able to show a frequency decrease in low degree p —modes 

from solar maximum to solar minimum. In fact, the mean frequency difference from 1980 

to  1984 was found to  be

A y =  0.42 ± 0 .14  pHz. (2.2)

Since then, the sparsity of da ta  points in the modes measured by ACRIM coupled 

with a  break in the monitoring of the Sun by the SMM satellite has prompted many workers 

into attem pting to  reproduce or refute the solar cycle dependency of mode frequency claimed 

by W oodard and Noyes (1985). The first to  follow up on this work were PaUé et al. (1986), 

using Tenerife da ta  from 1977 to  1984. For low I and high radial order n (17 < n < 30), 

they found no conclusive evidence for frequency variations over the solar cycle.

W oodard (1987) extended the data  analysis of W oodard and Noyes (1985), taking 

additional ACRIM da ta  from 1985 and 1986. Assuming the frequency shift to  be indepen­

dent of radial order, W oodard (1987) showed a frequency decrease for low I modes between 

1980 and 1985/86 of 0.41±0.24 pHz, thus reinforcing the claims of W oodard and Noyes 

(1985).

In a similar study, Fossat et al. (1987) used ACRIM da ta  for the period around 

the solar mauximum along with full disk velocity measurements taken from the South Pole 

during November 1984 to February 1985. Comparing the two sets of data, they also claimed 

a decrease in frequency, of 0.39±0.04 /iHz, between the two periods, strengthening the 

results of W oodard and Noyes (1985) and W oodard (1987).

However, the evidence for a solar cycle dependence of the low I p —mode frequencies 

remained inconclusive. Later work carried out by Jefferies et al. (1988) on da ta  taken from 

the Observatorio del Teide between 1977 and 1985 showed no frequency variation over the 

period of observation. In contradiction to  this, Palle et al. (1989), extending the da ta  from 

their previous work, were now able to show a decrease in the frequencies of low degree
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modes of 0.37±0.04 pHz over the course of the solar cycle. Specifically, for modes of degree 

zero they showed a mean decrease of 0.18±0.003 pHz from solar maximum to minimum.

The evidence for the solar cycle dependence of low I p —mode frequencies was 

further strengthened by Elsworth et al. (1990). Using modes of high radial orders, they 

discovered a drop in frequency of 0.46±0.06 pHz from solar maximum to  solar minimum. 

Also, Anguera Gubau et al. (1992), using d a ta  collected between 1980-1989, showed relative 

variations in p —mode frequencies comparable to the earlier observations.

Recently, Regulo et al. (1994) give a trend in frequency changes with the solar 

cycle of around 0.52±G.02 yuHz for low degree modes (0 < / <  3) in the frequency range 

2.5-3.7 mHz, and Elsworth et al. (1994) have added to the results given in Elsworth et al. 

(1990) by taking the BISON da ta  up to  early 1994.

Finally, the results of Chaplin et al. (1998) not only display a variation in the low 

I p —mode frequencies over the course of the solar cycle, but also show evidence for a  steep 

downturn in frequency shifts for modes with frequencies above 3.7-3.9 mHz, indicating tha t 

the low I modes behave in a similar fashion to  intermediate degree modes (see Libbrecht 

and W oodard (1991) and the discussion in Chapter 1 ).

2.3 T h e M odel and G overning E quations

The model we use consists of two layers of fluid, the lower one representing the 

convection zone and below of the solar interior and the upper one the chromosphere. The 

lower region extends in depth z from 0  to Zd\ the upper region (z < 0 ) is semi-infinite in 

extent. The profile of equilibrium tem perature, 7k(z), is taken to increase linearly with 

depth within [0 , Zj], and to  be constant in z < 0 .

Specifically, we consider a  tem perature profile of the form

U z ) = \  0
}  T.f, z < 0.

Here, TqL is the tem perature at the top (z =  0) of the convection zone and Tat is the 

uniform tem perature within the chromosphere. The tem perature scale height a t the top of 

the convection zone is denoted by z^. We shaU discuss the value given to Zq later.

The solar plasma is assumed to  be an ideal, perfectly conducting plasma, threaded 

by a structured horizontal magnetic field of the form B =  jB(z)x . The entire medium is
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gravitationally stratified in depth z. The unperturbed state  is one of m agnetohydrostatic 

equilibrium satisfying

with

f , ( z )  =  R p ,(z)T ,(z); (2.5)

here T^(z) and Po(z) are the equilibrium gas pressure and density respectively, g is the 

gravitational acceleration (assumed constant), g {= Air x  10“  ̂ Henry m ” ^) is the magnetic 

permeability and R=kB/m av  where fcjg is Boltzmann’s constant and ruav is the mean particle 

mass of the plasma. Equation (2.4) holds both in the atmosphere z < 0 and in the field-free 

{B  =  0) interior [0 ,Zj].

Equations (2.4) and (2.5) may be solved simultaneously to give the equilibrium 

gas pressure and density for specific magnetic field profiles.

Let us also consider conditions pertaining across the interface z =  0 between the 

two regions. We do not demand th a t the tem perature is continuous across the interface at 

z =  0. This enables the tem perature at the top of the convection zone, Tol, to be held fixed 

whilst varying the atmospheric tem perature, Taf. Also, it is preferable to keep the interior 

of the model the same throughout all of the calculations so th a t the changes in atmospheric 

conditions alone are purely responsible for any changes in mode frequency th a t we may 

find.

The condition imposed at the interface is tha t the to ta l (gas plus magnetic) pres­

sure be continuous across z =  0. Therefore, the gas pressure at the top of the convection 

zone, PoL, is related to the to tal (gas plus magnetic) pressure in the atmosphere by

PoL = Pat + (2.6)

where Pat and B ^ /2 g  are the gas and magnetic pressures at the base of the chromosphere; 

the magnetic field strength a t the base z = 0  of the chromosphere is taken to  be B q 

i - B { z  = 0)).

Equation (2.5) and Equation (2.6) combine to give a relation between the plasma 

density pat a t the base of the chromosphere to the density poL at the top of the convection 

zone:

Patclt = PoLcIl  -  (2-7)
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Here, Cql =  {iPoh!poh)^ is the sound speed at the top of the convection zone. Cat
1

{'yPat/Pat)'^ is the constant sound speed in the atmosphere, and 7  denotes the adiabatic 

index.

From Equation (2.7) we may obtain the interfacial density ratio:

A i  — / o  o\
PoL ~  ( 4 ,  + P L Y   ̂ ’

The Alfvén speed a t the base of the chromosphere is denoted by Vao(= (PolPPat)^)' We 

may also see from Equation (2.7) th a t restrictions must be placed on the strength of the 

magnetic field in order to  m aintain pat > 0. We shall discuss this when we consider the 

effects of a  chromospheric magnetic field in Section 2.5.2.

The equations governing the motion are: 

the equation of mass continuity

^  +  V- ( p u )  =  0, (2.9)

the momentum equation

/ ) ^  =  - V P  +  /cg +  j x B ,  (2.10)

the induction equation (with no diffusion),

^  =  V x ( u x B ) ,  (2.11)

and an adiabatic energy equation of the form

D P  _  j P ^ D i  
D t p D t ‘

The current density, j ,  is given by Ampere’s law

(2 .12)

/ij =  V X B , (2.13)

and the advective derivative is denoted by

f  =  |  +  u . V .  (2.14)

Finally, the magnetic field satisfies the solenoidal constraint;

V 'B  =  0. (2.15)

The relative amplitudes of solar oscillations are known to  be small compared to

the local sound speed (see, for example, Christensen-Dalsgaard (1986)). As a result a
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linear analysis may be used on the system of Equations (2.9)-(2.15). Taking a velocity 

perturbation of the form

u (0 , 0 ,«z(z))e iut (2.16)

where w is the angular frequency of the disturbance, and applying it to Equations (2.9)- 

(2.15) leads to a linearised momentum equation of the form 

d u  . _  / Bo(z)6apigz  -  V F i -  V ( M f & ^
St —  -  V V

where the equilibrium quantities are denoted with the subscript o and the perturbed pressure 

and density by the subscript 1. The æ—component of the perturbed magnetic field B is 63.. 

As there are no horizontal motions, we may take the z—component of Equation (2.17) and 

differentiate it with respect to  time to give

Po-
^  , Bo(z)a&3:

I 'm  + ~ s T
(2.18)

dD dt

The perturbations pi, Pi and may be eliminated by using the linearised forms 

of Equations (2.9), (2.11) and (2.12):

dpi
dt

dt

d p o  . d u z

duz
+  U;

dPo
dz

and

dz 2g

(2.19)

(2 .20)

(2.21)

Applying Equations (2.19)-(2.21) to  Equation (2.18) gives

Po-
d '̂i

dz
du. d

PoP
_L P K ^ ) d u ,  

2g j  g dz
(  du^ dpor  + (2.22)

Finally, m anipulation of Equation (2.22) using Equation (2.4) gives rise to the 

wave equation for perturbations Uz to the equilibrium (2.4):

Po-
2

dz
duz
dz

(2.23)

In the above, Cg(z) =  (jPoiz)/Po{z))^  is the local sound speed and Va{z) =  {B l{z)lgpo{z)) l  

is the local Alfvén speed within the medium. W ith the time dependence for Uz{z) given by
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Equation (2.16) we may immediately gain the governing equation for the vertical velocity 

component:

d 
dz

Equation (2.24) is the governing equation for a stratified fluid perm eated by a 

horizontal magnetic field undergoing a purely one dimensional perturbation. It is applicable 

to  both  layers of the model when the specific equilibrium density, sound and Alfvén speeds 

are substituted. More general models have been considered which reduce to Equation (2.24) 

(see, for example Goedbloed 1971; Adam 1977; Roberts 1985). Equation (2.24) is simple in 

form because of our assumption of one dimensionality (the horizontal wavenumber A  =  0 ).

We consider the solution of Equation (2.24) for different equilibria and use these 

solutions to  determine mode frequencies through a derived dispersion relation. As we have 

already stated , some form of base frequencies are required to  measure frequency shifts 

against and we shall tu rn  to  this now.

2.4 M ode Frequencies

The main incentive behind this work is an interest in whether physical changes 

in the outer atmospheric layers of the sun may produce the shifts in p —mode frequencies 

th a t are observed over the solar cycle (see Chapter 1 and Section 2.2). In order to  consider 

frequency shifts, we first calculate some base frequencies for the model. To do this we 

consider the simplest case th a t the model allows.

The most basic of situations is where we take the tem perature to be continuous 

across the interface a t z =  0 , so th a t T ql = Tati &nd the atmosphere is assumed to be 

field-free (Bg = 0). In this section we derive a dispersion relation for this situation and 

use the frequencies th a t it gives as the base ones for other cases. Frequencies may then 

be found for different chromospheric param eters (tem perature and magnetic field strength) 

and compared to the calculated base frequencies. The tem perature at the reference level 

z =  0 win be taken to  be the solar tem perature minimum, Tat = 4170®K.

In the absence of a magnetic field equilibrium condition (2.4) reduces to

dP
=  Po9i (2.25)
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applicable in both regions (z < 0  and 0  <  z < Zj), and pressure condition (2 .8 ) across the 

interface simplifies to

^  =  1 , (2.26) 
PoL

given th a t Tql ~  Tat-
On substituting the tem perature profile (2.3), with the constraints given above, 

the hydrostatic condition (2.25) can be solved to give the equilibrium pressure distribution:

f . W - (  “ < « « •  ( 2 .2 „
[ PateH, z < 0 ,

where

m  = -  1 and H  = ^  ^  (2.28)
R T ol g g j

are the poly tropic index of the convection zone and the density scale height of the chromo­

sphere respectively. Note th a t we have retained the subscript at to denote param eters of 

the atmosphere, such as the pressure Pat a t the base of the chromosphere. Here PoL = Pah 

but retaining the distinguishing notation th a t will be used later helps avoid confusion.

It is from the polytropic index of the gas m th a t we obtain the tem perature scale 

height Zo for the lower region. In choosing the interior to be marginally stable to  convective 

motions, the Brunt-Vaisala frequency, defined by

1 dpo{z) _  g 
,po(z) dz c^(z).

is zero. For the model presented here, po{z) a  (1 +  z j z f ) ^  and Cg(z) oc (1 +  z/z^). For the 

profiles of equilibrium density and sound speed squared for the model, the Brunt-Vaisala is 

given by

(2.29)

(m +  1 )m  -
1

^ (2.30)
Z +  Zo

Therefore m  is related to the adiabatic exponent 7  by m =  1 / ( 7  — 1 ). For an adiabatic 

exponent of 7 = 5/3 , we obtain m =  3/2, and this gives a tem perature scale height Zg =

244.5 km at the tem perature minimum.

The lower region of this fluid, which we shall call the interior, will be kept the 

same for all chromospheric variations tha t are to be considered. Let us look for a solution
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of Equation (2.24) in this zone where the tem perature profile is given by (2.3). Firstly, note 

th a t the sound speed squared c^(z) in this region is of the form

Co(z)^ =  cIl (1 +  ~ ) ,  0 < z  < Zd- (2.31)
Zq

The sound speed Cql a t the top (z  =  0) of the convection zone (cql =  (j R T ol)^)  is taken to 

be the sound speed at the tem perature minimum in our calculations, as mentioned earlier. 

Substituting Equation (2.31) into Equation (2.24) with u® =  0 leads to

(Puz m +  1 du
dz'^ Zo(l ÿ  dz ' +  J )+  _ T +  ..2 =  0. (2.32)

To solve this equation it is convenient to introduce a number of transform ations.

Setting

s — 1 ±  — , 0 ^  z ^  Zj (2.33)

yields
2 _ 2

^  +  (m  +  1)—  +  -  0. (2.34)

If now we introduce

r = ^ s Y  (2.35)
CoL

then Equation (2.34) becomes

+  (2m +  l ) r ^ ^  +  =  0. (2.36)

Finally, setting

(2.37)

we obtain Bessel’s equation for functions of order m  (Abramowitz and Stegun, 1965: 9.1.1): 

+  {r‘‘ -  m ? )X  =  0. (2.38)
dr^ dr 

The general solution to Equation (2.38) is

% =  c iJ ^ ( r )  +  C2 l ^ ( r ) .  (2.39)

The Bessel functions of the first and second kind are denoted by Jm(^) and Ym{r) whilst

the constants of integration are given by cj and C2 .
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The amplitude of the vertical disturbance in plasma velocity in [0, Zj] is therefore

given by:

Uz -  r~'^ [ciJm{r) +  C2 Ym{r) ] , 0 < z < z^, (2.40)

with

+  (2,41)
CoL \

From the relations (Abramowitz and Stegun 1965; 9.1.30)

/  [z-'^J„(z)]  =  (2.42)

and

d [z-'^Y„{z)\  =  - j r - ”‘y „ + i(7 ), (2.43)

and noting tha t

dr _  2 w^Zo 1
(2.44)

=  [ciJm +i(r) +  C2} ;n+ i(r)]. (2.45)

we obtain

duz _

We now turn  to  the semi-infinite upper region z < 0, which we take to represent

the chromosphere. In this region Equation (2.24) reduces to

Equation (2.46) has solutions of the form

z < 0, (2.47)

where

f  A .  .2 J j 2 \  2

2 , H A = - l ± ( l ------------------. (2.48)

Combined with the solution for the velocity profile found in the interior (Equation 

(2.40)), we obtain the velocity distribution:

u . =  l  (2.49)
I r [ciJm{r) ±  C2l^ ( r ) ] , 0 < z < Zj,
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where r is defined by (2.41). Also,

^ = (   ̂ (2.50)
dz  I  -{2w'^Zo/cljf)r [ciJm+i{f') +  C2Fm+i(r)], 0 <  z <  Zj.

There are two points of interest in solution (2.47) th a t we require comment on 

here. Firstly, a specific boundary condition must be applied in order to determine which 

sign of the square root is required in Equation (2.47) and, secondly, the square root itself. 

W hat do we understand by this? We know th a t perturbations in the atmosphere (z < 0) 

are either propagatory or evanescent and th a t for modes to be trapped in a bounded cavity 

it is the evanescent solutions th a t are of interest. Those solutions where the square root 

becomes complex imply th a t no cavity exists, i.e. the modes are propagating away from the 

interface; these are called leaky modes and wiU not be discussed here. As a result of this 

restriction on the square root, we see th a t to  form the type of modes required the frequency 

of the modes must be less than  a critical frequency u>ac determined by the physical structure 

of the atmosphere. Thus we require w < Woc, where
f.2 fj2 2

ujac is the acoustic cut-off frequency for an isothermal atmosphere (Lamb 1908). As an

example, in this section we are taking the tem perature of the atmosphere to  be the same as

th a t at the tem perature minimum, i.e. Tat ~  ToL ~  4170°K. This gives us a cyclic cut-off 

frequency, v'aci^ <^ac/27r), of approximately 5.43 mHz. This cut-off frequency is constant 

throughout the atmosphere and is a global quantity owing to the isothermal nature of the 

region.

So, for the range of frequencies w < ojac we may now apply additional boundary 

conditions to  solutions (2.49) and (2.50) in order to match the solutions in the two regions 

and so obtain a dispersion relation. We accomplish this by considering conditions as we 

move a long distance from the interface into the atmosphere (z —>■ —oo), together with the 

conditions a t the interface itself and the constraint th a t the rigid wall at z =  Zj imposes.

As a first condition, let us return to choosing the sign of the square root in Equation 

(2.47). We demand th a t the kinetic energy density of the modes, \p o u h  declines to zero as 

we move further away from the interface into the atmosphere. Thus,

u^(z)e 2̂  -> 0 as z —> —oo. (2.52)
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Inspection of Equation (2.47) with this condition indicates th a t it is the positive sign th a t 

we require, and then A is determined by

=  = - 1 + ( i - ^ )  , (2.53)

with OJ < CJac-
At the base of the model, we have placed a rigid waU at z =  zj and this implies

that

=  0 a t z  — Zd, (2.54)

giving

Across the interface, we require th a t the velocity perturbation Uz{z) remain con­

tinuous, i.e.

Uz is continuous across z =  0. (2.56)

The final boundary condition is somewhat more complicated. We require pressure 

balance to be maintained and so the to tal pressure perturbation across the interface must 

be continuous. To do this we demand continuity of the time derivative of the Lagrangian 

pressure perturbation, Pl T i defined by

(2 ,B )

where P t  (=  P  +  ^(B g • b)) is the perturbation in the to tal pressure (gas plus magnetic). 

Substituting for Ft  in Equation (2.57) gives

O P lt  _ ^  
dt dt +  PoUzQi (2.58)

where b is the perturbed magnetic field. The equilibrium magnetic field B q is aligned in 

the æ—direction, so

Bo • b  =  B„(z)6* (2.59)

and hence



35

We may then use Equations (2.20) and (2.21) to  replace perturbed quantities with equilib­

rium ones. Along with Equation (2.4), we gain an expression for the Lagrangian pressure 

perturbation:

Hence

Po(z)(cJ(z) ±  is continuous across the interface. (2.62)

In the absence of a  magnetic field, condition (2.62) implies th a t

PoC g(z)^^ is continuous across z =  0. (2.63)

This is the fourth and final boundary condition th a t we require.

Application of conditions (2.52), (2.54), (2.56) and (2.63), combined with the 

reduced equilibrium interfacial density condition (2.26), leads to  the dispersion relation for 

the base frequencies of this model:

~  [ ( ^ a c  ~  ^  ^ ±  ^ a c j  [ J ^ m + l ( ^ o ) i ^ ( ^ ( i )  “  T ^ - |- l ( ^ o ) 'J m ( ^ c Z ) ]

= [Jm(ro)ym{rd) -  Ym{ro)Jtn{rd)], (2.64)

where

=  —  (2.65)
CoL

and

=  +  (2 .66)
CqL \  Zq J

Equation (2.64) is the dispersion relation for a polytropic layer of fluid overlain 

by an isothermal atmosphere, the tem perature profile being continuous across the interface 

between the two layers. The lower region is taken to be bounded by a rigid wall a t z =  Zj, 

and represents the convection zone and below, whilst the upper region is semi-infinite in 

extent and is assumed to represent the chromosphere.

The dispersion relation (2.64) may be solved numerically to  give the base oscillation 

frequencies of the model. In order to  do this, the param eters we use are taken to have typical 

solar values, displayed in Table 2.1. The values shown in Table 2.1 have been chosen to  best 

approxim ate the atmospheric structure of the sun, given the simple nature of our model. In
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Param eter Value

ToL 4170° K
PoL 86.82 kg m "i s"^

244.5 km
R 6425.97 m ^s-^K -i
% (— Rsun^ 6.96 X 10® m
CoL 6.6829 km s“ ^
1 6/3
9 274.0 m s“ ^
m 3/2
âc 5.43 mHz

Table 2.1: Typical solar values th a t used as param eters for the calculation of base frequencies 

for the model.

choosing the param eters of our model, recall tha t in Section 2.3 the equilibrium magnetic 

field was taken to be horizontal and dependent on height, i.e. Bo =  J9(z)x. The magnetic 

field models a canopy type structure. From the observations of GiovaneUi and Jones (1982), 

the emerging magnetic flux takes on a canopy form around 500 km above the photosphere. 

This places it at around the tem perature minimum. As a result, the values th a t we shall 

take for ToL? PoLi etc. correspond with conditions at the tem perature minimum. The 

values given in Table 2.1 are taken from The Harvard Smithsonian Reference Atmosphere 

(H.S.R.A) (Gingerich et al. 1971). The overall depth of the interior is taken to  be the solar 

radius.

From the dispersion relation (2.64) we may obtain a set of discrete solutions which 

we recognise as forming a range of modes of integer order, n. This sequence of solutions is 

displayed in Figure 2.1 with n ranging from zero to 40. The cyclic frequencies ~ )  are 

in mHz and are plotted against radial order, n. As a comparison, observed frequencies for 

the I =  0 modes are also plotted. The crosses (+ + + )  are taken from the observations of 

Libbrecht et al. (1990) and the stars (***) are from Elsworth et al. (1994). The frequencies 

given by Libbrecht et al. (1990) cover radial orders from 12 to 33 and those taken from 

Elsworth et al. (1994) cover orders 12-26. Note tha t the stars overlap the first 15 crosses. 

We see from Figure 2.1 th a t for even a simple model such as considered here there is good 

agreement with the observations.

It is apparent from Figure 2.1 th a t there is a linear dependence between mode
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Figure 2.1: Mode frequencies v  (=  w/27r) (in mHz) for modes of degree zero {I = 0) against 

radial order, n. The calculated mode frequencies for the model are shown as dots (...) and 

the observed frequencies are shown as either crosses (+ ) or stars (*). The crosses are taken 

from Libbrecht et al. (1990) and the stars from Elsworth et al. (1994). Note th a t the stars 

overlap the first 15 crosses.

frequency and radial order. This differs from the well known observed and theoretical 

p —mode spectra for 1 ^ 0  modes where the dependence of mode frequency on radial order 

is approximately oc nz . How are we to understand this? We must remember th a t for this 

model, the cavity depth is the same for aU modes. For the general order p —modes, the 

behaviour is different because the depth of the cavity is itself dependent upon the frequency 

of the mode. The resultant effect for these modes is tha t for any specific degree, /, the 

depth of the cavity increases with mode frequency and thus we see the parabolic scaling 

a; oc 7Z2 . A simple physical analogy th a t we may draw with this model is th a t of a  guitar 

string of finite length fixed at both ends. It is well known that for a guitar string, the mode 

frequency wiU be proportional to the overtone number, or order, n. Remembering th a t the 

cavity depth is the same for all radial oscillations, the similarity is clear.

Therefore, we see th a t this simple plane-parallel model of a polytropic region 

bounded at one extreme by a rigid wall and overlain at the other by a field-free, isothermal 

atmosphere wiU reproduce the observed frequencies of the I = 0 modes with a reasonable 

accuracy. The frequencies found for this simple case wiU be used as the base ones to 

measure any frequency shifts against. If we assume th a t these frequencies are determined
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Radial O rder n =  60.8

o
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Figure 2.2: The normalised vertical velocity component, Uz{z)/uz{z = 0), p lotted against 

depth for the n — 6  p —mode. The curve stops where we have placed the rigid wall (at the 

solar radius).

for conditions th a t are representative of conditions at solar minimum, then we may vary 

the structure of the chromosphere, in a  mimicry of the solar activity cycle, in order to 

investigate the observed changes in mode frequency. We consider this problem in Section

2.5 by studying three specific chromospheric models each of which allows an analytical 

approach to the problem.

The mode frequencies found from Equation (2.64) may be used to calculate the 

eigenfunctions defined by Equation (2.49). In Figure 2.2 we have displayed the normalised 

eigenfunction Uz{z)/uz{z =  0) as a function of depth z, for the n =  6  mode. Note th a t

%z(^) ^  r~^[Jm{r)Ym{rd) ~ Ym{r)Jm{rd)]
Uz { z  =  0 )  rô'^[Jm{'ro)Ym{Td) -  ym{'To)Jm{rd)] '

It can be seen th a t the amplitude of the mode falls very quickly to zero. In fact, the ampli­

tude of all the modes compared to  their amplitude at the surface is diminished considerably 

by 2 0 0 0 0 0  km into the interior.
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2.5 Frequency Shifts Im posed  by C hanges in C hrom ospheric  

Param eters

2 .5 .1  T h e r m a l  c h a n g e s  {Tat f  T qL ^B o ~  0)

Now that we have obtained a set of base frequencies for the model, we tu rn  to 

a study of how mode frequencies may be changed over a solar cycle. In order to do this, 

we shall allow the param eters governing the structure of the atmosphere to  vary whilst 

the interior of the model is kept unchanged. The first step in addressing this problem is 

to  consider an isothermal atmosphere th a t is field-free, but allow the tem perature of the 

atm osphere to vary. In this case, the tem perature profile given by Equation (2.3) is no 

longer continuous across the interface a t z =  0, as it was in Section 2.4. This comes from 

the expectation of an increase in the mean chromospheric tem perature over the solar cycle, 

induced by a rise in magnetic field strength. To begin with, however, we consider frequency 

shifts in the absence of a magnetic field; this allows some insight into the full problem once 

we allow for the presence of a magnetic field in the atmosphere.

The velocity perturbation Uz and its gradient duz/dz  are again given by Equations 

(2.49) and (2.50), except th a t now Cat ^  Cql- Also, the equilibrium condition on pressure 

balance at the interface now gives an interfacial density ratio of the form

^  (2 .68)
PoL Ĉ at

Note th a t the cyclic cut-off frequency I'ac = although stiU a global quantity, 

decreases with an increase in atmospheric tem perature (see Table 2.2).

In finding the dispersion relation for this model, boundary conditions (2.52), (2.54), 

(2.56) and (2.63) are used once more and so the dispersion relation is readily obtained. The 

result is

   [(^ac +i^ac] [Jm-k-\{'^o)Ym{'*'d) “  Ym-\-\{To)Jm{'f'd)]

= [Jm{ro)Ym{rd) -  Ym{ro)Jm(rd)] (2.69)

with To and Vd again given by Equations (2.65) and (2.66).

Equation (2.69) is the dispersion relation for modes formed in a polytropic region, 

extending from z =  0 to a  wall a t z =  Zj, overlain by an isothermal atmosphere. Note 

th a t Equation (2.69) reduces to Equation (2.64) when Cat =  Table 2.2 presents the
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Param eter Value
Cat{Tat =  4500"K) 

=  5000''K) 
Cat(Tat = 6500"K) 
Ca<(T̂ < =  eOOO '̂K) 

=  4500"K) 
=  5000°K) 
=  5500°K) 

l^ac(Tat = 6000°K)

6.94224 km s“  ̂
7.31776 km s~^ 
7.67494 km s~^ 
8.01621 km s“  ̂

5.234 mHz 
4.966 mHz 
4.735 mHz 
4.533 mHz

Table 2 .2 : Sound speeds Cat a-nd cyclic cut-off frequencies Uac for the different atmospheric 

tem peratures Tat used in the numerical calculations of Section 2.4.1.

atmospheric param eters to be used in the numerical calculations. The param eters relating 

to  the lower region are given earlier in Table 2.1.

W hat of the changes in mode frequency tha t are brought about by a change in 

chromospheric tem perature, Figure 2.3 shows the change in cyclic frequency = w/27T 

induced by an increase in atmospheric tem perature, Tat- The change in mode frequency 

A u  is calculated by

A;/ =  -  (/(dlTO^'K), (2.70)

where u{Tat) is the mode frequency found for a raised chromospheric tem perature Tat and 

t/(4170°K) is the base frequency for a chromospheric tem perature of 4170®K; the base fre­

quency was calculated in Section 2.4. Chromospheric tem peratures oîTat =4170°K, 4500°K, 

5000°K, 5500°K and 6000°K are taken. Figure 2.3 shows th a t an increase in atmospheric 

tem perature leads to a decrease in mode frequency, the greater shifts occurring for the 

higher tem peratures. The change in frequency is negligible for modes of low frequency (and 

hence low radial order) and becomes increasingly larger and negative for higher frequencies. 

To calculate the curves associated with these frequency shifts, we have allowed n to  vary 

from 0  to the highest possible value such th a t the frequency of a mode is less than  the 

acoustic cut-off frequency for th a t specific chromospheric tem perature. Frequency changes 

are then plotted against the base frequencies determined in Section 2.4 for an atmospheric 

tem perature of 4170°K.

The effect of increasing the atmospheric tem perature is identical in form to tha t 

found in previous studies of non-radial modes (see, for example, Evans 1990 and Jain 1994)
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Figure 2.3: Frequency shifts A u  (in /iHz) as a function of frequency u (in mHz) for different 

atmospheric tem peratures. The shifts are plotted against the frequencies found for an atm o­

sphere with a  tem perature of 4170°_ff. The curves shown are for atmospheric tem peratures 

of 4500'^K, 5000°K, 5500°K, and 6000°K. Note the magnitude of the shifts.

but, as we would expect, the magnitude of the frequency decreases is smaller for / — 0  

modes. However, changes in frequency are not zero as given in Evans and Roberts (1990) 

and Jain and Roberts (1994), where A u  oc /, but it must be remembered th a t earlier models 

were not applicable a t low degree and, as a result, neither were any asymptotic expansions 

approximating frequency shifts.

We conclude from this section th a t an increase in the tem perature of the chromo­

sphere leads to a decrease in the mode frequencies of radial p —modes.

How are the eigenfunctions modified by a change in atmospheric tem perature? 

From Figure 2.3 it can be seen th a t the difference in frequency between each mode is 

extremely small. Consequently, the spacing between eigenfunctions is also minimal and it 

proves to be more instructive to calculate the difference in eigenfunctions. To do this we 

calculate A u z  where

u^(z) \  /  Ug(z)
A m , (2.71)

. U z { z =  G ) j  Tat  \^z(;%  =  0 ) / T„t=4170<’A' ’

The first term  on the right hand side of Equation (2.71) is the normalised eigenfunction for 

a raised atmospheric tem perature whereas the second term  is th a t calculated for the base
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Figure 2.4: The difference in the eigenfunctions calculated for the n =  6  mode in the 

atmosphere. The atmospheric tem peratures taken are those used in the calculation of the 

frequency shifts in Figure 2.3.

model of Section 2.4.

Figure 2.4 displays the results of this calculation. We have again used atmospheric 

tem peratures of Tat =4500°K, 5000°K, 5500“K and 6000°K. Figure 2.4 indicates th a t the 

vertical velocity Uz increases more rapidly with height at higher tem peratures.

We have seen then tha t a rise in chromospheric tem perature produces curves tha t 

are similar in form to those found for general degree p —modes but are much smaller in 

magnitude. We now apply a magnetic held to  the atmosphere and consider its influence on 

mode structure.

2 .5 .2  C o n sta n t  A lfv é n  s p e e d  in  th e  a tm o sp h e r e  { T a t  —  T o i y B o  ^  0)

The very fact th a t the chromosphere of the sun is dominated by the presence of a 

roughly horizontal, canopy magnetic held (Giovanelli 1980) implies th a t it must have some 

inhuence on the nature of the solar p -m odes. In fact, the inhuence of this magnetic held 

is likely to be most marked on the oscillation frequencies in this region of the atmosphere 

where the plasma beta  is small. However, although the magnetic held wiU vary from location 

to  location and from tim e to time, long term  variations with the solar cycle are also to be 

expected. We attem pt to  mimic the evolution of the magnetic held with the solar cycle
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by investigating a simple equilibrium magnetic field profile th a t produces an Alfven speed 

th a t is constant in height in the atmosphere. The specific choice of magnetic field profile, 

which we introduce more fully below, allows an exact treatm ent of the problem (Yu 1965; 

Thomas 1983; Campbell and Roberts 1989) but, as we shall see later, we must proceed with 

some caution. As in Section 2.5.1, we shall investigate whether a change in chromospheric 

param eters, in this case the field strength at the base of the chromosphere, induces a change 

in the oscillation frequencies th a t are comparable to the changes reported in observations.

In order to carry this out, we model the magnetic chromosphere in ^ < 0 as an 

isotherm al region with a tem perature equal to tha t at the top of the convection zone, i.e. 

Tat =  Tol- This allows us to determine the effects tha t are imposed by the magnetic field 

alone. Thus the sound speed is constant across the interface but, as in Section 2.5.1, there 

is a  density jum p across z =  0 , the ratio of the densities at the boundary being given by 

Equation (2.8) with Cat = CoL-

Inspection of Equation (2.8) with Cat — CoL shows th a t the magnetic field alone 

must be responsible for the density discontinuity tha t is present at z =  0. It imposes this 

density jum p by the additional pressure th a t the magnetic field applies in the atmosphere. If 

we consider the pressure balance Equation (2.6), then we see th a t for an increase in magnetic 

field strength, a decrease in atmospheric pressure, Pat-, is required if the gas pressure a t the 

top of the convection zone, PqL-, is kept constant. However, because the tem perature of the 

atmosphere is to be m aintained no m atter what the magnetic field strength in th a t region. 

Equation (2.5) implies tha t there must be a drop in the atmospheric plasma density, pat^ 

Therefore, an evacuation of the atmospheric plasma takes place and hence the density jum p 

implied by Equation (2.8) arises.

This simple m atter of the pressure balance of our equilibrium places some lim ita­

tions on our work. There must obviously be a finite positive gas pressure in the atmosphere, 

and in order to satisfy this. Equation (2.6) implies tha t there is a limiting value to  the 

strength of magnetic field th a t we may apply. The upper limit to  the field strength is found 

when the gas density drops to zero in the upper region; for the param eters given in Table

2 .1  (for around the tem perature minimum), the upper limit on the atmospheric magnetic 

field strength is approximately 147 G.

The specific magnetic field profile tha t supplies us with a constant Alfven speed 

is found by solving the m agneto-hydrostatic condition (2.4) along with the ideal gas law
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(2.5). Solving these two conditions gives an equilibrium magnetic field profile of the form 

j9(z) z .< 0, (2.72)

where

H b  = ^  and r  =  (2.73)

are the magnetically modified density scale height and adiabatic exponent, respectively. We 

have introduced the ratio of the sound and Alfven speeds squared given by

/3 =  4 ^ .  (2.74)

The /5 used here differs from the usual plasma beta  defined to  be the ratio of the gas and 

magnetic pressures (plasma b e ta=  =  2cl/'yvl^). The Alfven speed Vao is given by

Vao = Bo/(/j,pat)^. Thus, the equilibrium magnetic field profile B{z)  is given by

j9(z) =  z -C 0 , ( 2  75)
( 0 , 0 < z  < Zd.

A solution for the velocity perturbation in the interior of the model has already 

been provided, namely Equation (2.40), and so now we need only study the magnetically 

perm eated atmosphere. For the magnetic field profile (2.75), Equation (2.24) reduces, under 

our assumptions of constant sound speed and Alfven speed, to

(Pup, 1 duz . w

Note th a t Equation (2.76) reduces to  Equation (2.46) in the absence of a magnetic field. 

Equation (2.76) has solutions similar in form to Equation (2.46). Specifically,

=  z < 0 , (2.77)

where

2H b

1 -1

(2.78)

and 0 i s a  constant of integration. Combining Equation (2.77) with the solution for the 

interior (Equation (2.40)) gives a velocity distribution of the form

j ^ (2.79)I r [ciJm(r)-h C2 Ym(r)], 0 < z < Zd,
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Figure 2.5: The cyclic magnetoacoustic cut-ofF frequency, Umao for a magnetic held prohle 

th a t gives a  constant Alfven speed. Note th a t Umac approaches zero as the upper atmosphere 

becomes fully evacuated.

dUz
dz

where r is dehned by (2.41). Also, the compressibility of the atmosphere, V • u  (=  ^ ) ,  is 

given by

f  (2.80)
[  ~{2oj^Zolcl^)r [ciJm+i{r) +  C2 Ym+i{r) ] , 0 < z < Zd.

Note th a t the param eter r  in Equation (2.78) once again introduces a cut-off 

frequency into the atmosphere th a t serves to trap  the modes. More importantly, the cut-off 

frequency is modihed by the presence of a magnetic held and this magnetoacoustic cut-off 

frequency, Wmac, is dehned by

( c l  + vL )  { c l  + v l )g^T ^
OJ. (2.81)

On inspection of Equation (2.81), it is clear tha t the assumption of constant 

sound and Alfven speeds in the atmosphere maintains the global nature of this frequency. 

The inhuence of a magnetic held on the cyclic magnetoacoustic cut-off frequency, i>mac{= 

^m ac/27r), leads to a rapid decrease in i>mac with an increase in held strength, as shown in 

Figure 2.5. A point of interest in Figure 2.5 is tha t i/mac approaches zero as the magnetic
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field reaches its limiting strength. This is expected because of the evacuation of the atm o­

sphere induced by the magnetic field. The net result is th a t we have an effectively open 

boundary a4 z =  0  when the magnetic field totally evacuates the upper atmosphere and no 

trapping of the modes takes place.

We note th a t uJrnac is identical to th a t found by Campbell and Roberts (1989) in 

their expansion for small horizontal wavenumber of a more complicated expression for the 

magnetically modified cut-off frequency in their study of non-radial modes.

Once again, we have arrived at the stage where aU th a t is required to provide us 

with the relevant dispersion relation is the application of appropriate boundary conditions. 

We require th a t the kinetic energy density of the modes vanish as 2r —> — oo and hence 

condition (2.52) is required, with the density scale height replaced by its magnetically 

modified counterpart. This condition tells us th a t it is the positive sign in solution (2.77) 

th a t is the appropriate one to  choose. Thus, r  is defined by

2 ^ B
(2.82)

Also, the presence of a rigid wall dX z — Zd and the necessity of avoiding a discon­

tinuity in the velocity profile across the interface implies th a t boundary conditions (2.54) 

and (2.56) are again applicable.

Finally, we require the Lagrangian pressure perturbation to be continuous across 

the interface at =  0 , but now allowing th a t the added magnetic pressure exerts an influ­

ence. W ith this taken into consideration. Equation (2.62) tells us th a t

Po{^){c^s{^) Y  is continuous across the interface. (2.83)

Condition (2.83) reduces to  the non-magnetic perturbed pressure condition (2.63) in the

absence of a magnetic field.

W ith these considerations taken into account and applied to  solutions (2.79) and

(2.80), the dispersion relation is found to be

1 7 CT .2 

w F u,_
= [Jmiro)Ym{rd) -  Yjn(ro)Jm{rd)]. (2.84)

[ (^ m a c  ^  )^  T  ^ m a c j  [«^Tn4- l(^ ’o ) F m ( 7'(i) Ym.-^l{T'o)J'Tn{X'd^\

Here ct is the chromospheric tube (or cusp) speed, defined by

^at'^ao

(clt + v î J
c r  =  . . (2.85)
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Param eter Value
Vao{So =  lOG) 
VaoiBo = 30G) 
VaoiBo = lOOG) 
P{Bo = lOG) 
/3(^o =  30G) 
P{Bo = lOOG)

0.4967 km s~^ 
1.5184 km s“  ̂
6.7335 km s" i 

181.02 
19.37 
0.985

Table 2.3: The Alfven speed and {5 for various magnetic held strengths used in the numerical 

calculations.

Equation (2,84) is the dispersion relation for a field-free polytrope th a t is bounded 

a t depth z — Z d h j  a, rigid waU and over which lies an isothermal atmosphere th a t contains 

a magnetic field which provides a constant Alfven speed.

We wish to  calculate changes in mode frequency th a t are due to the magnetic 

canopy alone. In order to do this, we shall follow the same procedure as used in Section 

2 .5 .1 , but the param eter th a t we shall vary now is the held strength Bo at the base of the 

chromosphere. We are therefore calculating frequency shifts, Ai/, according to

Af/ =  ty{Bo) -  1/(0 ), (2 .86)

where p{Bo) is the frequency of the mode for a specific chromospheric field of strength B q 

a t the chromospheric base, and f/(0 ) is the mode of a corresponding radial order determined 

in the absence of a magnetic field (see Section 2.4).

To calculate the frequency shifts according to Equation (2.86), we apply three 

magnetic field strengths at the base of the chromosphere, namely Bo =10G, 30G and lOOG. 

The Alfven speeds and plasma betas, th a t these field strengths provide are shown in 

Table 2.3, the relevant param eters for the interior being used from Table 2.1 once more. 

Again we have allowed n  to vary from 0 to the highest frequency such th a t w <

The results of these calculations are shown in Figure 2.6 and we may see from this 

th a t the introduction of a magnetic field of this form leads to a reduction in mode frequency 

for aU modes. Figure 2.6 also shows th a t this decrease in mode frequency is made more 

pronounced by an increase in the magnetic field strength, Bo- However, these reductions in 

mode frequency are far smaller than  those brought about by purely therm al changes (see 

Section 2.5.1).
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Figure 2.6: Frequency shifts (in /iHz) as a  function of frequency (in mHz) found for different 

field strengths Bo a t the base of the chromosphere. The shifts are plotted against the base 

frequencies determined in the absence of a magnetic field (see Section 2.4). Note th a t the 

magnitude of the frequency shifts is much smaller than those found in Section 2.5.1.

The curves shown in Figure 2 . 6  are qualitatively similar to  those found by Camp­

bell and Roberts (1989) but qualitative comparison is difficult; firstly because the model of 

Campbell and Roberts (1989) was inapplicable at low I and, secondly, because they only 

produced curves for the frequency changes found for low radial orders. However, we may 

conclude th a t the expected behaviour of radial modes interacting with an exponentially 

decaying magnetic field is to show a decrease in frequency.

As in Section 2.5.1 the difference in the eigenfunctions will be displayed rather 

than  the eigenfunctions themselves. We calculate a difference of the same form of Equation 

(2.71):

Aw, = (2.87)
— 0 )  /  B o  “  0 ) /  B o=Q

where B q takes on the values used in the calculation of Figure 2.6. The results of this are 

shown in Figure 2.7. We can see from Figure 2.7 that Uz increases less rapidly with height 

in a magnetic atmosphere than  a field-free one. This is readily explained by considering the 

param eters A and r  from Equations (2.53) and (2.82). Firstly, a comparison of the density 

scale heights in the atmosphere tells us th a t H b  > H.  Also, the cut-off frequencies for the
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Figure 2.7: Difference in eigenfunctions, as in Figure 2.4. Here we see th a t the eigenmodes 

grow more slowly when a magnetic field is present than  in a field-free atmosphere.

two models, Uac and have the property ĉ ac > Hence A > r  and the results

shown in Figure 2.7 are evident.

2 .5 .3  U n ifo r m  m a g n e tic  fie ld  in  t h e  a tm o sp h e r e

As a final study for this Chapter, we consider another extreme for the equilibrium 

magnetic field profile, th a t of a horizontal canopy field which is u n i f o r m  throughout the 

atmosphere; B (z) =  5oX in z < 0. We shall allow too tha t the atmospheric tem perature is 

not in general equal to th a t at the top of the convection zone. Hence Equation (2.3) is the 

required tem perature equilibrium with Tat ^  Tql- The influence of both the magnetic field 

and variations in the atmospheric tem perature can then be investigated either independently 

or jointly.

This model is analogous to the equilibrium used in previous studies of general 

degree modes (Evans and Roberts 1990, 1992; Jain and Roberts 1994) except th a t the 

lower region in this study is contained by a rigid wall at a depth z = Zd.

We may solve the m agneto-hydrostatic equation (2.4) together with the ideal gas 

law (2 .5 ) to obtain the equilibrium pressure distribution, to be combined with the equilib­

rium pressure found for the interior (Section 2.4). Altogether, we obtain an equilibrium
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Figure 2.8: The equilibrium density profiles for an atmosphere th a t contains a uniform 

magnetic field of strength lOG, Atmospheric tem peratures of 4170°K and 5500®K are taken. 

Note th a t although the plasma evacuation is more pronounced at the interface, at higher 

atmospheric tem peratures the density falls off more slowly.

(2.88)

pressure profile of the form

where m is the polytropic index and H  is the density scale height given by Equation (2.28). 

Note th a t the presence of a uniform magnetic field does not alter the therm al equilibrium 

structure of the atmosphere, i.e. H  is not modified by the magnetic field. This may be 

understood by inspection of the magneto-hydrostatic equation, Equation (2.4). A uniform 

magnetic field makes no contribution to this equation and hence no effect is felt by the scale 

height H.  However, the gas pressure at the base of the magnetic atmosphere is related 

to  the magnetic pressure Bl/2fji  and the gas pressure PoL the top of the convection zone by 

the pressure balance condition (2 .6 ) such th a t Pat decreases as B q increases.

The atmospheric equilibrium is matched to the lower region by Equation (2.6) and 

hence the ratio of densities across the interface is given by Equation (2.8). However, from 

pressure balance, we see th a t the atmospheric pressure and also the density at the base of 

the chromosphere, pat^ decline for an increase in magnetic field strength, as we have seen in
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Section 2.5.2. This effect is accentuated when an increase in the chromospheric tem perature 

also occurs.

The choice of magnetic field profile implies th a t the Alfven speed in the atmosphere 

is now a function of height, - z .  Specifically, the profile of the Alfven speed Va{z) =  

B{ z ) f { pp{ z ) ) 2  is given by

=  z < 0 ;  (2 .89)

thus Va{z) increases with height in the atmosphere.

Note tha t the Alfven speed % (z) is indirectly dependent upon the atmospheric 

tem perature, Tat- This dependence arises in Equation (2.89) because of the dependence of 

the density scale height H  of the atmosphere on Tat- When the chromospheric tem perature 

is raised, H  increases  as can be seen from Equation (2.28), but the density a t the base of the 

chromosphere Pat{= PatlRTat) is decreased. For a hotter atmosphere, we therefore obtain 

an equilibrium density profile th a t is lower at the interface but declines more slowly than  

th a t for a cooler atmosphere owing to  the increase in H.  Figure 2.8 displays two equilibrium 

density profiles for the atmospheric tem peratures of 4170°K and 5500°K. The scale heights 

for the two tem peratures used in Figure 2.8 are approximately 98 km for Tat =  4170°A  and 

128 km for Tat =  5500°A .

As we have mentioned above, a rise in atmospheric tem perature leads to  an increase 

in the density scale height H,  However, A  is also increased by the magnetic field alone 

through a reduction in the plasma density pat- The overall effect on the Alfven speed 

profile Va(z) is tha t for higher chromospheric tem peratures we see a higher value for Vao 

because of the reduction in pat in the presence of a magnetic field, but the Alfven speed 

increases more slowly with height than it does for cooler atmospheres because of the increase 

in H.  This is displayed in Figure 2.9.

W ith the equilibrium structure specified, we may now determine the velocity per­

turbation Uz(z). W ith a  uniform magnetic field. Equation (2.24) becomes

^ ^
To solve Equation (2.90), we apply the transform ation (Adam 1975; Nye and 

Thomas 1976a; Evans and Roberts 1990)

(2.91)
^ao
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Figure 2.9: The Alfven speed profile for a magnetic field of strength lOG and two choices of 

atmospheric tem perature Tat- The tem perature of the atmosphere is raised from 4170°K to 

5500°K. Note the less rapid increase of Va{z) with height for a hotter atmosphere, although 

Vao is increased.

which provides us with the hypergeometric equation (Abramowitz and Stegun 1965; Chapter 

15)

^ ( 1  -  +  [1 “  (p +  9 +  — 0 ,

where

P +  g =  1 , pq
'at

The param eters p  and q are easily obtainable from Equation (2.93):

P I T  1 .2
■'at

and q = l -  p.

(2.92)

(2.93)

(2.94)

The fact th a t we have two possible solutions for each of the param eters p and q in Equation 

(2.94) does not present us with any problem. The hypergeometric function is symmetrical 

in p  and q (Abramowitz and Stegun 1965; 15.1.1):

F (p ,g ; l ;z )=  jF (g ,p ;l;z ), (2.95)
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and so we may arbitrarily choose the sign in front of the square root. We take

1 + 1 -

.2 Er2 \  2 ^

^at
and g =  1 — p. (2.96)

Equation (2.92) is solvable around the singular point ^ =  0 but the solution is 

made more complicated because one of the param eters in the hypergeometric equation is 

equal to  one. The general solution of Equation (2.92) is (Abramowitz and Stegun 1965; 

15.5.16 and 15.5.17)

u,  =  a iF (p ,951;^) + «2 { f {p , 9 ; l ; ( ) l i i (  +  E “=i

x [^ (p  +  n) -  i){p) -  i){q +  n) -  ^ (g ) -  2-0(n +  1) +  2^(1)]}, \^\ < 1, (2.97)

where tp^x) is the digamma function (Abramowitz and Stegun 1965: 6.3.1), defined by

V>(a:) =  T [lnr(a,-)1  (2.98)

with r ( z )  being the standard gamma function, and {p)n is given by

(p)n =  P ( P + l) ( p  +  2 ) . . . ( p  +  n - 1), (p)o =  1. (2.99)

In the previous sections, it was suflicient to demand th a t the kinetic energy density 

of the perturbation decays as z -+ —oo. For the case of a uniform magnetic field, however, 

we must also demand th a t the magnetic energy density disappears as z -+ —oo. The 

magnetic energy density of the disturbance uBg is given by

E b  = (Bo +  bKBo_ + b )  _  ^  (2.100)

which, upon linearisation, yields

E b  =  ( 2 .101)

From the hnearised form of the induction equation. Equation (2.21), the horizontal compo­

nent of the magnetic field perturbation is given by

iwb^ =  - B o ^ ,  (2 .1 0 2 )

and hence the magnetic energy density is

^  (2.103)
oj p, dz
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To find the behaviour of E b -, and hence which solution we require from Equation (2.97), it 

is convenient to rewrite as

Uz -  F{p,q\  l ; 0 (« i +  « 2  In^) +  « 2  X

S  n) -  i){p) -  ip(q + n ) ~  ^ (g ) -  2 ^ (n  +  1) +  2^(1)]. (2.104)
n=l  ̂ /

Using the result (Abramowitz and Stegun 1965: 15.2.1)

6 ; c; z) =  — E(^a +  1 , 6  +  1 ; c +  1 ; z) (2.105)

and knowing tha t

|  =  - | e * ,  (2.106)

F { p +  l , g +  l ;2 ; - /3 e u )  \^ai +  « 2  ln(-/?eH  )]

leads to

dUz pq(3e'^_ _  _ _

1 ; - /3 e # )  -  f )  ( ^ 21. ( _ ^ e ^ ) ( - : l

x[V’(p +  n) -  V>(p) -  -0(g+ n) -  ^ (g ) -  2 ^ (n  +  1) +  2 -^(1 )]. (2.107)

W ith this result, we now have an expression for the magnetic energy density given by 

Equation (2.103). On inspection of Equation (2.107), it may be seen th a t the second term  

on the right hand side increases exponentially as we move higher into the atmosphere. To 

satisfy the boundary condition indicated by Equation (2.103) we must therefore take 0=2 =  0. 

Hence the velocity on z < 0  is given by

Uz = OiiF{p,q;l\-/3e'ï ï).  (2.108)

This result also satisfies the requirement of the kinetic energy density remaining finite as 

we move further away from the interface.

This allows us to write the velocity distribution for this model as

l  « i - F ( P . î ; l ; - / 3e # ) , . < 0 , (2 ,1 0 9 )
[ r  [ciJmir)  +  C2Ym{r)] , 0  < z < Zj,

and its derivative as

^  ^  f - a i p q ^ e - s F { p F l , q - { - U 2 ; ~ f 3 e ^ ) ,  z < 0 , (2 1 1 0 )

dz  I  -(2oj^Zo/cl^)r~(^+^^ [ciJm+i{r) +  C2Tm +i(r)], 0  < z <  Zj,
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which provides us with the required information to  obtain a dispersion relation.

The final three boundary conditions are exactly those used in Section 2.5.2 and 

need not be presented again. Application of these boundary conditions yields the dispersion 

relation:

7 -  Yra+i{ro)Jm{rd)]F{p,q\  1; - /? )
r  CoL^{cl^ +

=  [Jm{ro)Ym{rd) -  Ym{ro)Jm{rd)]F{p +  1, g +  1; 2; -/3 ). (2.111)

Equation (2.111) is the dispersion relation describing modes for an isothermal atmosphere 

perm eated by a horizontal magnetic field which resides over a field-free medium containing 

a linear tem perature profile.

We may recover the dispersion relation for the field-free case of Section 2.5.1 by 

allowing /? —+ oo in Equation (2.111). In order to do this, we use the transform ation 

(Abramowitz and Stegun 1965; 15.3.7)

F(p, g; r; 4  =  1 -  r +  p; 1 -  g -I- p; Ï )

+  1 -  r +  î ;  1 -  p +  ç; i ) , (2 .112)

which allows us to write Equation (2.111) as 

7 91'^IoPY>i \ r ( l  -  2 p)
r  CoL^{cli -f vl^)

r ( 2p - i )

= V<:

+  y 2 (p ) -■ p. 1 -  p ;2 (l -  p); - - ) j

, r ( 2  -  p ) r ( i  -  l)i3^p-i 

+  r(p  +  l)r ( i)^ ^ ^  -  p, 1 -  p; 2(1 -  p); i ) j

where

and

7^2 — '7 ^ m (^ o )T fn .(r d ) Yffl(^^'o^Jm(.'l'd^'

As -+ OO the hypergeometric functions may be reduced by the knowledge th a t 

F (p ,g ;r ;0 )  =  1, V p, g,r.

(2.113)

(2.114)

(2.115)

(2.116)
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Figure 2.10: Frequency shifts induced by a uniform magnetic field. Changes in mode 

frequency are plotted against base frequencies (see Section 2.4). Field strengths ranging 

from lOG to  90G in lOG steps have been used. Note the scale of the shifts is in /xHz.

This allows us to  simplify Equation (2.113) to

Substituting for V i  and V 2  from Equations (2.114) and (2.115) and using

r(p + i)
r(p )

p

(2.117)

(2.118)

recovers dispersion relation (2.69) for the field-free case: 

91 1 + 1 - g2^2

(2.119)

The numerical treatm ent applied to Equation (2.111) will be analogous to  tha t 

used in Sections 2.5.1 and 2.5.2, but the combined effects of variations in both magnetic 

field strength and atmospheric tem perature will now be considered. However, note th a t the 

argument P appearing in Equation (2.111) is usually greater than  1 and hence we have used 

transform ation (2 .1 1 2 ) in our numerical code to calculate the hypergeometric equation.
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As a first consideration, we shall calculate mode frequencies for a magnetised 

atmosphere which has a tem perature equal to tha t at the top of the lower region, i.e. 

Tat =  Tol — 4170°K. This enables the influence of the uniform magnetic field alone to 

be treated , and the frequencies found for this magnetic atmosphere wiU then be compared 

with those for the field-free case of Section 2.4. The comparison again takes the form of a 

frequency difference, namely

Ai/ =  v{Bo,Tat  =  4170^K) -  v{Bo =  0 ,T«< =  4170^'K). (2.120)

Figure 2.10 displays the changes in mode frequency found from Equations (2.120) 

and (2 .1 1 1 ). The magnetic field has been allowed to increase in strength from lOG to 90G 

in intervals of lOG. Figure 2.10 shows th a t all modes experience an increase in frequency 

with an increase in magnetic field strength. The effect is larger for stronger magnetic 

field strengths. This result is comparable to Evans and Roberts (1990) but note th a t the 

m agnitude of the shift is smaller in this model, as we would expect.

In Figure 2.10, the curves extend in base frequencies only up to approximately 4.3 

mHz. This is not due to the effect of a magnetoacoustic cut-off frequency, as in Section 2.5.2, 

but is simply to  avoid com putational difficulties in the calculations. We may see the reason 

for this if we consider the param eters p  and q of the hypergeometric function, presented in 

Equation (2.94). For an angular frequency w above a certain critical value, the param eters 

p and q become complex in nature. The condition for them to be real is th a t the expression 

within the square root be positive. This is exactly the same condition found in Section 2.4 

for modes to be trapped in the interior and evanescent in the atmosphere (see Equation 

(2.48)). As the purpose of our calculations is to compare the mode frequencies of a magnetic 

atm osphere against its field-free counterpart, we do not consider frequencies for which p and 

q become complex, because we have no field-free reference frequency to measure against. In 

fact, there is no cut-off frequency for an atmosphere containing a uniform magnetic field; 

for any mode frequency, the perturbation becomes evanescent a t sufficient heights in the 

atmosphere (see Evans (1990) for a fuller discussion).

As a way of combining therm al and magnetic influences, the tem perature of the 

upper atmosphere is now raised to Tat =  5500°K and the difference

A u  =  z/(5o,5500‘’K) -  %/(0,4170°K) (2 .1 2 1 )

calculated. Figure 2.11 shows the results. An immediate difference between this case and 

the previous one may be noted: In Figure 2.11, for the lowest magnetic field strengths, a
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Figure 2.11: As Figure 2.10 except th a t the atmospheric tem perature has been raised to 

5500°K. The higher atmospheric tem perature induces a negative frequency shift for lower 

magnetic field strengths.

reversal in the sign of the frequency shift has taken place. For higher magnetic fields, the 

positive shifts in frequency are of comparable magnitudes to those of Figure 2.10. This 

displays the competing effects of magnetism and tem perature. The effect of the magnetic 

field is to  raise the frequency but the tem perature increase leads to  a reduction in mode 

frequency th a t outweighs the influence of the magnetic field a t low field strengths.

An encouraging result here is the change in frequency found for a field strength 

of 30G with Tat = 5500°K. This, qualitatively at least, reproduces the observed behaviour 

seen over the solar cycle; a rise in frequency up to around 3.9 mHz followed by a drop in the 

frequency increase for frequencies above this value. The result we have here agrees with th a t 

found by Jain and Roberts (1994) who produce curves tha t are qualitatively similar to the 

observations with the characteristic rise and subsequent sharp drop. Again, of course, the 

curves we produce display smaller shifts than for non-radial modes. This shall be discussed 

in Section 2.7.

To illustrate more clearly how therm al effects begin to  dominate over magnetic 

ones, we now consider the case of keeping the magnetic held in the atmosphere constant 

and aUow the atmospheric tem perature to rise. We choose a held strength of 30G as the
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Figure 2.12: Frequency changes of a magnetic atmosphere over its field-free counterpart 

when the chromospheric field is kept constant but the atmospheric tem perature is increased. 

We have chosen a magnetic field of strength B q =  30G, and considered atmospheric tem pera­

tures Tat =  4:170^K, 4500°K, 5000^K and 5500°K. It is apparent th a t a t lower tem peratures, 

magnetic effects dominate but as the tem perature increases, therm al effects begin to  appear 

and a turnover in the frequency shift is apparent.

field strength and calculate the difference 

Az/ =  Tat) -  K0^4170^K). (2.122)

Figure 2.12 shows the frequency shift curves calculated according to  Equation 

(2,122). Atmospheric tem peratures of 4170®K, 4500°K, 5000°K and are taken. It

may be seen th a t for an atmosphere in which the magnetic field strength does not vary 

but which undergoes a rise in tem perature, the magnetic effects are reduced. In fact, 

for a particular combination of atmospheric conditions, in this case a rise in magnetic field 

strength from 0 to 30G and Tat increasing from 4170'^K to 5500'^K, the increase in frequency 

brought about by a rise in magnetic field strength and the decrease in frequency brought 

about by a rise in atmospheric tem perature is balanced to give a sharp frequency rise up to 

frequencies of around 3.8 mHz, followed by a turnover and rapid decline in the frequency 

increase above 3.8 mHz. Therefore an increase in magnetic field strength coupled with a 

rise in chromospheric tem perature reproduces the observed frequency variations in the low
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I jp—modes. However we do require rather extreme variations in Tat (A îh f «  15G0®K). We 

shall discuss this in Section 2.7.

2.6 A n A ltern ative A pproach to  th e  D ispersibn R elation s

In all of the dispersion relations obtained in this chapter, the Bessel functions have 

always appeared in the same combinations, defined here as Z>i and t >2 such th a t

~  (2.123)

and

=  Jm{ro)Ym{rd) -  Ym{ro)Jm{rd). (2.124)

This is because these functions form the solution to the interior of our model and this lower 

region is not changed throughout the calculations. Also, the boundary conditions used to 

m atch the two regions together are unaltered apart from the sound speed being replaced 

by the fast magnetoacoustic speed in the Lagrangian pressure perturbation.

This observation alone is not of any particular interest. W hat is of interest, how­

ever, is the order of these functions. Note th a t the order of the functions in each case is

either the polytropic index m, or m  -f 1. In the numerical calculations we have taken m to

be 3 /2 , corresponding to a convectively neutral medium with adiabatic index 7  =  5/3. This 

particular choice of the polytropic index allows us to rewrite the Bessel functions in term s 

of spherical Bessel functions by using the relations (Abramowitz and Stegun 1965: 10.1.1)

(2-125)

and

Vni^) = J  Y ^ ^ i { z ) .  (2.126)

A straight replacement of one function for another is of no use, but we may reduce 

jn{z)  and yn{^) greatly by noting th a t the order of these functions is either 1 or 2. As a 

result of this, we are able to write these functions very simply in term s of sines and cosines 

by using the relations (Abramowitz and Stegun 1965: 10.1.11 and 1 0 .1 .1 2 )

=  (2.127)
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s m z  gcosz,

yi(^) =
cosz smz

and

!/2 W =  ( - ^  +  3 COSZ -sinz.

(2.128)

(2.129)

(2.130)

Application of Equations (2.125)-(2.130) to  Equations (2.123) and (2.124) leads to  trigono­

metrical representations of T>i and Dg; after much algebra, we obtain

V i  =
(rord ) 2  7T

 ̂ 1 sin(rd -  7'o)

3 3
+  I 1  Ô + -------1 cos(rd -  I'o)

rX TdTo
and

T>2 ~ ( — -  —1 cos(rd -  ro) +  +  1 ) sin(rj -  to)
. \ r j  r o /  \ r o r j  /

(2.131)

(2.132)
(rord ) 2  7T

Instead of working in term s of Tq and r j ,  we find it convenient to introduce the 

variable H and the param eter a  such th a t

Q = To ~  -----   and a  =  ( 1  H— - ) 2  — 1 .
CoL 2(o

(2.133)

This choice of param eters allows us to  write the arguments of the trigonometric functions

as

rd -  ro =  aÜ,  

and Equations (2.131) and (2.132) reduce to

(2.134)

V i  =  -f-\)fI3 [((2 +  3a)n^  -j- 3) sin oO -f ( (a  +  l)fl^ — 3o:)n cosofl] (2.135)

and

V2  = [((cK +  1 )0  ̂ -b 1 ) sin aÜ — a ü  cos a ü (2.136){a +  1 )Ü2

As an example of the procedure th a t we have followed above, let us look once 

again at the dispersion relation for a field-free atmosphere. Equation (2.69). This dispersion 

relation reads

W CoL
~  [Jm{ro)Ym{rd) -  Yjn{ro)Jm{rd)]- (2.137)

[(^ac ^  ( âcj ['7m-fi(ro)I(m(r(i) I^+l(^o)'7m(rd)]
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Figure 2.13: A comparison of the calculated mode frequencies from Equations (2.137) and 

(2.138). The results for the original dispersion relation are presented as crosses ( + + + )  and 

those for the reduced one as stars (***). W ithin the numerical accuracy employed, there is 

no difference between the two sets of results.

Application of the above transform ations leads to

T ^ac [((2 T 3o;)fi^ T 3) sin cxQ,

+ ((a  +  l)f)^ -  3 a )0  cos aü^  

Ü [^((a +  l)n ^  +  1 ) sin a ü  — a ü  cos aOj . (2.138)

We may now solve Equation (2.138) in terms of Ü and make a comparison with the 

results of Section 2.4. Figure 2.13 displays the mode frequencies found from both  dispersion 

relations plotted against equivalent radial orders from the two sets of data. Of course, there 

is negligible difference between the two sets of data.

2.7  D iscussion

A simple plane-parallel, two layer model has been used in an attem pt to understand 

the observed solar cycle behaviour of the radial modes of oscillation of the Sun. The 

model consists of a lower field-free region which is bounded at depth and within which
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the tem perature increases linearly with depth; above this zone is an upper atmosphere, 

extending to  infinity, perm eated by a horizontal magnetic field.

From this model we have been able to  reproduce mode frequencies th a t are close 

to  those observed (Libbrecht and W oodard 1990; Elsworth et al. 1994), the frequencies 

displaying a linear dependence on radial order, n. This initial result is an encouraging 

introduction to the main focus of this chapter, namely the nature of changes in mode fre­

quency brought about by changes in chromospheric conditions. The / =  0  mode penetrates 

to  the core of the Sun and as such holds a unique position in determining the role (if any) 

of the outer layers of the Sun in p —mode solar cycle changes. If the deepest layers of the 

sun varied over the activity cycle, the I =  0  modes would be the most likely to respond to 

these changes. Also, as a diagnostic tool, the I = 0 modes may hold key information about 

the solar cycle in their unique position of having no angular structure.

W hat we have in mind through a study of this kind is the effect the outer atm o­

spheric layers of the sun have on its oscillation frequencies over the course of the solar cycle. 

Also, changes in the chromosphere brought about by the b irth  and death of active regions 

can be considered. We have examined changing two param eters in the chromosphere, the 

atmospheric tem perature. Tat, and the strength of the magnetic field, B q. As we have 

noted, it is in fact the presence of a magnetic field tha t is responsible for an increase in the 

tem perature of the atm osphere, but it is of interest to study the two effects separately.

The frequency shifts we find are simply a response to  changes in the upper atm o­

sphere. The presence of the magnetic field has two im portant physical effects. Firstly, the 

evanescent modes in the atm osphere are of fast magnetoacoustic type because the velocity 

perturbation is transverse to the magnetic field. As the characteristic speed of this mode is 

the fast magnetoacoustic speed, (c^ -f- , the transit time in the magnetic held is reduced

as the fast speed increases with held strength. This serves to increase the mode frequency. 

Also, the magnetic held adds support to  the atmosphere because of the increase of the mag­

netically modihed scale height, H b , with increasing held strength. The mode frequencies 

tend to to  be reduced by this effect because of the extra inertia added to the system.

Initially, we restricted our attention to changing the therm al properties of the 

atmosphere (Section 2.5.1). In the absence of a  magnetic held, raising the chromospheric 

tem perature led to a decrease in mode frequency for aU radial orders. This result has 

been known for sometime (Lamb 1932) for a general two layer atmosphere and has also 

been shown in models studying general degree modes (Evans and Roberts 1990; Jain and
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Roberts 1994). By a similar argument to the above, we would expect frequency shifts 

to  be negative: the effect of increasing the atmospheric tem perature, Tat, is to  raise the 

density scale height H  of the atmosphere. The extra inertia th a t this supplies gives rise 

to a frequency decrease. The changes th a t we find at the highest frequencies range from 

a drop of approximately 0.5 ^Hz with a raise in chromospheric tem perature to 4500°K, to 

approximately 5 /xHz with a tem perature of 6000°K. Changes in atmospheric tem perature 

therefore have a large effect on the mode frequencies for this model, and moreover they fail 

to reproduce the observed solar cycle variations of the I — 0  modes (see Section 2 .2 ).

For the constant Alfven speed model we have used an atmosphere analogous to 

th a t employed by Campbell and Roberts (1989). Our results are comparable with theirs, 

with aU modes showing a frequency decrease. However, they find th a t the n — 1 p —mode 

suffers a frequency increase; this does not happen for the I = 0 modes here. The magni­

tude of the shifts is approximately 0 . 0 1  pHz for the weakest fields to 1 fÆz  for stronger 

fields, much smaller in magnitude than  the frequency shifts seen in Section 2.5.1. However, 

the assumption of a constant Alfven speed underestimates the influence of the magnetic 

field. This is because the magnetic field strength Bo{z) decreases proportionally to  p g , 

giving a magnetic scale height th a t is smaller than  to be expected. In reality, the magnetic 

scale height of the atmosphere would be larger, implying th a t magnetic effects are more 

significant.

The sign of the frequency changes can be further examined by studying the decre­

ments A and r  arising in solutions (2.47) and (2.77). These solutions are of the same form, 

implying th a t the magnetic field chosen simply mimics changes in atmospheric tem perature 

(cf.  Section 2.5.1). An exponentially decaying magnetic field has little rigidity. Hence, for 

an atmosphere with constant Alfven speed, the reduction in gas density due to the presence 

of the magnetic field is the dominant effect. This is directly analogous to the reduction in 

atmospheric density associated with a rise in chromospheric tem perature in the field-free 

case and explains why one case is a mimicry of the other.

The final case th a t we have considered, tha t of a uniform magnetic field, provides us 

with some interesting results. Considering an atmosphere for which TqL =  Tat (as explored 

by Evans and Roberts (1990)), we find an increase in mode frequency for aU modes. Again, 

the shifts are very small, ranging at the highest frequencies from 0.2 pHz for a lOG field to 

over 1 fjJlz for higher strength fields. These results compare well with Evans and Roberts

(1990), with the shifts here being much smaller. For example, Evans and Roberts (1990)
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find th a t for degree I =  100 and mode n =  20, a drop in canopy field strength from lOG to 

0 causes a  frequency fall of approximately 1 pHz. For the same radial order and magnetic 

field reduction, we find th a t modes of degree zero suffer a drop in frequency th a t is 2 0 % 

th a t of the I =  100 modes. Our results agree well with the observations of Isaak et al. 

(1986) and Elsworth et al. (1994). Also, from the condition on the transit time decreasing 

for an increase in magnetic field strength, our results are understandable.

Finally, by considering the combined influences of an increase in magnetic field 

strength with a corresponding rise in chromospheric tem perature, some encouraging results 

are found. By raising the atmospheric tem perature to 5500°K we are able to produce a 

downturn in the frequency shifts. For low changes in magnetic field strength, a somewhat 

unrealistic change to Tat even changes the sign of the frequency shifts (compare Figures 2 . 1 0  

and 2.11). For certain specific changes in Bo and Tat, however, we are able to produce a 

steep rise in A u  up to frequencies of around 3.8 mHz, followed by a downturn for frequencies 

above this value (see Figure 2.12). Qualitatively, the results of Figure 2.12 are similar to 

the observed solar cycle variations of intermediate degree p —modes, but the m agnitude of 

the changes is much smaller. Quantitatively, the peak in Figure 2.12 is in good agreement 

with the variation in the 1 = 0 mode frequencies given by Palle et al. (1989).

A previous study of the frequency shifts suffered by radial modes was carried out 

by Goldreich et al. (1991). They found results tha t agreed very well with observations 

and suggested th a t the observed frequency shifts could be divided into two components; a 

positive component (where the frequency shifts increase as the frequency increases) and a 

negative component which causes the frequency shift to drop sharply a t frequencies above 

% 4 mHz. They concluded th a t changes in the photospheric magnetic field strength are 

responsible for the positive component in the frequency shifts, and th a t an increase in the 

chromospheric tem perature over the solar cycle, combined with a chromospheric resonance 

gives rise to the sharp drop in frequency shift. Our results agree reasonably well, but of 

course we have considered magnetic fields in the chromosphere rather than  the photosphere, 

and our model does not allow for the presence of a chromospheric resonance. Also, Goldreich 

et al. do not put a figure on the rise in chromospheric tem perature necessary to give the 

correct shape to their curves making comparison dilficult; we find th a t very large changes 

in chromospheric tem perature are required (ATat  ~  1500‘̂ K).

The findings of this chapter add further weight to the argum ent th a t it is changes to 

the outer layers of the sun over the solar cycle th a t are responsible for the observed variation
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in the p —mode frequencies (see, for example, Campbell and Roberts 1989; Libbrecht and 

W oodard 1990; Evans and Roberts 1990; W oodard et al. 1991; Shibahashi 1991; Jain and 

Roberts 1994; Bachmann et al. 1994; Nishizawa and Shibahashi 1994). Here, we have seen 

th a t the 1 = 0 mode responds to changes in the chromosphere in a  similar fashion to  those 

found earlier for modes of non-zero degree. It is particularly interesting to  note th a t this 

result agrees exceptionally well with the recent observations of Chaplin et al. (1998) who 

find th a t modes of degree zero display a rise phase followed by evidence of a turnover.
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C h a p te r  3

T h e U p p er C on vection  Zone and  

its  E ffect on  P -M o d e  Frequencies

3.1 In troduction

Numerical simulations of convection applied to solar models and models of convec­

tion solved with solar values as param eters infer tha t the main bulk of the solar convection 

zone is very nearly adiabatically stratified (see, for example, Christensen-Dalsgaard et al.

(1991)). In fact, below a depth of approximately 3000 km, measured from the photosphere, 

the actual tem perature gradient V (~  ^ In T / ^Inp) exceeds the adiabatic tem perature 

gradient, Varf, by only about one part in a million (Demarque et al. 1997).

Over most of the convection zone of the Sun, the convective efficiency 7] {= con­

vective flux/reference flux, where the reference flux is, for example, the radiative flux or the 

magnetic flux) is very high (p > >  1 ), but near the solar surface the plasma density drops 

off so rapidly tha t convection becomes an inefficient process (rj 1) and the tem perature 

gradient becomes strongly superadiabatic in order to maintain effective energy transport.

The superadiabatic layer in the upper part of the solar convection zone forms a 

thin transitional layer between the mildly superadiabatic (V % Vad) deep convection zone 

and the outer, optically thin, atmospheric layers of the Sun where radiative transfer of 

energy dominates (V — Vad ~  1). Physically, this thin layer may be understood as a region 

unstable to convective motions accompanied by a zone of partial ionisation of hydrogen 

(Smeyers 1970; Kim et al. 1996). A convective element travelling upwards through a layer 

of this kind frees ionisation energy which is converted to therm al energy. This increases the
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buoyancy of the convective element, causing it to continue in its upward, journey. The net 

effect of this is a  substantial deviation of the tem perature gradient from its adiabatic value. 

This joint energy process, of radiative and convective transport of energy, is decoupled in 

the deep convection zone where radiative transfer is negUgible (Kim et al. 1995).

Several models have been proposed to  more accurately describe the structure of 

the superadiabatic layer, usually with a view to reconciling the discrepancies between the 

calculated oscillation frequencies of solar models and the actual observed frequencies of the 

Sun (Monteiro et al. 1996; Kim et al. 1996; Demarque et al. 1997). Our interest in this 

chapter is based upon the possibility th a t solar cycle changes in p —modes may be influenced 

by changes in the superadiabaticity of the upper convection zone. We note th a t it is prim ar­

ily alterations in the structure of the superadiabatic layer which are believed responsible 

for the measured fluctuations in solar luminosity over the solar cycle (Dearborn and Blake 

1980; Endal et al. 1985). The variation in solar luminosity has been measured by Willson 

and Hudson (1988) using AC HIM data  from the solar maximum mission. They found th a t 

between 1980 (solar maximum) and 1986 (solar minimum) the to ta l solar irradiance fell by 

0.03%, following which the luminosity began to  rise once more. This long term  variation 

suggests a correlation between solar luminosity and the solar cycle.

By perturbing the ratio a  of the mixing length T of a convective element to the 

local pressure scale height A, a change in the convective energy transport efficiency may 

be modelled (an increase in a  leads to  an increase in the convective efficiency rj, and vice 

versa). An increase in a  allows energy to  flow more freely by convection and brings the local 

tem perature gradient required to sustain the energy flow closer to the adiabatic gradient. 

Dearborn and Blake (1980) showed th a t small changes in a lead to  a  rapid adjustm ent of the 

superadiabatic layer on a time scale of about 1 day. To maintain hydrostatic equilibrium, 

the rest of the convection zone adjusts rapidly (~  1 hour) to the new hydrostatic structure 

and this is followed by a slow relaxation to the new therm al equilibrium state.

Dearborn and Blake (1980) argue th a t the net effect of this is th a t if a  increases, the 

convection zone begins contracting, converting potential energy to  therm al energy; energy 

changes take place on a time scale of ~  1 0 ® years, leading to a tem porary but immediate 

increase in luminosity. The luminosity change lasts only while the convection zone adjusts 

itself to the new therm al equilibrium which in fact is not reached before another disturbance 

to the hydrostatic structure, because of the large time scale (rv 1 0 ® years) required.

Only large perturbations to the mixing length L in the deep convection zone have a
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significant effect on the luminosity and radius of models (Endal et al. 1985). The immediate 

response ( ^ 1  day for readjustm ents to a new therm al equilibrium) of the superadiabatic 

region to  changes in convective efficiency, however, lead to substantial luminosity changes: 

Endal et al. (1985) report a 0.3% change in luminosity for a 1 % change in L. In fact, 

Dearborn and Blake (1980) claim th a t 90% of the observed luminosity variation is caused by 

changes in convective efficiency as small as 1% in the superadiabatic layer. These luminosity 

variations are most likely to  be seen as changes in the effective surface tem perature, Tg//. 

Changes in Tg// have been reported by Livingston (1978) who claimed to measure a cooling 

of approximately 6 °K of the photospheric surface tem perature as the Sun approached solar 

maximum.

Although convection operates in the superadiabatic layer, a significant fraction of 

energy flows by radiation (77 ~  1 in the superadiabatic zone). As a result the superadiabatic 

layer does not react to  an increase in convective efficiency by contracting, but rather as a 

radiative region would by expanding (Dearborn and Blake 1980).

Overall the convective efficiency of the Sun would appear to  be at its greatest 

a t solar minimum, when the Sun is a t its most luminous, and Rsun and T^f f  are a t a 

maximum. A decrease in the efficiency of convection within the superadiabatic layer as 

solar maximum is approached, perhaps by magnetic fields inhibiting convection, would 

then lead to  a  contraction of the superadiabatic region, giving a change in solar radius, 

lowering the effective surface tem perature and thus decreasing the overall solar luminosity.

Changes to the superadiabatic layer can be expected to  have an influence on 

p —mode frequencies over the course of the solar cycle; we wish to model this effect. We 

model the bulk of the convection zone (and below) as being marginally stable to  convective 

motions with a tem perature profile th a t increases hnearly with depth. By stable to  convec­

tive motions we mean th a t the polytropic index m  of the plasma is related to the adiabatic 

exponent 7  by the relation

m  =  ^  _ i ^  (3-1)

thus producing a buoyancy (Brunt-Vaisala) frequency, defined by

— X~(ÿ) ~  '^ad] , (3.2)

th a t is exactly zero. The assumption th a t ojg = 0 excludes both convective instability and 

g-modes.
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Above the neutral convection zone, we impose a thin layer taken to  model the 

superadiabatic region. Again, for analytical simplicity, we impose a linear tem perature 

profile, but one th a t is steeper than th a t of the neutral convection zone beneath it. Supera­

diabaticity (Wg < 0 ) in this layer requires tha t

m  < —Î— (3. 3) 
7 - 1

In the superadiabatic layer convective motions (with < 0) may occur.

Finally, in the atmosphere above the superadiabatic layer we impose an isother­

mal layer representing the photosphere and above, within which may reside a horizontal 

magnetic field B  (see Section 3.6).

At the time of writing this chapter, a piece of work similar in spirit to  this investi­

gation has appeared (Vanlommel and Cadez (1998)). They were interested in the effect of 

various tem perature profiles on the acoustic eigenfrequencies, concentrating their attention 

on the chromosphere-corona transition region. However, they also investigated the effect 

of varying the tem perature gradient of the main bulk of the convection zone away from an 

adiabatic gradient to  more superadiabatic profiles. They found th a t the frequency of the 

/ —mode could be increased by several hundred /iHz by varying the tem perature gradient 

of the convection zone by up to  twice the adiabatic gradient. The large shifts in frequency 

found by Vanlommel and Cadez (1998) would further indicate tha t the main bulk of the 

convection zone does not alter its structure over the solar cycle.

We have organised the chapter as follows: in the next section (Section 3.2) we 

introduce in detail the equilibrium model and obtain various equilibrium profiles of therm o­

dynamic variables. In Section 3.3 we consider perturbations to  this equilibrium and solve 

the differential equations governing plasma motions. In section 3.4 we derive a dispersion 

relation for the model in the absence of a magnetic field. In Section 3.5, the effects of 

changing therm al conditions of the model on the p—mode frequencies and convective mode 

growth times are investigated. A horizontal magnetic field is added to the atmosphere 

in Section 3.6 and its additional effects considered. Finally, in Section 3.7 we discuss the 

results found.
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superadiabatic

adiabatic

z=0

z=h

Figure 3.1: The model used to  assess the effect on p —mode frequencies of a strongly su­

peradiabatic layer a t the top of the convection zone. The atmosphere overlying the supera­

diabatic layer is assumed to be isothermal and embedded with a non-uniform horizontal 

m agnetic field.

3.2 T he Equilibrium  M odel

3 .2 .1  O v era ll e q u ilib r iu m

A simple three layer model is used to include the thin superadiabatic region of 

the upper convection zone. This model may therefore be viewed as a  simple extension to 

the models of Campbell and Roberts (1989), Evans and Roberts (1990,1992) and Jain and 

Roberts (1994). The equilibrium state  is displayed in Figure 3.1. The reference level z ~  0 

is chosen to correspond to  the top of the superadiabatic layer which extends to a  depth of 

z ~  h. Beneath the superadiabatic layer, at depths z > h, the medium is assumed to be 

marginally stable to  convective motions (Ug =  0). The tem perature profiles of these two 

regions, which collectively we shall call the interior {z > 0 ), are taken to be linear, but with 

a steeper gradient in 0 < z < h. The unbounded isothermal atmosphere in z < 0  is taken 

to model the photosphere and above and may be permeated by a  horizontal magnetic field 

B =  B(z)x.  of strength B{z)  which varies with height.

In general, the plasma is assumed to  be an ideal, inviscid and perfectly conducting; 

gravity g acts in the positive z —direction. The unperturbed plasma pressure f^ (z ), den­

sity po(z) and magnetic field distribution B(z )  satisfy the equation of m agnetohydrostatic
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balance:

É  + ~ é r  )  = (3 4)

where fj, (=  4?r X 10"? Henry m~^)  is the magnetic permeability. The plasma pressure and 

density are related to  the tem perature profile by the ideal gas law:

=  7 Z p ,(z )r ,(z ), (3 .5 )

where E  is taken to  be kslrriav ( k s  is Boltzm ann’s constant and rriav is the mean particle 

mass of the plasma).

The equilibrium tem perature profile is taken to be

Tafj Z < 0 ,

To(z) —  ̂ Ts(l +  ^^)» 0 < z < h, (d-6)

M l  +  ^ ) ,  ^ > h.

The tem perature of the isothermal atmosphere is given by Tat, th a t at the top of the 

superadiabatic region by Tg and the tem perature a t the top of the adiabatic layer is taken 

to  be chosen such th a t the tem perature is continuous at z =  /i, i.e. =  T^(l +  h/zo^). 

The tem perature may be discontinuous at z — 0 . In all subsequent numerical calculations 

Tfi wiU be kept fixed. The tem perature scale height of the superadiabatic layer is given by 

Zou and th a t of the convectively stable layer to be z^;. In order to maintain a tem perature 

gradient Tg/zou in 0  < z < h th a t is steeper than  the adiabatic gradient Th/zoi in z > h, 

we require th a t

ZqI ^  ^ou "b h. (3.7)

In order to  more accurately model the superadiabatic zone, the exponent 7  used for 

this layer is taken to be different from the exponent elsewhere in the medium, as suggested 

by standard solar models such as Guenther et al. (1992). Specifically, the chosen profile for 

7 (z )w

Ifad, Z <! 0,

7 (2 ) =  ' Jsa, 0 < z < h, (3.8)

with 'Ysa < lad- The adiabatic exponent of the atmosphere and the neutral convection zone 

is 7 arf, and the superadiabatic region has exponent 7 ^ .̂ The choice of an adiabatic exponent
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which has a  piece-wise constant variation with depth gives a sound speed squared, c ,( z ) ,  of 

the form

z < 0,

0  <  z < h, 

z  > h.

(3.9)

The sound speed of the atmosphere is Cat{= (ladRTat)^),  in general different from the sound 

speed at the top of the central layer Cg{= {jsaRTg)^)  because of the differing adiabatic 

exponents. Similarly, the sound speed at the base of the superadiabatic layer (c^- =  

Cs(l -f hjzou)^)  and th a t at the top of the lower region c/i(= (jadRTh)^)  are also different. 

Hence we have two discontinuities in the sound speed profile for our model, one at z =  0  

and the other at z =  h.

In the non-magnetic medium. Equation (3.4) reduces to

dPg
dz Po9' (3.10)

Application of the tem perature profile (3.6) to the m agnetostatic balance (Equa­

tions (3.4) or (3.10)), along with the ideal gas equation (3.5), gives the equilibrium pressure 

distribution Po{z)\

Po(z)
Paie«,

A ( i  +  ^ r ' + ' ,

z < 0 ,

0  < z < h, 

z  > h.

(3.11)

The plasma pressure at the base of the atmosphere is denoted by Pat and th a t at the top 

of the superadiabatic layer by Pg. The pressure at z — h is P/̂  and th a t at z =  0 is Pg.

The param eters P ,  iriu and mi  appearing in Equation (3.11) are defined by

'at m. 9 Zqu
1 , and mi 1 , (3.12)

9 7 ^  ' aPk

where H  is the pressure scale height of the isothermal atmosphere, and is the polytropic 

index of the superadiabatic layer and mi  is the polytropic index in the adiabatic region.

To m aintain static equilibrium, pressure balance must be satisfied a t both z =  0 

and z  — h. The requirement at z =  h leads to

Isa^^h (3.13)
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To maintain pressure continuity at z =  0 we require tha t Pat, Ps and Bg, the magnetic field 

strength at the base of the atmosphere, are related by

Ps = Rat +  (3*14)

This places a limit on the size of Bg before the magnetic field evacuates the atmosphere.

Using Equation (3.14) along with Equation (3.5), pressure balance may be ex­

pressed in term s of an interfacial density ratio 

Pai   ______lad^s______
P. ~ - t U c i t + h - d ^ i o y   ̂ ' '

where pat is the plasma density at the base of the photosphere and ps is the plasma density 

a t the top of the central layer. Here, Vag is the Alfvén speed at the base of the atmosphere, 

defined by
P .

(PPatŸ^
(3.16)

3.2.2 C onstraints on tem p erature and sound speed gradients

The tem perature gradient in the upper superadiabatic region is taken to be greater 

than  th a t of the adiabatically stratified convection zone (inequality (3.7)). For the lower 

convection zone we choose 'jad — 5 /3 , giving mi = 3/2  from Equation (3.1). From the stan­

dard solar model of Guenther et al. (1992) which displays a variable 7 , we select an average 

value of the exponent for the superadiabatic layer of 7 ^̂  =  1.2. From the requirement of 

superadiabaticity (Equation (3.3)) this requires tha t < 5; mu =  5 is the value for the 

upper layer of the model to  be neutrally stable, i.e. if mu = l / ( 7 sa — !)• However, from 

Equation (3.12), Zgu and Zgi are seen to be related by

+ '>). (3-17)

indicating the tighter constraint th a t for this model mu < mi. This constraint also proves to 

be somewhat loose if we wish to be as realistic as the model allows us. The actual run of the 

sound speed squared in the standard solar model departs strongly from a linear behaviour 

in the outerm ost layers of the Sun. Modelling this is beyond the range of our study, but 

it should be noted th a t the gradient of the sound speed is generally steeper in the upper 

layers than  it is at depth. Demanding th a t the gradient of the square of the sound speed is 

greater in the superadiabatic region than th a t in the adiabatic lower region, we find th a t

mu  < ——(m/ -f 1) — 1. (3.18)
l a d
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For our choice of param eters given above, 'jsa = 1-2, jad =  5 /3  and mi ~  3 /2 , we require 

tha t

mu < 0.8. (3.19)

We are interested here in how small changes in influence the frequencies of the 

p —modes and growth-times of convective modes (p " —modes) confined to  the superadiabatic 

layer; the precise value of mu is not our concern. In the numerical illustrations given below, 

we choose mu = 0.75 as representative of the value of mu at solar minimum.

3.3 P erturbations

The equations governing plasma motions are as follows (see Chapter 1): 

the equation of mass continuity

+  V • (pn)  =  0; (3.20)

the momentum equation

= - V P - b p g - l - j  X B; (3.21)

the adiabatic energy equation

f  = fg ;
the induction equation with no diffusion

^  =  V x ( u x  B ). (3.23)

Here, the convective derivative is denoted by

=  ê + "  ' (3.24)

while the current density j is given by

juj =  V X B , (3.25)

and the magnetic field satisfies the solenoidal constraint

V . B =  0. (3.26)
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The equilibrium of Section 3.2 is perturbed by a two dimensional velocity field of

the form

u =  (Ua;{z), 0, Ii^(z))exp , (3.27)

where w is the angular frequency of the disturbance and the horizontal wavenumber. The 

system of Equations (3.20)-(3.26) may then be linearised for the perturbation (3.27) leading 

to  the governing equations describing the velocity components. The governing equations 

are obtained and solved in each of the three layers separately.

3 .3 .1  T h e  i n te r io r  (z >  0)

W ithin the non-magnetic interior of the model, it proves useful to introduce the 

compression A (=  V • u) as a convenient variable to work with. Equations (3.20)-(3.26) 

determine the relationship between the vertical velocity Uz and the compression A  as

duz
dz A  -  (3.28)

and

(w'̂  -  â Â:̂ )wz = 9[A;^4(z) -  7(z)w^]A -  w ^c^(z)^ . (3.29)

Assuming th a t ^  gk^, Uz may be eliminated between Equations (3.28) and 

(3.29) to  obtain the governing differential equation for A  (Lamb 1932):

+  “  4 4 (^) +  [(7 (2 ) -  1 ) 9  -  4 (2 )'] I  A  =  0, (3.30)

with the prime ' denoting the derivative with respect to depth z. We now look for the 

solution of Equation (3.30) in each of the two layers of the interior.

T h e  s u p e ra d ia b a t ic  lay e r  (0 < z < h)

In order to solve Equation (3.30) in the superadiabatic layer of the interior, where 

the adiabatic exponent is 7  =  7 0̂, and where the sound speed squared is 4 ( z )  =  c l{ l -yz / Zgu), 

we set

A  = (3.31)
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where f { z )  is to be found. After some algebra we obtain the solution for A  first given by 

Lamb (1932):

A  =  [A iM {~au ,m u  + 2 ,2 K { z  +  Zg^)) ^2 )

-j-Pi (7(— TTiu L 2 ,2kx{z T z^^))], 0 < z < h,

where A\  and Bi  are arbitrary constants, and M  and U are confluent hypergeometric 

functions (Abramowitz and Stegun 1965; Chapter 13). The param eter is given by

=  +  - 1 ) - 1 '’ ^2 fl»/ —
I s a I s a

where we have introduced the dimensionless frequency through 
.2

^ 2 ~ ( ^ u  +  2), (3.33)

Q? =  (3.34)
gkx

The component of the vertical velocity is then given by Equation (3.29).

T h e  a d ia b a tic  c o n v ec tio n  zo n e  (z > h)

Following a similar procedure to  th a t used for the superadiabatic layer, but now

setting

A =  (3.35)

yields the solution

A  =  [A2 M (-a ; ,m ;  +  2,2kx{z  +  Zgi -  h))

AB2U{—ai,mi  4- 2 ,2A:a;(z +  Zgi — h ))] , 

where Ag and B 2  are arbitrary constants and

2ai = miü'^ — {mi- \ -2). (3.37)

The simpler form of a/ compared with arises from our assumption th a t mi  =  l / ( 7 a£Z— 1), 

corresponding to the lower convection zone being convectively neutral.

At this point, it is convenient to introduce the first boundary condition to be used 

in our model. We impose the condition th a t the kinetic energy density of the disturbance 

should vanish as z —> + 0 0 . Specifically, we require th a t pg{z)u'^{z) —> 0  as z —> + 0 0 . From 

the properties of confluent hypergeometric functions as z becomes large, we see th a t to 

satisfy this condition we must set A2 =  0. Hence

A  =  +  +  z  > h, (3.38)

in the neutrally stable convection zone.
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3 .3 .2  T h e  a tm o s p h e r e  {z < 0)

In the magnetised atmosphere it is preferable to work directly in terms of Uz. The 

velocity perturbation Uz (with Fourier form (3.27)) satisfies the second order differential 

equation (Goedbloed 1971; Adam 1977; Roberts 1985)

d
dz (w2 -  kgcg)

PoQ^kl

dz

- p , ( w '^ - 4 4 ) - p & : (3.39)
(w2 _  - " 'd z  _  &2 c2 )

Here, Cg{z) and Va(z) denote the sound speed and Alfvén speed in the atmosphere, which at 

this stage may be non-isothermal. In addition to  these speeds it is convenient to introduce 

the magnetohydrodynamic cusp (or slow mode) speed c t {z ) defined by 

Cs' â
Ct (^) = (3.40)

( 4  +  4 ) "
As a first study we assume th a t the atmosphere, like the interior, is field-free. 

Then Equation (3.39) with Va = 0 reduces to

A
dz

du.
(w^ -

PoQ^kl
— poOĴ  — gk̂ ^

d
(3.41)(w 2_A ;:4 ) - " 'd z \ ( w 2 _A;:c2 )

Under the assumption of an isothermal  atmosphere. Equation (3.41) further reduces to

#  + +  =  (3.42)

where

An =
kx [n^(p02 -  kxcl^) -f g{')ad -  1)]

'at
(3.43)

and H  is the scale height of the atmosphere {H — 4 / (p 7 aj)). 

Equation (3.42) possesses solutions of the form

z < 0,

where

2 PA  =  - 1 ± ( 1 - 4 A o P ? ) 2

(3.44)

(3.45)

We make the assumption th a t 4AoP^ < 1, for which A is real. This introduces a 

cutoff frequency in the isothermal atmosphere; modes whose frequency satisfies this condi­

tion are evanescent in the atmosphere and are thus trapped in the interior of the model.
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Modes which do not satisfy < 1 are free to propagate ont of (or leak from) the

atmosphere; they will not be discussed in this work.

Inspection of 4AoP^ =  1 shows th a t the cutoff frequency w =  Wco is given by a 

quadratic in w ^:

^co — ( 4 c  +  4 4 f ) 4 o  +  9^4(7ad  — 1) =  0. (3.46)

The cutoff frequency is thus defined by

24o = (4c + 4 4 )  ± [(4c + 4 4 )^  -  49 4̂ (7=̂  - 1)] \  (3 47)

where ojac is the acoustic cutoff frequency for an isothermal atmosphere (Lamb 1932), given 

by

wL =  (3.48)

The choice of the sign in front of the square root in Equation (3.44) is obtained 

by the demand th a t the kinetic energy density, decays as z -o o . Inspection of

Equation (3.44) under this condition tells us th a t it is the plus sign in the param eter A of 

Equation (3.45) tha t we require and thus

2HX  -  - 1  +  (1 -  4AoP^)&. (3.49)

Now th a t we are equipped with the solutions for the velocity disturbance, we may 

apply boundary conditions across each of the interfaces a t z =  0  and z =  h in order to 

obtain the dispersion relation relating frequencies w and horizontal wavenumbers kx-

3.4 T he F ield-Free D isp ersion  R elation

In Section 3.3 the boundary conditions as z —̂ ±oo were applied early, for ease of 

presentation of the solutions. There are four remaining boundary conditions to apply and 

it is to  those which we now turn.

The first two of the remaining conditions are simply th a t the vertical velocity 

perturbation Uz{z) is continuous across each interface, i.e.

Uz is continuous a t z =  0 and z  = h. (3.50)
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Also, the to ta l pressure perturbation must be continuous across z =  0 and z — h. This is 

equivalent to  continuity of

du.  ^  I (3.51)
(u;2  -  k lc l)  dz  \ (w 2 -  klcl)

Inspection of the relation between A  and given by Equation (3.28) shows th a t condition 

(3.51) implies continuity of

Po(z)Cg(z)A(z) a t z = h, (3.52)

and th a t

P À z t ) c l { z t ) H z t )  = +  Skl)u.{z:)-,  (3.63)

here zj" is the limit as z ^  0  from the superadiabatic layer and z“ is the limit as z 0  

from the atmosphere.

Application of Equations (3.50)-(3.53) to Equations (3.36), (3.38) and (3.44) leads, 

after much algebra, to  the dispersion relation for the field-free version of this model:

2kxÜ'^c^gaulad{^'^X 4- Ar̂ ;)* =  [o;7 ad(fi^A + kx) -  isakx ig^^ ~  ^ r 4 ) ( ^ ^  “  1)] ^,(3 .54)

where

a  = kxcl{ü'^ +  1) -  gisa^'^, (3.55)

'F — cAf ( o>u, nzu +  2, 2kxZgu^ ( Uu? tTiu -b 2 ,2kxZgu'), (3.56)

$  = 6U{1. O/u, +  3 ,2kxZgu} ~ (1 ^u, +  3 ,2kxZgu)^ (3.57)
rriu +  2

8 = %Af(—«u , ^ 1 1  +  2 ,2kx{h -f- Zqu)) +  ~ — ~ ^u , ' ^u  +  3 ,2kx{h -f Zgu)), (3.58)

c = r U { l  — ttu, TTiu +  3 ,2kx{h -f Zqu)) ~  x R {~ ^u ,  +  2 ,2kx{h -f Zgu)), (3.59)

r  auU {-a i ,m i  2,2kxZoi) and y =  a?I7(l -  a/, -f 3 ,2fca;Zo/). (3.60)

Dispersion relation (3.54) is somewhat complicated in its nature. It is the disper­

sion relation for a three layer model, the lower region of which supports a linear, adiabatic 

tem perature profile over which is a thin superadiabatic region unstable to convective mo­

tions. Above the superadiabatic layer lies an isothermal atmosphere. The medium supports
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not only p —mode solutions, but also convective modes with < 0 , which we label as 

g~ — modes.  The convective modes are largely confined to the superadiabatic layer.

In the next section we shall solve Equation (3.54) for the p — and gf"—modes and 

determine the change in their behaviour brought about by conditions changing within the 

superadiabatic region and the atmosphere.

3 .4 .1  R e d u c t io n  to  th e  p u r e ly  a d ia b a tic  ca se

In the limit of equal tem perature gradients over the two internal layers we are able 

to  retrieve the zero-field dispersion relation for such models as investigated by Campbell 

and Roberts (1989), Evans and Roberts (1990) and Jain and Roberts (1994). In order to 

dem onstrate this we set the adiabatic exponents equal in z > 0 , i.e. ' ŝa ~  lad = 1,  along 

with equality of the polytropic indices (m^ = mi = m)  and the param eter a entering the 

confluent hypergeometric functions (ou = ai = a).

Under this assumption, Ÿ and $  become

® =  T[U(e, f ,  Y )M {c ,  d, Z)  +  / ,  Y)U{c, d, Z)]

+x[U{c, d, Z)M{c ,  d, Y )  -  U{c, d, Y )M{c ,  d, Z)] (3.61)

and

$  =  2 [ ^ ^ { e , f , Y ) U { e J , Z ) - U { e J , Y ) M i e , f , Z ) ]

+ X [ M { c ,  d, Y)U{e, f ,  Z)  +  i t / ( c ,  d, Y ) M ( e ,  f ,  Z)] (3.62)

where we have set

c =  —a, d — m -f 2, Z  = 2kxZgu

e = I -  a, /  =  772, +  3, Y  — 2kx{zou + h). (3.63)

W ith the tem perature gradients in the two layers equal, the depth of the upper

layer h becomes arb itrary  and hence may be set equal to zero. Then Y  = Z  and $  and

reduce to

® =  r [P (e , / ,  Z)M{c ,  d, Z)  +  ^ M (e , / ,  Z)U{c, d, Z)] (3.64)

and

$  = x[U{e, / ,  Z)M{c ,  d, Z)  +  iM ( e ,  / ,  Z)U(c,  d, Z)]. (3.65)
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From Abramowitz and Stegun (1965; 13.4.8 and 13.4.21)

6 , z) =  —M { q, T 1,6-}-1, z) (3.66)

and

U\cL, 6 , z) — —cbU{ci -f-1, & 4“ 1, z). (3.67)

Equations (3.64) and (3.65) then become

® =  - 7 m ( c ,  d, Z)V'{c, d, Z)  -  U(c, d, Z)M'{c, d, Z)] (3.68)

and

$  =  - ^ [ M ( c ,  d, Z)P% c, d, Z) -  [7 (c ,d, Z )M % c,d, Z )]. (3.69)

Inspection of Equations (3.68) and (3.69) indicates th a t Ÿ and $  are now repre­

sented by the Wronskian of the confluent hypergeometric functions. The solutions tha t 

we have are the solutions 1 and 5 of the eight presented by Abramowitz and Stegun 

(Abramowitz and Stegun 1965; 13.1.12 and 13.1.5). The Wronskian of these two solutions 

is defined by W {1,5} given by (Abramowitz and Stegun 1965; 13.1.22):

=  (3.70)

for the param eters c, d and Z  defined above.

Hence we finally simplify $  and $  to

' =
and

The dispersion relation (3.54) now becomes 

ri{Ü^X 4- kx)x  = [«(Û^A +  k^) -  kx{g9? ~  kxc\^){9^ -  l ) ] r  (3.73)

where

a  — kxcl{ü'^ 4-1) -  g j ^ ^ ,  7? =  2fca;0^4a, (3.74)

T = U{—a^m + 2,2kxZo) and % =  P ( 1  -  u , 4- 3 ,2 &a,Zo). (3.75)

Finally, rearranging Equation (3.73) into the form

= ~  (3.76)T (fZ A 4- kx)
provides us with the dispersion relations of Campbell and Roberts (1989), Evans and 

Roberts (1990) and Jain and Roberts (1994) in the zero field limit.
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Param eter Value
T, = 6500° K
Th 30865.4° K
Ps 9000 kg m~^ s"^
lad 5/3
mi 3/2
Isa 1 .2

Tïlu 0.75
R 6425.97 m ^s-^K -i
g 274.0 m s“ 2
^ac 4.35 mHz
h 1 0 0 0  km
Zqu 266.8 km
^ol 1809.7 km

Table 3.1: Typical solar values used as param eters for the calculation of base frequencies 

and growth times in our model.

3.5 N um erical Solution  o f  th e  Field-Free D isp ersion  R elation

The dispersion relation (3.54) may be solved numerically subject to the constraint 

4AoP^ < 1 . As in the previous chapter, we wish to obtain a set of base frequencies for the 

model against which any subsequent changes in mode frequency, as a response to changing 

physical conditions, may be measured. Additionally, we calculate convective growth times 

o  (or e—folding times) for the unstable modes, and their sensitivity to model param eters 

may also be considered. To choose the param eters relevant to conditions at solar minimum 

we have referred to the model of Guenther ei al. (1992), selecting for the reference levels of 

our model the param eter values displayed in Table 3.1.

Note from Table 3.1 th a t the tem perature Tg th a t we have used is the tem perature 

ju st below the photosphere, rather than  tha t at the tem perature minimum as used in the 

models of Campbell and Roberts (1989), Evans and Roberts (1990) and Jain and Roberts 

(1994). We have made this choice in an attem pt to model the extent of the superadiabatic 

layer which does not reach as far as the tem perature minimum. From the model of Guenther 

et al. (1992) we note th a t the Brunt-Vaisala frequency squared changes sign from negative 

to positive as we move upwards through the Sun at about the photospheric level, hence our 

choice of Tg. The choice of Tg and Pg are taken to approximate reasonably weU conditions
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Figure 3.2: Cyclic frequency v  (in mHz) versus degree I =  10 — 700 for the first 10 p —modes. 

The cut-off frequency given by Equation (3.47) is shown as a dashed curve.

at this level of the atmosphere. Note also the value of presented in Table 3.1. This 

is calculated from Th = Ts{l + h/zgu) for the values of Zou and h given in Table 3.1, for 

conditions pertaining to the solar minimum. We shall keep Th constant while allowing the 

nature of the superadiabatic layer to vary through changes in m^, T®, Zou and h.

From this base set of param eters we allow our model to evolve, in representation 

of the  solar cycle, in the following way: as the Sun approaches its maximum, the convective 

efficiency of the superadiabatic layer appears to decrease by ru 1 %, i.e. the region becomes 

more superadiabatic, with its tem perature gradient moving further away from the adiabatic 

value. We model this effect by a decrease in the value of m^. Also, following Livingston’s 

(1978) observation th a t the effective photospheric tem perature of the Sun falls by 6 °K as 

the Sun approaches maximum, we allow Ts to fall by the same amount when calculating 

frequencies and growth rates for the model at its ‘maximum’. Rewriting Equation (3.12) as 

RT,
Znn.

9
■{mu +  1 ), (3.77)

we see th a t a reduction in Zqu gives a steeper tem perature profile, as required. W riting h 

in term s of Tg, Th and Zoui

h =  Zou f  jT  — , (3.78)
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Figure 3.3: The quantity ip{z) versus depth z (in km) for the first four p - mo des of degree 

I — 100. The n = 1 mode, p i, is shown as a solid line, pg as a  dotted line, pa as a  dashed 

line and p4 as a dot-dashed line.

it is clear th a t a decrease in Zou leads to  a thinner superadiabatic layer, representing the con­

traction of the superadiabatic layer at solar maximum. To investigate the above situations 

we study the p —modes and the p " —modes separately.

3 .5 .1  T h e  p—m o d e s

Figure 3.2 shows the behaviour of the first ten p —modes calculated from Equation 

(3.54) for the param eters given in Table 3.1. Frequencies extend up to the cut-off frequency

defined in Equation (3.47), shown as a dashed (------- ) curve. Above the cut-off frequency

modes are free to  propagate into the photosphere and above and as such leak energy into th a t 

region. We confine our study to  trapped modes. The curves are plotted in a continuous

fashion although only integral I has any physical meaning for a sphere, of course. The

standard notation n  is used to label the modes; n  corresponds to  the number of nodes tha t

the vertical velocity has in the vertical direction.

To illustrate the behaviour of the p —modes within the interior we have plotted the
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Figure 3.4: The quantity versus depth z (in km) for the first four p —modes of degree 

i =  300. The n =  1 mode, pi ,  is shown as a solid line, p 2 as a  dotted line, ps as a dashed 

line and p4 as a dot-dashed line. Note the change in scale on the vertical axis.

quantity ip defined by

ip{z) = (3.79)
(pg '^z^z—h

Ip is normalised to be unity a t the level z  = h. The quantity ip is related to the energy 

density of mode, the energy density of vertical motions being |po(z)u^ (and so oc ip“̂). We 

consider the first four p —modes of degrees I — 100 and I — 300. Figure 3.3 shows ^  as a 

function of depth z for the I = 100 p —modes and Figure 3.4 gives the corresponding results 

for p —modes of degree I = 300. Modes with one radial node are displayed as sohd lines and 

those with two radial nodes as dotted lines; modes with three radial nodes are shown as 

dashed lines and those with four radial nodes as dot-dashed lines. As expected, modes of 

degree / =  100 penetrate somewhat further into the solar interior than  those with I — 300. 

The level at which the curves begin to  show an asymptotic decay in ip is the depth a t which 

the modes are beginning to  be strongly refracted by the increase in sound speed and are 

turned back towards the solar surface.

W ith the set of frequencies obtained for modes of various degrees I and vertical 

(or radial) orders n, we now turn  to  a study of changes in the frequencies of these modes,
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TUu h
0.74625
0.7425
0.73875
0.735

998 km 
996 km 
994 km 
992 km

Table 3.2: The reduced values of the polytropic index corresponding to  a  steepening of 

the tem perature gradient in the superadiabatic layer, and the resultant thickness h of tha t 

region.

as a  response to  changes within the superadiabatic layer and the isothermal atmosphere.

C hanges in th e  superadiabatic layer only

As the Sun approaches its activity maximum, the superadiabatic layer is expected 

to show a decrease in its convective efficiency and respond to this by contracting (Dearborn 

and Blake 1980). This is accompanied by a reduction in the surface tem perature as energy 

release is somewhat inhibited. To model this and related possible changes in the superadi­

abatic layer we reset the tem perature Tg at the surface of the model to  6494°K, 6 °K cooler 

than  the previous value for Tg, and allow the polytropic index nriu to decrease by 0.5% — 2 % 

in steps of 0.5%. In doing this we are steepening the tem perature gradient of the supera­

diabatic region, i.e moving it further away from the adiabatic value. The corresponding 

change in thickness to  the superadiabatic region as a consequence of these changes is shown 

in Table 3.2. For the moment we are interested in variations of the superadiabatic layer 

only, and so the atmospheric tem perature will be maintained at Tat — 6500°K.

Figure 3.5 shows the effect on p —mode frequencies of changing rriu by the amounts 

given in Table 3.2, plotted against the base frequencies of Section 3.5.1. The frequency 

difference is calculated by

Al/  =  i/{niu,Ts = 6494°K) -  i'{mu ~  0.75, Tg = 6500^K), (3.80)

where z/(m^,Ts =  6494°K) is the frequency calculated for a decrease in convective efficiency 

while i/{mu = 0.75, Tg =  6500°K) is the mode of corresponding radial order calculated 

as in Section 3.5.1. The degree I is set equal to 100. From Figure 3.5 we may see tha t 

aU modes suffer a frequency increase  as a response to the increased superadiabaticity of
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Figure 3.5: The frequency shift A v  as a  function of p -m ode  frequency as determined by 

Equation (3.80) for different values of the polytropic index of the superadiabatic layer 

and surface tem perature change from Ts = 6500°K to Tg =  6494°K.. The degree I is set 

equal to  1 0 0 ,

the convectively unstable layer. The frequency increase shows a steep rise for modes with 

frequencies between approximately 2-3 mHz and then levels out at frequencies above 3.4 

mHz. The levelling out of the frequency increase would appear to  be less pronounced with 

larger changes to rriuy with the curve even starting to turn  slightly upwards again at around 

4-4.2 mHz. The curves in Figure 3.5 extend as far as the cut-off frequency of the atmosphere, 

at about 4.35 mHz. Also, from Figure 3.5 we may see tha t an increase in the tem perature 

gradient of the central layer gives rise to larger frequency increases the steeper it becomes. 

We have also calculated the frequency difference Az/, by Equation (3.80), for var­

ious degrees I. For this calculation we have chosen just one reduced value of m^, namely 

rriu = 0.7425, corresponding to a 1% increase in the tem perature gradient of the superadia­

batic layer. Figure 3.6 shows th a t for aU values of I there is an increase in mode frequency 

with A// increasing with increasing i/. The effect is larger with increasing 1. The flattening 

out of the frequency increase, however, begins to take effect at higher u for higher I.
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Figure 3.6: The frequency shift Ai/ as a function of p —mode frequency v  as determined by 

Equation (3.80) for modes of degree I =  50, 100, 150 and 200.

A tm osp h eric  changes coupled  w ith  steep en in g  tem p eratu re  gradients

We have described in Section 3.2 how the Sun is believed to  cool slightly a t the 

surface and to contract marginally as it reaches its activity maximum and therefore show 

a decrease in luminosity. However, although the Sun reacts very rapidly to  the new hydro­

static equilibrium th a t these changes dictate it takes much longer to  reach the new therm al 

equilibrium involved. How can we apply this to  the model presented here? W ith the plane- 

paraUel model tha t we are using which is infinite in extent it is obviously not possible to 

model a reduction of the solar radius but we may mimic this somewhat by allowing the 

superadiabatic layer to  contract, supposing th a t this is the only part of the Sun to alter its 

structure and give a measurable change. How does the atmosphere behave though?

Imagine a spherical Sun with the properties of our model and assume th a t there is 

no fluid movement across the interface at z =  0  and th a t the gas pressure is continuous at 

this level. Then a decrease in radius will require a higher plasma density in the interior, and 

as a  response, from Equation (3.5) there wiU be a decrease in the tem perature to  maintain 

the same gas pressure. The plasma in the layers above this level, however, finds itself more 

rarefied. In order to maintain hydrostatic balance, therefore, the tem perature of the outer 

layers must increase by a certain amount.
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Figure 3.7: The frequency shift A i/ given by Equation (3.81) as a function of base mode 

frequency i>. The value of the polytropic index of the superadiabatic layer is decreased by 

1 % while the tem perature of the atmosphere Tat is increased.

Obviously, the real Sun does not suddenly contract and expand in this way, but 

as an attem pt to  model such possible effects we now introduce increases in atmospheric 

tem perature to  accompany the changes in the superadiabatic layer discussed earlier. We 

consider frequency shifts A u  determined by

Al/ =  =  0.7426, =  6494°K, ) -  i/(m,, =  0.76, T, =  6600"K =  T.t) (3.81)

where u{mu =  0.7425, Ts =  6494°K, Tat) is the mode frequency calculated for a  decrease 

in convective efficiency coupled with a rise in atmospheric tem perature Tat and u{m,u =  

0.75, Tg =  6500^K,Tat =  6500°K) are the base frequencies determined for modes of an 

equivalent radial order (as found in Section 3.5.1), Atmospheric tem peratures of 6510°K, 

6520°K, 6530°K, ObdO'^K, and 6550°K are taken. Figure 3.7 displays A u  plotted against 

u{mu = 0 .75,Ts =  6500°K, Tat =  6500°K). Figure 3.7 shows th a t there is a steep initial 

increase in mode frequency up to frequencies of around 3.3 mHz followed by a downturn 

in A u  for frequencies above this value. The rise in frequency is inhibited by increasing 

atmospheric tem peratures while the plunge in frequency shift is felt more strongly. In fact, 

above frequencies of 4 mHz some modes suffer a frequency decrease for a certain increase 

in Tat. Again, the curves extend as far as the cut-off frequency for the model. A discussion
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of these results will be presented in Section 3.7.

3 .5 .2  T h e  c o n v e c t iv e  m o d e s  m o d e s )

W ith the introduction of a superadiabatic layer into the model we have allowed 

for the possibility of convective modes to  occur, owing to the unstable nature of this region. 

Modes of this type are found as solutions to Equation (3.54) with ÇP < 0. Figure 3.8 shows 

the results of solving Equation (3.54) for < 0, for horizontal wavenumber kx ranging from 

0.14-2.9 Mm“  ̂ (corresponding to I ranging from 100 to 2000). From Figure 3.8 we see tha t 

a family of convective modes is present with very small squared angular frequencies. The 

modes form an anti-Sturm ian sequence: |w^| > jwll > ... > |w^| > |, where n is the

radial order of the mode and the sequence has the property th a t |w^| —> 0  as n oo for a 

given kx. Also, we may see th a t for a given radial order n, |w^| increases as kx increases. As 

fca; —> 0 ,  ̂ 0  which is to be expected as it is known that no disturbance with buoyancy

as its restoring force may operate in a purely radial direction (Lamb 1932). We have used 

the notation to  describe the mode order of the convective modes, with the number of 

convective rolls within the superadiabatic zone being m  (and the number of nodes measured 

in the vertical direction of the vertical flow, is n =  m — 1 ).

The spectra of frequencies given in Figure 3.8 correspond to  growth times (or 

e—folding times) a {a = l/(%w + 60) for cr in minutes) for each of these modes. The e—folding 

time is the time it takes for a disturbance to grow by a factor of e. The growth times cr 

associated with the angular frequencies of Figure 3.8 are shown in Figure 3.9. Growth times 

(in minutes) are plotted against horizontal wavenumber kx (M m"^). From Figure 3.9 we 

see th a t for a given kx, the growth time a increases for increasing radial order n. For a 

specific mode of convection, g~,  the growth time decreases as kx increases and as kx —̂ 0 , 

cr - 4- oo for aU g~.

It is of interest to examine the behaviour of these modes within the interior of 

the model. In order to achieve this, we once again plot tjj (related to the normalised radial 

energy density of the modes), given by Equation (3.79). Figure 3.10 shows ^  plotted against 

depth, z. The horizontal wavenumber kx is approximately 0.14 M m“  ̂ (corresponding to 

/ =  100) and the first three convective modes are displayed. The solid line represents the 

ly]"—mode, the dotted line the mode and the dashed line denotes the g ^ —mode.  The 

turnover motion of the modes is largely confined to the superadiabatic layer, i.e. the first
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Figure 3.8: The angular frequency squared uP" (s~^) plotted against horizontal wavenumber 

kx (M m “ ^) for the first six modes of convection produced by the superadiabatic layer. The 

notation used corresponds to the order of the modes, m.  The number of nodes in the 

vertical velocity component is given by n =  m — 1 .
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Figure 3.9: The growth times a  (in minutes) associated with the angular frequencies pre­

sented in Figure 3.8 plotted against horizontal wavenumber k^.
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Figure 3.10: A plot of if) against depth z. The first three unstable modes are shown for 

a horizontal wavenumber k̂ ; ~  0.14 Mm“ ^. The —mode is denoted by a solid line, the 

mode as a dotted line and the —mode as a dashed line.

1 0 0 0  km, with an approximately exponential decay of the energy density below this depth. 

From Figure 3.10 we see th a t the decay of the energy density (which is proportional to 

appears to  be at the same rate  for aU modes in the stable bulk of the convection zone.

From Figure 3.10 we may view the nodes in ip (and so in the radial energy density 

of vertical motions) as being the depth a t which a turnover in the direction of the convective 

rolls takes place, i.e. where motions are purely horizontal. Note the abrupt change in the 

behaviour of the modes at the boundary between the two regions. This discontinuity in the 

gradient of i f )  is understandable because both po and although continuous at z =  h, do 

not have continuous gradients a t this point.

To compare with Figure 3.10 we have also plotted i f )  for convective modes of 

horizontal wavenumbers ^  I Mm~^ and 2 Mm~^ (corresponding to I =  700 and I =  1500, 

respectively). Figure 3.11 shows i f )  plotted against depth z for k^ ^  I Mm~^ and Figure 

3.12 the same quantity for modes with k^ ^  2 Mm“ ^. Again the , and gg"—modes are

denoted by solid, dotted and dashed lines, respectively, but in Figures 3.11 and 3.12 we have 

also plotted the g ^~ m ode  (as a dot-dashed line). Note the change in vertical scale between 

the two figures. From Figures 3.11 and 3.12 we may see th a t the general behaviour of the
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Figure 3.11: As in Figure 3.10 but with kx = 1 Mm Also, the —mode has been plotted 
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Figure 3.12: As in Figure 3.11 but with kx — 2.15 Mm Note the change of scale along 

the vertical cixis.
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Figure 3.13: The change in convective growth time, A a  (in seconds), plotted against the 

base growth time cr (in minutes), as given by Equation (3.82). The horizontal wavenumber 

is set to 1 Mm“  ̂ and A a  is shown for n = 1 — 5. Note th a t the specific modes are 

indicated by crosses (+ ).

modes for various is qualitatively similar. Of interest though is th a t for larger horizontal 

wavenumber (corresponding to smaher horizontal wavelength), we would expect a higher 

ratio of the energy density to  be contained in the superadiabatic layer. However, only the 

modes display any great change in the magnitude of 'ip in the upper region, while the 

overtones show only a marginal increase in 'tp as k^ increases.

Finally, note in Figures 3.10-3.12 th a t the nodes of ip̂  i.e. the position of purely 

horizontal plasma motion, are positioned almost exactly equally for each g~^ independent of 

wavenumber kx. Hence the depth of penetration for each convective element with a specific 

order n  is the same regardless of the horizontal structure of the mode. A similar result 

has also been noted by Smeyers (1970) in a numerical study of the convective modes of the 

outer solar envelope.

C hanges to  th e  superadiabatic layer

In a treatm ent similar to th a t used for the p—modes, it is of interest to investigate 

the response of the convective growth times a  to changes in various physical param eters
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Figure 3.14: Changes in convective growth times (in seconds) plotted as a function of base 

growth times (in minutes) for a 1% decrease in The values of used are 0.14 Mm"^ 

(three modes shown), 0.5 Mm“  ̂ (four modes shown), 1 Mm“  ̂ (five modes shown) and 2.15 

Mm"^ (six modes shown). The specific modes are shown as crosses (+ ).

in the model, chosen to  represent the evolution of the Sun over its cycle. Initially we vary 

the value of the poly tropic index of the superadiabatic layer, in order to change the 

tem perature gradient of th a t region; specifically, steepening the tem perature gradient in the 

upper layer of the interior by lowering by 0.5% — 2%, in order to reduce the convective 

efficiency of the layer. At the same time, the surface tem perature T» at z =  0  will be lowered 

by 6 ‘̂ K, in accordance with the observations of Livingston (1978). No alterations to the 

structure of the atmosphere will be made at this point. We may then compare the growth 

times found for these conditions with the base growth times found earlier. The values of 

mu used in this section, along with the resultant thickness of the superadiabatic layer, are 

displayed in Table 3.2.

Figure 3.13 presents the results of the calculated change in growth time A a  for 

modes with kx ^  I Mm“ ^, where

A a  =  cr{mu,Ts = 6494°K) -  or{mu = 0.75, A  = 6500‘̂ K). (3.82)

The growth time of modes for the model representing solar minimum are given by a(m u = 

0 .75 ,T; =  6500°K) and those representing growth times at solar maximum by a(mu,Ts  =
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6494°K). In Figure 3.13, A ct (in seconds) is plotted against cr(m^ =  0.75, Tg =  6500°K) 

(in minutes) and the first five convective modes are illustrated, the specific modes being 

indicated by crosses (+ ). The horizontal wavenumber ~  1 Mm“  ̂ (corresponding to 

I =  700). Changes to  rUu are taken in 0.5% intervals, ranging from 0.5% to 2%. Figure 3.13 

shows th a t the m agnitude of the change in growth time is greater for a larger variance of 

iTiu- Of most interest though is th a t while the to —modes display an increase to  their 

respective growth times, the mode displays a decrease in the time of its growth of up to 

half a second. Also, the mode displays a  decrease in its growth time for small changes 

to  ruuy changing to an increase in a  as rriu is further reduced For the g^  to  — modes the 

suppression of their e—folding time is what we would expect as the convective efficiency of 

the superadiabatic region has been reduced but as to why the growth time of the mode 

should be quickened remains unclear.

Also, the change in growth time given by Equation (3.82) has been calculated for 

a range of horizontal wavenumbers. For this calculation we have chosen a 1% steepening 

of the tem perature gradient of the superadiabatic layer. We have taken k^ equal to  0.14 

Mm~^, 0.5 M m“ ^, 1 Mm“  ̂ and 2.15 Mm~^, and the results are plotted in Figure 3.14. 

Figure 3.14 shows th a t some modes experience a suppression of their growth times whilst 

others show an enhancement. Also, the range of A a  is narrowed with increasing k^ and 

we have illustrated this further by showing in Figure 3.14 A a  for the first three modes for 

kx ~  0.14 M m“ ^, the first four modes for kx =  0.5 Mm“ ^, the first five modes for kx ~  I 

M m“  ̂ and the first six modes for kx = 2.15 Mm~^.

A dditional effects from Tat changes

As a final study into purely therm al effects on mode growth times we now 

allow the tem perature of the atmosphere Tat to vary along with the changes made to the 

superadiabatic layer (as discussed above). Figure 3.15 shows the results of calculating the 

change in convective growth times A a  given by

A a  =  a (m ^ , 2 ;  =  2ht) -  o-(m^ =  0.75, =  6500''K =  T^f), (3 .83)

where a(m u,Ts =  6494°K,Tat) is the growth time of a mode at solar maximum coupled 

with a rise in atmospheric tem perature and a(m^t =  0.75, Ts =  6500°K =  Tat) is the 

corresponding mode at solar minimum. The results in Figure 3.15 are plotted against 

<r(mu =  0.75,Tj =  6500°K =  Tat) with kx = I Mm~^. Atmospheric tem peratures of
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Figure 3.15: The values of Act plotted against cr as calculated from Equation (3.83). The 

horizontal wavenumber kx — I  M m“  ̂ and the atmospheric tem perature Tat is allowed to 

rise from 6500°K to in intervals of 10°K.

6510°K, 6520°K, 6530°K, 6540“K and 6550°K are taken. Figure 3.15 shows th a t the effect 

of additionally raising Tat once again gives a decrease in the growth time of the mode 

and an increase  to the growth time of higher order modes but the overall effect is somewhat 

different to  only altering the properties of the superadiabatic layer. W hereas in Figure 3.13 

the magnitude of A ct increased for all modes with decreasing mu, Figure 3.15 displays an 

higher increase to the growth time of the overtones with higher atmospheric tem peratures 

and a decrease to the quickening of the growth time of the mode.

3 .5 .3  S u m m a r y  o f  th e r m a l e ffe c ts

We have seen th a t a steepening of the tem perature gradient in the superadiabatic 

layer combined with a cooling of the surface tem perature Ts by 6 °K leads to  an increase 

in the p —mode frequencies. The rise in frequency is shallow for low frequencies, steepening 

through the mid-range of frequencies and finally levelling off a t high frequencies (above 3.3 

mHz). The frequency increase is enlarged as the convective efficiency of the superadiabatic 

layer is decreased, and higher I modes are influenced more than those of lower I. When 

an increase in atmospheric tem perature Tat is also applied the same behaviour is seen with
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regards to  a slow increase a t low frequencies and the steep rise in the mid-range, but we 

now see the observed maximum of the frequency increase followed by a steep downturn at 

high frequency. The shifts at high frequency may even become negative for sufficiently high 

atmospheric tem peratures.

The —modes show different responses to changes in model param eters. W ith a 

steepening tem perature gradient in the superadiabatic layer and Ts =  6494®K, the p f —mode 

shows an enhancement of its growth time, with <j getting smaller as rriu is decreased. The 

overtones, however, all show a suppression of their motions, with a sufficient decrease in 

niu, with their growth times being increased. When these changes are combined with a 

rise in Tat the same qualitative behaviour of the p” —modes is observed except th a t for 

higher atmospheric tem peratures the enhancement of the mode is lessened  and the 

overtones are suppressed further. The overall effect is magnified with higher atmospheric 

tem peratures.

3.6 A dd ition al Effects o f  a M agnetic A tm osphere

W ith the fact th a t magnetic activity increases on the Sun as it approaches maxi­

mum, it is obviously of interest to investigate the additional changes to z/ and a  imposed by 

a magnetic field. We assume the interior of the model is entirely free of magnetic fields. The 

reference level z = 0  has been chosen to represent conditions just below the photosphere. 

We follow the work of Evans and Roberts (1990) and Jain and Roberts (1994) in applying 

a uniform horizontal magnetic field in the atmosphere. We appreciate th a t this is only a 

crude representation of the effects of magnetic fields at this level in the atmosphere.

We therefore model a  horizontal uniform magnetic field of the form B q =  as 

an equilibrium which implies an Alfvén speed th a t grows exponentially with height. The 

rather extreme effects of a magnetic field configuration of this type will be considered for 

both the p —modes and p ” —modes.

3 .6 .1  T h e  d isp e r s io n  r e la t io n

Under the velocity disturbance given by Equation (3.27), the magnetohydrody- 

namic equations, Equations (3.20)-(3.26), provide us with the governing differential equa-
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tion for Uz, namely Equation (3.39):

É .
dz (w2 _  klc^) dz

d
(3.84)

(w2 _  &2c2) 'd z  ^.(w^ _  t^cg)

For an atmosphere which is isothermal, stratified under gravity and perm eated by 

a  horizontal magnetic field, the Alfvén speed squared is given by

=  v l e ï t , (3.85)

where vl^{=  - ^ )  is the square of the Alfvén speed at the base of the atmosphere. W ith 

the form of the Alfvén speed squared given by Equation (3.85), along with the constant 

sound speed of the atmosphere, Cat, Equation (3.84) reduces to

where

[A i -f A 2 6Xp( —A sz)]  ^^2 4" +  [-^4 “  ^X^2®xp( —A 3^)j Uz  — 0,

Ai = oj^cli, A2 =  û o(ŵ  -  klcli), A3 = Fr~\

A4  =  (7ad -  l)g^A^ +  W^(w  ̂ -

Under the transform ation (Adam 1975; Nye and Thomas 1976a)

— A i

(3.86)

c = Ac
-exp(A3z), V  =  U z C  ,

Equation (3.84) may be recast in the form of a hypergeometric equation:

C(1 -  C ) ^  + [ r - i p  + q +  i ) C ] ^  -  pqV = 0 ,

(3.87)

(3.88)

(3.89)

where

" ■ ï ( 5  + ‘) + 3 S i ’
2 k

r = p q = -T ^  + 1. (3.90)
A3

Around the point (  =  0, the general solution to Equation (3.89) is (Abramowitz 

and Stegun; 15.5.3 and 15.5.4)

V  =  CiF{p, q; r; ( )  +  *'F(p -  r  +  1, ç -  r  +  1; 2 -  r; C),

where C\ and C 2  are arbitrary constants and F  is the hypergeometric function.

(3.91)
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In term s of the original variables, the solutions to Equation (3.91) may be written

as

+ C 2 e-***J’(p -  r +  1,« -  r +  1; 2 -  r; (3.92)
A2

Once again, it is the trapped modes of the system th a t we are interested in, and 

as such both  the kinetic and magnetic energy densities must vanish as z - 4. — 0 0  ((̂  —> 0). 

The magnetic energy density, E b  , of the perturbation is given by

E b  =  _  1 ^ ,  (3.93)

which, when linearised, reduces to

E b  =  — . (3.94)
P

From the induction equation, Equation (3.23), the horizontal component of the magnetic 

field perturbation bx is given by

iujbx ~  (3.95)

hence the magnetic energy is defined by

^  ( 3  g g )
CO fjL dz

Then, using the result (Abramowitz and Stegun 1965; 15.2.1)

f ( a , 6; c; z) =  — jP(a +  1,6 +  l ;c  +  l ;z )  (3.97)

it is easy to show th a t E b  vanishes as z —> —00 only if C2  = 0. Therefore

u , = C ie '" " f (p , ?; r; ^ e " '= " ) .  (3.98)

The solution given by Equation (3.98) may now be matched onto the solutions

for the interior given by Equations (3.32) and (3.38). To accomplish this, the boundary 

conditions given by Equations (3.50) and (3.52) are applicable once more but in order for 

the to ta l pressure perturbation Pt  to  be continuous at z =  0 we demand the continuity of

+  (  ■ ¥ % ]  across z =  0. (3.99)((j2 -./c2c2) dz --/cgc;/
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Figure 3.16: Frequency shifts Az/ (in nllz) for atmospheric held changes from 40G to  50G 

accompanied by simultaneous atmospheric tem perature increases from 4170°K to  Tat — 

4170°K, 4500°K, 5000^K, 5500®K and 6000°K. The adiabatic indices 'ysa and 'yad =  5 /3  and 

rriu — mi — 3 /2 . The degree I = 100. We recover the results given in Figure 3.7 of Jain 

(1994) for conditions corresponding to those at the tem perature minimum at z == 0.

Application of Equations (3.50), (3.52) and (3.99) provides us with the dispersion 

relation for the model:

(1 +  /3),

OiF ad

ad 1 + — kxC^o)Zoi $

-  -  l)(g n ^  -  (3.100)

where

Fad =
2/?7ad

2 ^  +  Jad 

Z qi — 1 —
1 pq A 1 A 3  F{p  +  1 , Ç +  1 ; 7' +  1 ; - ^ )

(3.101)

(3.102)
/c* r viz Jr(p, g;r;

and W and $  are defined by Equations (3.56) and (3.57), respectively.

Equation (3.100) is the dispersion relation for a model consisting of three layers 

of fluid stratified under gravity. The lower region is thermally stratified in such a way so as 

to m aintain convective stability, while the layer above this contains a  steeper tem perature
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gradient in order to  make the fluid convectively unstable. The uppermost plasma layer is 

isothermal and perm eated by a horizontal uniform magnetic field. A numerical study of 

dispersion relation (3.100) is now undertaken to  investigate the additional changes incurred 

by the presence of a magnetic atmosphere.

3.6.2 M agnetic effects on th e p—m odes

To set the scene for our investigation it is convenient to  examine the case of the 

interior layer being entirely stable to  convective motions. In this way we expect to reproduce 

the results of Jain (1994) and Jain and Roberts (1994). To accomplish this it is necessary 

to set 7 sa =  'lad =  5/3  and rriu — mi = Z / 2 . Additionally, at the reference level z =  0  we set 

conditions equal to those at the tem perature minimum, i.e. Ts =  4170®K and Pg = 86.82 

kg m “  ̂ s“ ^. These are the conditions considered by Jain and Roberts (1994). Frequency 

changes Ai/ imposed by a magnetic atmosphere are then calculated according to

A u  = u{Bo =  50G,Taf) -  u{Bo =  40G,T„f =  4170''K), (3.103)

where u{Bo =  40G) is the mode frequency calculated for a field strength of 40G and an 

atmospheric tem perature equal to th a t at the tem perature minimum and u{Bo =  50G,3kz) 

is the corresponding mode frequency with the magnetic field strength increased to  50G 

and atmospheric tem peratures Tat of 4170°K, 4500°K, 5000"K, 5500°K and 6000°K are 

considered.

The results of solving Equation (3.103) are shown in Figure 3.16 where we have 

plotted A u  against u{Bq — 40G,Tkt =  4170°K). The degree of the modes is set equal to 

100. Figure 3.16 is identical in form to Figure 3.7 of Jain (1994) and qualitatively similar 

to  the results of Jain and Roberts (1994), showing an increase in frequency of the modes 

a t all frequencies with the characteristic maximum and subsequent downturn when higher 

chromospheric tem peratures are applied.

We now reset the param eters for the interior of the model back to those given in 

Table 3 .1  so th a t we may consider the combination of the efibcts of a magnetic atmosphere 

with variations in the superadiabatic layer.

To begin this investigation we consider the effect of an evolving magnetic field at 

conditions appropriate as a representation of the ‘solar maximum’. We assume th a t the 

tem perature gradient of the superadiabatic layer has already steepened by 1 % over the

.Ai
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Figure 3.17: The change in p —mode frequencies for modes of degree I = 100, according 

to  Equation (3.103). Magnetic field strengths of lOG, 50G and lOOG are used. The base 

frequencies against which Az/ is plotted are calculated for Bo — 0  but with param eters of 

the superadiabatic layer at the model ‘maximum’ (rriu =  0.7425, Tg =  6494°K).

‘minimum’ value and th a t the surface tem perature has dropped by 6 *̂ K. To begin with we 

consider magnetic effects only, keeping the atmospheric tem perature Tat fixed a t 6500°K. 

We are therefore interested in frequency shifts Az/ given by

Az/ =  z/(5o,m „ = 0.7425, T, =  6494‘’K)

-u (B o  = 0 ,m ^  = 0.7425, = 6494°K), (3.104)

where ^{Bo = 0, =  0.7425, Tg =  6494°K) is the mode frequency calculated at ‘solar

maximum’ for a field-free atmosphere and z/(jBo, rriu = 0.7425, Tg — 6494°K) is the equivalent 

mode frequency under an applied magnetic field Bo in the atmosphere. Figure 3.17 shows 

the changes in mode frequency found from Equation (3.104). The change in mode frequency 

Az/ is plotted against v(Bo = 0 ,m u =  0.7425, =  6494°K), and the degree I is set equal to

100. The magnetic field increases from zero to lOG, or 50G, or lOOG. Figure 3.17 shows th a t 

aU modes experience an increase in frequency with an increase in magnetic field strength. 

This result is comparable with the results of Evans and Roberts (1990) and Jain and Roberts 

(1994), except th a t here we find th a t the m agnitude of the frequency shifts is less at low z/
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Figure 3.18: Frequency shifts A i/ as a consequence of atmospheric field changes together 

with a  steepening of the tem perature gradient of the superadiabatic layer. The results 

according to Equation (3.105) are plotted against the base frequencies of Section 3.5.1. The 

degree I =  1 0 0 .

than  those found in the previous works. We shall discuss this in Section 3.7.

As a next step we tu rn  to  a consideration of an evolution of the superadiabatic 

layer over the solar cycle, coupled with an increase in magnetic activity. We follow a similar 

procedure to tha t used in Section 3.5 by setting conditions for calculation of the base 

frequencies from Table 3.1. We then calculate frequencies for the model with a 1% steeper 

tem perature gradient in the superadiabatic layer, along with a cooling of 6 °K of Tg. Also, 

we now allow for an evolution of the magnetic field in the atmosphere.

Figure 3.18 shows the results of calculating the frequency change Az/, where

Af/ = =  0.7425,Tg =  6494 '̂K) -  = 0,^;, = 0.75,T. = OSOÔ 'K).(3.105)

The frequency taken to  represent the base frequency of the model ‘minimum’ is given 

by y{Bo — 0 ,m u = 0 . 7 5 , =  6500°K) while the corresponding frequency of the model 

‘maximum’ is given by v{Bo^mu ~  0 . 7 4 2 5 , =  6494‘’K). Figure 3.18 shows the results 

for modes of degree I equal to 100 and field strengths of lOG, 50G and lOOG. We have 

also included the curve for =  0 , showing the frequency changes imposed by altering the 

param eters of the superadiabatic layer only. From Figure 3.18 we see th a t the joint effect of



106

0 .6

0 .4

0.2

T„. =  6650K
0.0 

g'
cr

i  - 0 .2

- 0 . 4

- 0.6
32 41 5

B ase  Frequency (mHz)

Figure 3.19: The combined effect of magnetic field strength increases, steepening tem ­

perature gradients and atmospheric tem perature changes on p —mode frequencies of degree 

I = 100. The base frequencies used are = 40G, rriu =  0.75, Ts =  GSOO'̂ K, Tat ~  6500°K) 

and atmospheric tem peratures of 6550°K, 6600°K, 6650‘’K, OTOO'̂ K and 6750°K are consid­

ered.

a decrease in convective efficiency coupled v/ith an increase in magnetic field is to  increase 

mode frequencies over their base value. However, the results are quantitatively different to 

those of Figure 3.17. In Figure 3.18 we can see tha t the changes to mode frequency made by 

variations in the superadiabatic layer are much larger at low frequency than  purely magnetic 

effects, especially when we look at the frequency shift curve for the case B q — ^ compared 

to  Figure 3.17. At high frequency though, magnetic effects dominate with the curves rising 

steeply above the therm al changes. The net effect of this joint evolution is th a t changes 

in the superadiabatic layer provide a ‘boost’ to the frequency increases at low frequency, 

especially for low magnetic field strengths. However, for high frequency modes, magnetic 

effects are dominant.

As a final study of the p —modes, we now alter the atmospheric tem perature Tat 

along with the magnetic field strength and convective efficiency, and calculate the frequency 

difference Az/ according to

Ay = y(.Bo = 50G,m,, = 0.7425, T. =  6494‘’K,T.f)
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-u {B o  =  40G,m « =  0.75, T, =  6500"K,Tat = 6500°K). (3.106)

Here v{Bq ~  50G,m^^ =  0.7425,Ts =  6494°K,2kf) is the frequency calculated for a  raised 

atmospheric tem perature and u{Bo = 40G, =  0.75,Tg =  6500°K,Tkf =  6500°K) is the

corresponding frequency for the model ‘minimum’, taken to  be the base frequency. We 

have used an increase in magnetic field strength of lOG. Figure 3.19 displays the results. 

Frequency shifts are similar in form to  those displayed in Figure 3.15 but note th a t in Figure 

3.19 much larger increases in atmospheric tem perature have had to be used to  produce 

curves of the same shape. We have used atmospheric tem peratures of 6550°K, 6600‘’K,

6650°K, 6700°K and 6750°K. This has been necessary because of the very large positive 

frequency shifts seen at high frequency for even small changes to magnetic field strength 

Bo (Figures 3.17 and 3.18).

3 .6 .3  M a g n e tic  e ffe c ts  on  th e  c o n v e c t iv e  m o d e s

Finally, we are left with the question of how the growth times of the convective 

modes are modified by a magnetic field. To examine this, we use the base model param eters 

from Table 3.1 and allow Bo to increase. We calculate changes in growth time A<r according 

to

A(T =  (t{Bo) — c (B q = 0), (3.107)

where <r{Bo) is the calculated growth time of the modes with a magnetic atmosphere of 

strength Bo and a{Bo = 0 ) is the equivalent base growth time found for field-free conditions 

(see Section 3.5.2).

In Figures 3.20 and 3.21 the shift A a  (in seconds) is plotted against the base 

growth time. In both cases the horizontal wavenumber kx is set equal to 1 M m“ ^. From 

Figure 3.20 we see th a t an increase in magnetic field strength leads to an increase in the 

e—folding time of the convective mode, i.e. there is a suppression of the convective mode 

under the influence of a magnetic atmosphere. We have used magnetic field strengths of

lOG, 35G, 60G and 85G. For these field strengths, the change in growth time is small and |
iincreases as the base growth time increases. j

For larger magnetic field strengths the results are somewhat different. In Figure |

3 . 2 1  magnetic field strengths of 150G, 350G, 550G and 750G have been used. Although each 1

convective mode shows an increase in its e—folding time under these high field strengths, i
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Figure 3.20: The change in growth time A a  (in seconds) as a function of base growth time 

a  (in minutes) as a  consequence of magnetic field changes according to Equation (3.107). 

The horizontal wavenumber kx ~  I M m“ .̂ Magnetic field strengths of lOG, 350 , 600  and 

850  are used. The base growth times are for a field-free medium (as found in Section 3.5.2).
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Figure 3.21: As in Figure 3.20 but using field strengths of 1500 , 3500, 5500 and 7500. 

Note the change of scale on the vertical axis.
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Figure 3.22: The combined effect of all the physical changes we have applied to  the model 

on the gf"—modes. The results are plotted against the field-free base growth times (Section 

3.5.2). The horizontal wavenumber = 1 Mm“  ̂ and field strengths of OG, lOG, 35G, 60G 

and 85G are used.

the effect becomes more pronounced a t lower base growth times and begins to  level off as 

higher base growth times are reached.

Our final investigation is concerned with steepening the tem perature gradient of 

the superadiabatic layer along with increasing Bo^ We calculate growth time changes A a  

given by

A a  =  (T{Bo,mu =  0.7425, =  6494°K) -  a(Bo =  0 ,m ^ =  0.75,T, = 6500°K),(3.108)

where a(jBo, =  0 . 7 4 2 5 , =  6494®K) is the base growth time calculated for model 

‘maximum ’ and a{Bo =  0, niu = 0.75, Ts =  6500°K) is the corresponding growth tim e given 

from Section 3 .5 .2 .

Figure 3.22 gives the results for k̂ ; = 1 Mm~^. Magnetic field strengths of OG, 

lOG, 35G, 60G and 85G are used. The results are similar to  those of Section 3.5.2 in tha t 

the g]"—mode is actually enhanced by the steepening tem perature gradient whilst all other 

modes are suppressed. The net effect of an additional magnetic field is to decrease the 

enhancement of the g ^ —mode  and to  further the suppression of the higher order modes.
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3 .6 .4  S u m m a r y  o f  m a g n e tic  e ffe c ts

W hen a horizontal magnetic field is introduced into the atmosphere the overall 

effect is an increase in p —mode frequencies. Under purely magnetic changes, the modes 

show a slight increase a t low frequency, rapidly steepening at higher frequencies. The 

m agnitude of the frequency increase is larger for stronger magnetic fields. Adding the 

changing convective efficiency of the superadiabatic layer to this situation we now observe 

a steeper rate  to the increase in frequency at lower frequencies but no levelling out of the 

frequency increase at higher frequencies. The turnover which is observed in the actual modes 

of the Sun can be reproduced when we raise Tat-, but larger changes to  the atmosphere are 

required than in the field-free case (Section 3.5.1).

The convective modes all show an increase to their growth times when only the 

magnetic field strength of the atmosphere is changed. However, at low field strengths, the 

increase in <r is concave in form, whereas for large field strengths the changes to a  are convex 

in form with a steep rise in Acr for low base growth times with the curves levelling of as cr 

increases.

Finally, when atmospheric and superadiabatic changes are made, similarities with 

the therm al effects may be seen. The p f —mode still shows a decrease in its growth time 

but as the field strength increases this decrease is lessened. The overtones, however, show 

an increase to their growth times, the effect being greater as the magnetic field grows.

3.7  D iscussion

We have used a three layer, plane-parallel, model to examine the response of 

p —mode frequencies and p " —mode growth times to  variations in the thin superadiabatic 

region of the outer convection zone. We have combined the effects of changes to the supera­

diabatic layer with the addition of a horizontal magnetic field in the isothermal atmosphere. 

The lower region of fluid in the model contains a linear tem perature profile, the gradient 

of which is maintained at marginal stability to convective motions. Above the marginally 

stable layer resides a thin layer of fluid, again with a linear tem perature profile, but now 

with a steeper gradient than  the fluid below. These two layers model the convection zone. 

Above the convective layers, we place a semi-infinite isothermal atmosphere representing the 

low photosphere and above. This atmosphere may be perm eated by a horizontal magnetic
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field.

We are especially interested in the upper convection zone for a number of rea­

sons. There are three main properties of the Sun tha t are sensitive to the solar cycle and 

act as indicators of it: the surface magnetic field, the solar luminosity, and the acoustic 

eigenfrequencies. The increase in magnetic activity as the Sun approaches maximum has 

been known for a considerable amount of time but recently luminosity variations over the 

solar cycle have been measured and are possibly connected with changes in the superadi­

abatic region (see, for example, Endal et al. 1985) rather than  deeper layers of the Sun. 

Observations of p —mode frequencies and their dependence on the solar cycle have indicated 

th a t it is probably changes to  the outer layers of the Sun, below the photosphere, which 

give rise to frequency variations over the cycle (Libbrecht 1988; Libbrecht and W oodard 

1990; W oodard and Libbrecht 1991). Observations also indicate th a t the overall level of 

surface magnetic activity could be the dominant mechanism for changes in mode frequencies 

(W oodard et al. 1991). From a theoretical point of view, Shibahashi (1991) has claimed 

th a t it is only possible to  localise the source of the frequency shifts to  th a t volume of the 

Sun located above the second helium ionisation zone (the outerm ost 14000 km of the solar 

interior). In fact, Nishizawa and Shibahashi (1994), from an analysis of the acoustic radii 

of the modes applied to  the da ta  of Libbrecht and Woodard (1991), confine the changes 

to  solar structure responsible for p —mode frequency shifts to a depth of 2 0 0 km below the 

photosphere. Moreover, Rhodes et al. (1994) compared the da ta  of Libbrecht and W oodard 

(1990) to the results of Shibahashi (1991) and found the correlation between the results 

to  be so good tha t they concluded th a t the source of the frequency shifts is much closer 

to the solar surface than the second helium ionisation zone. These aspects provide good 

indicators th a t the influence of the superadiabatic layer on p—mode frequencies requires 

careful examination.

The model presented here provides two separate spectra of frequencies: the distinc­

tive and well observed parabolae of the p —modes with uj oc k ï , and the convective modes 

(p~ —modes) which result from the complex buoyancy frequency of the superadiabatic layer.

The changes to  the superadiabatic layer tha t we have implemented are a steepening 

of the tem perature gradient of th a t region. Coupled to this, we have included a cooling of 

the surface tem perature Ts by 6 °K, consistent with the measurements of Livingston (1978). 

The atmospheric tem perature Tat is also allowed to vary. As well as considering therm al 

variations (Section 3.5), we have combined these effects with the influence of a  horizontal
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uniform magnetic field (Section 3.6).

For the purely therm al changes (Section 3.5), we find th a t decreasing the convective 

efficiency of the superadiabatic layer by 0.5-2% increases the frequencies of the p —modes 

over their base values (Figure 3.5). The frequency shift curves in the range 2-3 mHz show 

a  steep rise in frequency, with the curves levelling out at higher frequencies. For mode 

frequencies of 3.3 mHz we see a rise in mode frequency of 0.15 fiRz  for a decrease in 

convective efficiency of 0.5%, rising to 0.6 fiRz  for a  2% steepening of the tem perature 

gradient. The effect is larger for larger values of I (Figure 3.6). The frequency increases 

incurred by steepening the tem perature gradient of the superadiabatic layer are simply a 

response to the decrease in the transit time of the modes across the layer. The frequency 

w oc 1 / r ,  where T  is the transit time of the mode; hence a reduction in T  leads to  an increase 

in oj and vice versa. However, simply varying the tem perature gradient of the superadiabatic 

layer does not reproduce the distinctive downturn in frequency shifts at about 3.9 mHz as 

seen in observations. We are able to recreate this by simultaneously raising the atmospheric 

tem perature Tat (Figure 3.7). The frequency changes th a t we calculate compare well to the 

da ta  of Libbrecht and W oodard (1991). However, the peak frequency change in our model 

occurs at the somewhat lower base value of 3.4 mHz, compared with the value 3.9 mHz 

indicated by the observations. This discrepancy is perhaps acceptable given the relative 

simplicity of our model. Also, we find th a t by considering the low photosphere we require 

far smaller changes in Tat to produce the observed turnover in the frequency shifts than  

models which concentrated attention on the atmosphere above the tem perature minimum. 

For example, Jain and Roberts (1994) found th a t they could reproduce the turnover in 

frequency shifts only by raising the chromospheric tem perature by about 1500°K along 

with increasing the magnetic field strength by lOG. We are able to  produce qualitatively 

similar results by increases in Tat ranging from 10°K to bO'^K, which is not an entirely 

inconceivable increase.

W ith the introduction of a magnetic field into the atmosphere, we see th a t the 

effect of increasing the field strength alone serves to increase mode frequencies (Figure 

3.17), as found by Evans and Roberts (1990). However, we see th a t for the model presented 

here the m agnitude of the shifts is much smaller, especially at low frequencies. This is 

simply related to the different layer of the atmosphere th a t we are considering. The plasma 

pressure at the tem perature minimum is some 1 0 0  times less than  the region just below the 

photosphere th a t we use as a reference level. Hence for magnetic fields of the same strength
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the plasma beta  is significantly higher at our reference level than  it is at the tem perature 

minimum. Consequently the magnetic field has less influence then it does in the models of 

Evans and Roberts (1990) and Jain and Roberts (1994). However, the frequency shifts are 

changed to  show a steep rise in the frequency range 2-3 mHz, when we combine magnetic 

field increases with variations in the superadiabatic layer (Figure 3.18). Finally, a downturn 

in the frequency shifts occurs when we combine the previous magnetic changes with raising 

Tat (Figure 3.19). Much larger increases in atmospheric tem perature are required than  the 

therm al changes of Section 3.5 with tem perature increases of 50'^K-250°K being necessary. 

This can be explained by the decrease in mode frequency induced by raising Tat now having 

to  compete with the combined effects of magnetism and increasing tem perature gradients. 

Also, we see from Figure 3.17 th a t magnetic effects are felt much more strongly at high 

frequencies, whereas the curves have levelled out at these frequencies for purely therm al 

variations, leading to  the larger tem perature changes necessary to  produce the downturns.

In this chapter we have also investigated the effects th a t the same variations in 

physical param eters have on the convective modes of the superadiabatic layer. By simply 

changing the value of rriu to give a steeper tem perature gradient, we saw th a t the —mode  

actually quickened in its e—folding time while the overtones all suffered an increase in their 

growth rates (Figure 3.13) for a large enough decrease in rriu. The changes recorded for a 

base growth time of 10 minutes ranged from 0.2 seconds for a  0.5% change to  rriu to  1.2 

seconds for a 2% change. When an increase in Tat is also applied the results of Figure 3.15 

show th a t the decrease in a  felt by the g ï  —mode is lessened while the increase of a  for the 

overtones is raised further. We have fixed the value of Th and have allowed Ts to  take on 

two values only. Hence, when we decrease rriu only the scale height of the superadiabatic 

layer, and the thickness of the region h vary; both of them  in fact decreasing as rriu 

decreases. The increase in a for the overtones can be understood by the decrease in the 

convective efficiency within the layer, with the modes having to  work against a  steeper 

tem perature gradient. But why should the mode quicken in this case? An explanation 

may be th a t this mode feels the reduction in the thickness of the superadiabatic layer more 

strongly than it feels the variation in the tem perature gradient. The further suppression of 

the modes when Tat is increased is probably due to the increase in the density scale height 

of the atmosphere. The ex tra inertia th a t this supplies reduces the rate  at which energy 

may be fed into the atmosphere. Finally, we see th a t introducing a magnetic field into the 

atmosphere causes a  to increase for all modes if the parameters of the superadiabatic layer
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are left unaltered. Again, this can be understood by the extra inertia th a t a magnetic field 

adds to  the atmosphere.

In this chapter we have seen th a t the observed changes in p —mode frequencies over 

the solar cycle may be reproduced by increasing the tem perature gradient of the superadi­

abatic layer while simultaneously raising the tem perature of the low photosphere. W hen a 

surface magnetic field is also applied, greater changes to Tat are required to  reproduce the 

observed shifts.

These results add further weight to the argument th a t it is the near surface layers 

of the Sun which undergo the greatest changes over the course of the solar cycle, indicating 

th a t the tem perature gradient of the superadiabatic layer might change by as much as 1 - 

2% over this time. Obviously, our model of the superadiabatic layer is simple but more 

sophisticated models of this region may hold key information to  aid our understanding of 

the mechanism of the solar cycle and its influence on mode frequencies.
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C h ap ter  4

T h e D ep en d en ce  o f  th e  P —m od e  

F requencies on  th e  M agn etic  F ield  

at th e  B ase  o f  th e  C on vection  Zone

4.1 Introduction

At and above the surface of the Sun, the magnetic field is observed to exist in 

a variety of different structures. For example, at the photosphere the magnetic fields are 

seen to  be mostly in the form of intense flux tubes with field strengths ranging from 1.5 

kG in the smaller pores to  3 kG in sunspots (Spruit and Roberts 1983; Roberts 1984). In 

the chromosphere the magnetic field begins to fan out to form a horizontal canopy field 

(GiovaneUi 1980), due to  the rapid decrease of the plasma pressure with height, and in the 

corona complex features such as prominences, loops and coronal holes are observed.

These phenomena are a surface manifestation of a global magnetic field located, 

stored and manipulated somewhere within the solar interior. The field is presumed to be 

generated by a dynamo action over the eleven year cycle and is subjected to instabilities 

causing magnetic flux to break free from the reservoir and rise to  the surface under magnetic 

buoyancy.

The field which emerges at the solar surface in sunspot pairs obeys what is known 

as Joy’s Law (Hale et al. 1919) which states tha t the line joining two spots makes an angle 

with the latitude of the spots, the tilt angle, which increases with increasing latitude. This 

feature indicates a certain ratio between the buoyancy rise time of a flux tube and the
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Coriolis force acting on the tube. The coherent nature of the emergent flux indicates th a t 

the field has not been deformed by turbulent forces while rising through the convection 

zone. This implies th a t the internal magnetic field of the Sun is toroidal in nature and 

strong enough to w ithstand deformation from turbulent pressures at its location. Simply 

speaking, the magnetic pressure of the field, is at least comparable to the local

dynamical pressure, where p and v are the local density and flow speed, respectively.

At the base of the convection zone this gives a field strength of a t least 10^ G while in the 

upper layers of the convection zone a field strength of 500 G is sufficient (Spruit 1974).

The position and strength of the toroidal field are open to debate. For the solar 

dynamo to operate, turbulent diffusion is necessary. However, if the dynamo were to  operate 

in the bulk of the convection zone then magnetic buoyancy instabilities would rapidly sweep 

away magnetic fields of the above strength in a  small fraction of the solar cycle (Parker 1979).

The solar dynamo problem has led to  two suggestions for the position of the 

toroidal field. Firstly, the top of the radiative zone is stable enough to anchor fields for 

time periods comparable with the solar cycle and greater (Parker 1975; van Ballegooijen 

1982a). However, the radiative zone is too stable to  give the instabilities causing flux to  

rise upwards. Also, the stability of this region raises serious problems on how the dynamo 

can operate here, because the interaction of convection with the magnetic field is severely 

inhibited.

However, there is a shallow convective overshoot layer at the base of the convection 

zone which many authors have suggested as being the possible site of the solar dynamo 

(Spiegel and Weiss 1980; Galloway and Weiss 1980; van Ballegooijen 1982a,b; Rudiger and 

Brandenberg 1995). At the base of the convection zone is a  region of transition for the 

tem perature gradient and internal rotation. The rotation changes from being differential 

in nature to being nearly solid body rotation across this region, known as the tachocline 

(Basu 1997), and it is natural to believe th a t the solar dynamo wiU operate where the 

rotation rate  shows strong gradients (Weiss 1994). Also, convective and radiative energy 

transport compete here and the layer is likely to become unstable (van Ballegooijen 1982b). 

Hence, magnetic flux tubes in the overshoot region are not subjected to deformation by 

strong vertical flows and the field may be stored here, provided th a t magnetic buoyancy 

instabilities do not lead to a rapid loss of flux. The thickness of this layer is estim ated to 

be a few tenths of the pressure scale height at tha t depth, approximately 1 0 ,0 0 0 -2 0 , 0 0 0  km.

The strength of the magnetic field is not known. A lower limit may be put on the
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field strength from the argument th a t the field must be strong enough to  resist deformation 

from convective flows. Hence the fleld strength B  must be such th a t the magnetic pressure 

is a t least comparable to  the local dynamical pressure giving a lower bound of

lO'^G in the convective overshoot layer. At the other extreme, it is unlikely th a t the magnetic 

field reaches a strength which brings it into equipartition with the plasma pressure. From 

the model of Guenther et al. (1992), this places an upper bound on the magnetic field of 

approximately 36 MG.

At the lower extreme, Rudiger and Brandenberg (1995) have estim ated th a t a 

field strength of 5 kG is consistent with the observed surface magnetic flux of 10 '̂* Mx. 

Alternatively, van Ballegooijen (1982a) has suggested th a t afield strength of at least 2.10'*G 

is necessary to  produce the observed magnetic flux in large active regions and to  give the 

correct observational limits on the drift velocity of these regions. However, van Ballegooijen 

(1982b) has also argued th a t high fields would probably show up as a rapid drifting apart 

of tubes of opposite polarity in the photosphere, implying th a t a  field strength of less 

than  lO^G should be found. At the other extreme, Basu (1997) in her investigation into 

the properties of the tachocline has put an upper limit of 0.3 MG on the sub-convective 

magnetic field. Also, Roberts and Campbell (1986) and Campbell and Roberts (1986) have 

suggested th a t to produce an observable change in the p-mode frequencies a  field strength 

of a t least 1 MG is required. Additionally, Dziembowski and Goode (1989) use the da ta  of 

Libbrecht (1989) to estim ate an axisymmetric quadrupole field of 2±1 MG near the base of 

the convection zone.

D ’Silva and Choudhuri (1993) and D ’Silva (1993) have attem pted to  put a limit 

on the field strength by adding the Coriolis force to magnetic buoyancy, to reproduce the 

observed tilt of bipolar magnetic regions. In their studies they found field strengths of 

between 60 kG and 160 kG fitted the observed tilt angles but expressed some concerns over 

field strengths of this size due to  difficulties of generation by the dynamo.

Finally, Lydon et al. (1996) have postulated tha t the observed variation in the 

frequency of the p —modes may be explained by a decrease in field strength of a (locally) 

horizontal fleld located approximately 320 km below the solar surface. Although they admit 

th a t with our current understanding of the stability criteria of magnetic flelds it is impossible 

to  store a field at this depth over the solar cycle, their results fit very weU, quantitatively 

as well as qualitatively, with the observations, adding yet more questions to the problem.

As we can see, the m agnitude of the magnetic field at the base of the convection
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zone is not known. However, not only is it im portant to know the field strength for a clearer 

understanding of the solar dynamo mechanism but it is also im portant in the determination 

of the internal distribution of the angular velocity (see, for example, Schou and Brown 1994; 

Kosovichev 1996a,b; Basu 1997).

In this chapter we incorporate a sub-convective zone magnetic field into a model 

of the solar interior. We wish to find the changes in the frequencies of the p —modes brought 

about by changes to  the field strength of this layer. In Section 4.2 we introduce the equilib­

rium model to be used in this investigation, and we then apply a two dimensional velocity 

perturbation to the equilibrium (Section 4.3). The dispersion relation for the model is 

presented in Section 4.4. We then examine in Section 4.5 the effect th a t changing cer­

tain  param eters in the model has on mode frequencies before considering what effect the 

m agnetic layer has on the structure of the modes (Section 4.7). In Section 4.8 we look at 

the special case of modes of degree zero and examine how they respond to  changes in the 

magnetic layer. Finally, in Section 4.9, we discuss our results.

4.2  T he M odel

As a first attem pt to include a layer of magnetic flux a t the base of the convection 

zone, we consider the following model: To model the interior of the Sun, we consider a 

semi-infinite region of fluid, ranging in depth z from z = 0  to z = -foo, within which there 

are three separate plasma layers. The tem perature in the two field-free zones is taken to be 

linear in z. Between the field-free layers, a layer of magnetic flux resides (in Zuc < z  < zic) 

within which the tem perature is assumed to be isothermal. A rigid wall is placed at z =  0 (so 

as to  remove atmospheric effects) and the entire medium is gravitationaUy stratified. The 

linear tem perature profiles are chosen so as to be marginally stable to convective motions 

and the tem perature is taken to be continuous across each interface, giving an equilibrium 

tem perature profile of the form

f Ts(l + ^ ) ,  0 < Z <  Zuc,

To{z) =  < Tc, < /%: <  Zfc, (4.1)

i  ̂> z,..
Here, Tg is the tem perature a t z =  0, where the tem perature scale height is Zqu\ Tc is the 

tem perature in the isothermal layer, taken to be Tc = Ts{l -j- Zuc/zou) in order to provide a 

continuous tem perature profile.
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The distribution of the plasma pressure Po{z) and density Po(z) in the equilibrium 

sta te  are related by the requirement of m agnetostatic pressure balance, viz.

T z (4-2) 

to be coupled with the ideal gas law

Po{z) =  Rpo{z)To{z).  (4 .3 )

We are interested in the presence of a  thin layer of magnetic flux within the 

convection zone and its influence on the modes of oscillation of the system. For m athem atical 

simplicity, we suppose th a t the equilibrium horizontal magnetic field Bo(z)x has strength 

which varies exponentially with depth z, the field being confined to  the layer z^c < ^ < z/c- 

The magnetic layer is assumed to be isothermal. Then,

Bo{z) =  ^
0 , 0 Z Z<nci

Bice , Zuc <  z  <  zic, (4 .4 )

0 , Z >  Zlc^

where Bic is the magnetic field strength at z =  zic and He is the magnetically modified scale 

height.

This choice of profile for B q{z ) leads to an Alfven speed Vac which is a  constant 

within the layer:

^  (4 .5 )

where pic is the plasma density a t z =  zic. The magnetically modified scale height He is

then given as

=  £  (4 .6 )

where Cc (={'yRTc)^) is the speed of sound in the magnetic layer and Tc is the magnetically

modified exponent denoted by

4'“ = 2jâT9' (4-7)

here /3 is the ratio of the sound speed to Alfven speed squared in the magnetic layer,

0 = ^ .  (4 .8 )
^ac



120

W ithin the magnetic layer the plasma density and pressure both vary exponentially with 

depth. Outside the magnetic layer, where B o { z )  — 0 , the m agnetostatic pressure balance 

(Equation (4.2)) reduces to hydrostatic balance

=  g p o ( z )  (4.9)

which, combined with the gas law and the assumption of a bnear tem perature profile, 

leads to  power-law distributions for the pressure and density profiles. Specifically, for the 

complete medium, we have an equilibrium pressure

f o < z < z , , ,

P 9( 2 ) — \  P lc ^  Z <C. Zic, ( 4 . 1 0 )

and equilibrium density

P o { z )  =  { p i c e " ^ ,  Zuc <  z  <  Zic, (4.11)

p t ( i  +  z > z , c

where P/, and pL are the plasma pressure and density as z —> z^ . The param eter m  

appearing in Equations (4.10) and (4.11) is the poly tropic index of the gas (see Chapters 2 

and 3).

Across the interfaces at z =  z^c and z =  Zfc we require, consistent with Equation 

(4.2), th a t the to ta l pressure is continuous, so th a t at z — zic

Pl  =  Pic +  (4.12)

We use this relation to  fix the value P\c of the plasma pressure a t z =  Zf̂ :

Pic = Pl ~  (4.13)

Evidently, pressure balance places a constraint on the maximum allowable field strength 

B \c  a t which the magnetic layer is completely evacuated. For the param eters used later (see 

Section 4.5, Table 4.1), the maximum field strength at which the plasma pressure within 

the magnetic field falls to zero is approximately 36 MG.

Finally, we note th a t across each interface z =  Zuc and z =  z\c there is a  density 

jump. Denoting the density immediately within the field as pmag a-nd the density immedi­

ately across the interface in the non-magnetic region by Pnonmag, we obtain

Pmag _  F^
Pnonmag T

(4.14)
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Notice th a t this density jum p is the same at both interfaces, z =  Zuc and z =  z/c, even 

though the values of pmag and pnonmag are themselves different at these two locations.

4.3  V elocity  D isturbances

As in previous chapters, we employ the following equations: 

the equation of mass continuity

§ ^  + V .  ipu)  =  0; (4.15)

the momentum equation

P ^  =  - V P  +  p s  +  j x B ;  (4.16)

(4.17)

an adiabatic energy equation 

D P  _
D t p D t '  

and an induction equation with no diffusion,

^  =  V X (u  X B ). (4.18)

The current density j is given by

/4i := X B , (4.19)

and the advective derivative is denoted by

=  S  +  (4.20)

Finally, the magnetic field is governed by the constraint

V B  =  0. (4.21)

We perturb the equilibrium of Section 4.2 with a two-dimensional velocity pertu r­

bation of the form

u  =  {ua;{z), 0, u^(z))exp [i(cot -  ^^.æ)], (4.22)

where w is the angular frequency of the disturbance and kx the horizontal wavenumber. We 

apply the perturbation given by Equation (4.22) to the system of Equation (4.15)-(4.21) to 

obtain the governing differential equations for the velocity disturbance. We consider each 

layer separately.
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4 .3 .1  T h e  f ie ld - f re e  la y e rs

In the two field-free layers of the model, the perturbation given by Equation (4.22) 

applied to Equations (4.15)-(4.21) gives the relations between the vertical velocity and 

the compressibility A  (=  V • u):

A

and

dA
dz '

(4.23)

(4.24)

We assume th a t ^  gk^ and eliminate from Equations (4.23) and (4.24) to  obtain the 

governing differential equation for A  (Lamb 1932; see also Chapter 3), namely

+  -  f^lcl{z) +  ^  [(7 -  l)g  -  j  A  =  0.

The prime ' denotes the derivative with respect to depth z.

To solve Equation (4.25) in each of the field-free layers, we set

(4.25)

A ,-kxZi
/ ( 4 , (4.26)

where / ( z )  is to  be found and ẑ- =  z -f Zou for 0  < z < z^c and ^  =  z +  Zou -  Zc for z > z/c; 

here Zq ~  zic z%c.

Applying Equation (4.26) to  Equation (4.25), with the form for c ,(z) in each 

region, we obtain the solution for A  in the field-free layers:

^-kx{z+zou) [ a iM ( ~ a ,m  + 2,2kx{z + Zou))

-\-PiU{—a ,m -{ - 2 , 2 kx{z-\-Zou))], 0  <  z < z^c, ( 4  27)
^~-kx{z-]-zou-zo) [a2 M ( - a ,  m -f 2 , 2 kx{z + Zou -  z^))

■\-P2 U(—u, m  2 , 2 kx{z -h Zqu ~  z^))], z > z/c.

The functions M  and U are the confluent hypergeometric functions (Abramowitz and Stegun 

1965; Chapter 13) and o i ,  0 :2 , /?i and /?2 are arbitrary constants. The param eter a is 

determined by

A (z) =  <

2fl — — { tu -(- 2), (4.28)
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where we have again introduced the dimensionless quantity Ü, given by 

.2

gkx'
(4.29)

It is then possible to  determine from Equation (4.24).

4 .3 .2  T h e  m a g n e tic  layer

In the isothermal magnetic layer it is found to be easier to  work directly in term s of 

Ug. The velocity perturbation satisfies the differential equation (Goedbloed 1971; Adam 

1977; Roberts 1985; Chapter 3):

A
dz

Po(cl + -  k l c l )  du,
(w2 -  &gc;) dz

d
liz • (4.30)(w2 _A;:c2 )

In Equation (4.30) we have introduced the magnetohydrodynamic cusp speed, cj'(z), defined

by

c t { z ) (4.31)
(c2 +  u2 ) 2

Under the assumptions of constant sound speed and Alfven speeds within the 

magnetic layer. Equation (4.30) reduces to

where

A -  -  1) +  (9^'^ -  kxvlc){gü‘̂ -  kxCç)]
(Cc +  -  ^a:4c)

In order to  solve Equation (4.32), we set

Uz -

(4.32)

(4.33)

(4.34)

where 0 3  is an arbitrary constant and A is to be found. Application of Equation (4.34) to 

Equation (4.32) provides us with an expression for A:

2HcX =  - 1  ±  (1 -  4A H ^)K  (4.35)

The square root term  in Equation (4.35) indicates the behaviour of the modes 

within the interior. If < 1, the modes become evanescent at the depth of the magnetic
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layer; if > 1, the modes are oscillatory in nature a t this depth. Hence the square

root term  in Equation (4.35) does not describe a cutoff frequency as such; it is simply 

an indication of the depth of penetration of the modes for specific degree I and frequency 

w. As a result, it is convenient to  present two separate solutions for in the magnetic 

layer, depending on whether 4AH^  < 1 or 4AH^ > 1. For modes satisfying the condition 

4AÆ^ < 1 ,

(4.36)

where

2 H ^ X + = - 1  +  {1 -  , 2Ær„A_ = - 1  -  (1 -  4 A 7 r |)î. (4.37)

Alternatively, if the mode frequency and wavenumber combination are such that >  1,

then we may write

2H cK = {4AH^ -  l ) ^ , (4.38)

and Uz is then given by

Uz = e~^  ̂ [C2 sin{/î(z -  Zuc)} +  Dz cos{«;(z -  Zuc)]] • (4.39)

In Equations (4.36) and (4.39), C\, C 2 , D i  and D 2 are arbitrary constants.

4.4  T he D isp ersion  R elation

In order to  obtain the dispersion relation for the model, six boundary conditions 

are required. Firstly, we impose the condition th a t the kinetic energy density of the d istur­

bances, l / 2 poul, should vanish as z -(-0 0 . An inspection of the behaviour of the confluent 

hypergeometric equations as z becomes large indicates that only if 0 2  =  0 in Equation (4.27) 

is this condition satisfied.

Two other conditions are th a t the vertical velocity perturbation Uz is continuous 

across each interface, i.e.

Uz is continuous a t z =  Zuc and z = z/c- (4.40)

The to ta l Lagrangian pressure perturbation must also be continuous a t z =  z^c and z  = zic. 

This implies th a t (see Chapter 3)

p.{cl  +  4 4 ) ( 4 .4 1 )
( ŵ  — k'lcl) dz I -  k%cl

.M
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is continuous at z =  Zuc and z  ~  zic-

Finally, due to  the rigid wall at z =  0, we have the simple condition th a t

Uz — 0 at z =  0. (4.42)

Application of Equations (4.40)-(4.42) leads to  the dispersion relation for the

model. The dispersion relation takes on two forms, depending on whether 4AH ^ < 1

or AAHe > 1. The dispersion relation reads

aW =  ?7$ , (4.43)

where

a  = A;gCg(D̂  +  1) -  V =  2akxD^c^, (4.44)

$  z= € M {-a ,m A 2 ,2 k x Z o u )  + ^U {-a ,7n  + 2,2kxZou), (4.45)

$  =  S U { 1  -  a ,m  +  3,2fca;Zo„) -  ^  ^  ^M (l -  a ,m  -}- 3 , 2 k x Z o u ) ,  (4.46)

6 =  A7 M ( - a ,m  +  2,2kx(zuc  +  z^u)) +  g M ( l  -  « ,m  +  3,2kx{zuc +  z^^)), (4.47)

e =  A8Î7(1 — a, m  -f 3 ,2kx{zy,c +  Zqu)) — A^U{—a, m +  2 ,2kx{z^c +  Zpu)), (4.48)

Ag =  FcAsT, Ay =  FccrAs -  Ag, (4.49)

r =  2akxTl^c^c and a = kxC^ci^"  ̂+  1) -  (4.50)

If 4Aj0’c < 1, then As and Ag appearing in Equation (4.49) are given by

+  (4.51)

and

As =  (1 -f (3){gQ?‘ — ^æ 4c)('^+® - T A _/_) •+• (0 _  A !-)■, (4.52)
^ 2

where

/_  =  _  A+Ag] and 0 _  = AgA_ -  A4 . (4.53)

W hen 4AJ?^ > 1, then As and Ag are given by

As =  (1 +  P){gTl^ — kxC^cJi^+i^ ~  2BT^ dkx^I+, (4.54)
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and

Ae =  (4.55)
Ag

where

r 1 11+ =  A3  K cos KZc -  Sin KZc ~  A4  Sin KZc (4.56)
L 2Hc J

and

r 1  10 +  =  A3  K sin KZc +  -̂ r:̂  COS KZc +  A4  COS KZc. (4.57)
L J

For both cases,

A4  =  gkxPA2,  A3  =  Fc(l +  P){gO,^ — k^c^c)^!^ (4.58)

Ag =  -y^gQ,  ̂— kxC^){D,^ — 1)17(—a, m +  2 , 2kx{zuc +  Zqu)) ~~ FcAi, (4.59)

and

Ai =  a l l { - a ,  m  A 2,2kx{zuc  +  Zou)) -  r U { l -  a , m A  d,2kx{zuc  +  Zqu))- (4.60)

Equation (4.43) is the dispersion relation for the modes of oscillation of an adi- 

abaticaUy stratified three layer system. The outermost layers of fluid are assumed to be 

field-free. Between the two field-free regions resides a thin isothermal layer with an embed­

ded horizontal magnetic field that is structured in such a way so as to maintain a constant 

Alfven speed. Not only are the p—modes contained in Equation (4.43) but also the magne- 

toacoustic surface and body modes associated with the magnetic layer. In the next section 

we numerically examine the behaviour of the p-m odes, determining how the frequencies of 

the modes respond to changes in the magnetic layer. A consideration of the magnetoacoustic 

surface and body modes is presented in Chapter 5.

4.5  Frequency Shifts B rought A bout by C hanges in th e  M ag­

netic Layer

We wish to examine the possibility that the observed variation in the frequencies of 

the p—modes is a consequence of the evolution of the internal magnetic field over the course 

of the solar cycle. We do this by allowing the strength of the magnetic field in the convective
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Parameter Value

Pl 5.25855 X 1Q12 kg m~^
(=  % 2,234,410°K

R 9787.633326 m^s-^K"^
Tg 17245^K
Ps 2.1418X 10^ kg m ”  ̂ s“ ^
Zuc 198,000 km
Zic 218,000 km
m 3/2
7 5/3
Cc 191 km s“ ^
He {Bic = 0 ) 79816 km

Table 4.1: Param eters used in the solution of Equation (4.43). The values of Th and Pl  

are taken from the solar model of Guenther et al. (1992) in order to set conditions as close 

as possible to  those a t the base of the convection zone.

overshoot region to  change over the solar cycle. Accordingly, we fix the param eters at this 

depth to  be roughly equal to conditions at the base of the convection zone. To do this, we 

have referred to  the model of Guenther et al. (1992) to set the tem perature and pressure 

at the base of the sub-convective magnetic field. These are presented along with the other 

param eters used, in Table 4.1. The value of R  (= P // l ,  where R  is the universal gas constant 

and jx is the mean molecular weight of the plasma) tha t we have used has been obtained 

by averaging (i over the convection zone, using the model of Guenther et al. (1992). From 

the linear tem perature profile of the model we may then obtain the surface tem perature 

Tg and pressure Pg, given in Table 4.1. The param eters Tg and Pg fit reasonably well with 

conditions near the top of the convection zone when compared to the model of Guenther 

et al. (1992), and we have chosen the reference level z =  0  to  be at this depth to avoid 

the superadiabatic layer above the convection zone where the tem perature gradient departs 

strongly from the adiabatic value.

We are attem pting to place bounds on the strength of the internal toroidal mag­

netic field of the Sun by using the observed variation in the p —mode frequencies over the 

solar cycle. To do this, we choose a range of base field strengths to  represent solar minimum 

and allow the field to increase above this value. For simplicity, and to remain within the 

expected range for the strength of this field, we choose base field strengths of lO^G, lO^G
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Figure 4.1: The changes in mode frequency (in juHz) given by Equation (4.61) plotted 

against mode frequencies for a sub-convective field strength of lO'^G. The degree I =  30 

and the curves correspond to increased field strengths Bic of S.IC^G (solid curve), 5.10'^G 

(dotted curve), T.IO^G (dashed curve) and 9.10^G (dot-dashed curve). The crosses (-{-) 

show the first 23 modes of oscillation.

and 10® G . The first frequency difference which we then calculate is Az/, given by

Az/ =  z/(Bfc) -  z/(^fc =  lO'^G). (4.61)

The frequency v{Bic — lO^G) is the frequency calculated for a field strength of lO^G and 

p{Bic) is the corresponding mode frequency for a raised internal magnetic field strength 

Bic. The results of this procedure are shown in Figure 4.1 for modes of degree / =  30, 

p lotted against p{B ic = lO'^G). We have chosen Z =  30 to display modes which penetrate 

to  the depth of the magnetic layer and below. Figure 4.1 presents the frequency differences 

induced by field strengths of 3.10'^G (sohd curve), S.IO^G (dotted curve), 7.10^G (dashed 

curve) and O.IO'^G (dot-dashed curve). The crosses (-f) on the solid curve indicate the 

first 23 modes of oscillation of the system. Figure 4.1 provides us with some surprising 

results. There appears to be an almost oscillatory trend in the frequency shifts, w ith some 

modes exhibiting a frequency increase while others show a decrease. The magnitude of the 

frequency shifts increases with larger applied magnetic field strengths. Also, the n =  1 

p —mode for / =  30 (the far left -)-) is the only mode to give Az/ =  0 exactly. This is simply
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Figure 4.2: The frequency shift Az/ as a function of base p—mode frequency as determined 

by Equation (4.62). The magnetic field strengths chosen are S.IO^G (solid curve), 5.10^0 

(dotted curve), T.IO^G (dashed curve) and Q.IO^G (dot-dashed curve). Again, I =  30 and 

the crosses (+ ) show the first 23 modes.

because the phase speed of the mode, Cph = is less than  the speed of sound in the

magnetic layer. The turning point of a mode is approximately where the phase speed equals 

the local sound speed and, as such, the ?% =  1 mode has a turning point above the magnetic 

layer. Hence the n = I mode does not penetrate the magnetic layer and is unaffected by 

changes within it. Finally, the zeros of Az/ all fall at the same base frequency for all changes 

of Bic- We have no explanation for this.

Repeating the calculation of Az/ for base field strengths of lO^G and 10®G yields 

qualitatively similar results to those presented in Figure 4.1. In Figure 4.2 we show the 

results of calculating

Az/ =  ^{Bic) — p{Bic — lO^G), (4.62)

plotted against the base frequencies for a field strength of 10®G . Increased field strengths of 

3.10®G (solid curve), 5.10®G (dotted curve), 7.10®G (dashed curve) and 9.10®G (dot-dashed 

curve) are shown. Again, I =  30. In Figure 4.3 we have calculated

(4.63)
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Figure 4.3: The results of Equation (4.63) plotted against base frequencies for j5/c=10®G. 

The magnetic field strengths used to  calculate frequency changes are 3.10^G (solid curve), 

S.IO^G (dotted curve), 7,10®G (dashed curve) and 9.10®G (dot-dashed curve) and I = 30.

and field strengths of 3.10®G (solid curve), 5.1G®G (dotted curve), 7.1G®G (dashed curve) 

and G.IG^G (dot-dashed curve) have been appbed.

In Figures 4.2 and 4.3 we see the same oscillatory spread in the frequency shifts, 

with some modes showing an increase in frequency while others exhibit a frequency decrease. 

However, for the n =  4 p -m o d e  we see an increase of G.GGG4 /iHz for a change in field 

strength from 1G‘*G to 7.10'^G from Figure 4.1, an increase of G.G4 pHz in Figure 4.2 when 

the field increases to  7.10^G from IG^G, and finally from Figure 4.3 we see a frequency 

increase of G.4 when the field grows from 10®G to 7.1G®G. These results show an 

increase by a factor of IGG, indicating th a t Az/ oc

In Figures 4.1-4.3 we have seen th a t the n = 1 p —mode, with degree I =  30, exhibits 

no change in frequency whatsoever due to its turning point being above the magnetic layer. 

As remarked above, the turning point of a mode occurs roughly when its phase speed is 

equal to  the local sound speed. To illustrate this, we repeat the calculation of Equation 

(4.62) but set the degree I = IGG. The results of this calculation are shown in Figure 

4.4 and once again field strengths of 3.10^G (solid curve), 5.1G®G (dotted curve), 7.1G^G 

(dashed curve) and G.IG^G (dot-dashed curve) are taken. For modes which show a change
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Figure 4.4: As in Figure 4.2 showing the results of Equation (4.62) but with the degree 

of the modes now set equal to  100. Field strengths used are S.IO^G (solid curve), 5.10®G 

(dotted curve), T.IO^G (dashed curve) and O.IO^G (dot-dashed curve).

in frequency, the curves are qualitatively similar to those of Figures 4.1-4.3 but now we see 

many more modes showing no change in frequency. In fact, now aU modes up to  radial 

order n =  9 suffer no change in frequency in Figure 4.4, which is to  be expected with the 

I =  1 0 0  modes being confined much closer to  the surface of the model.

We have been unable to explain satisfactorily the results presented in Figures 4.1- 

4.4. They do not reproduce the observed behaviour of the p —modes over the solar cycle. 

As far as we have been able to confirm, the dispersion relation and the code used to  solve 

it are correct, and the modes have aU been identified correctly. We shall present a possible 

simple explanation for these somewhat confusing results in Section 4.6.

Before we move on, we consider briefly the situation where the magnetic field 

strength at the base of the layer remains fixed, but the thickness of the magnetic layer is 

allowed to vary, so increasing the magnetic flux. For this possibility we calculate A i/, now 

defined by

Ai/ =  v{Bic =  10^G,Zc =  15000km) -  v{Bic =  10^G,Zc =  20000km), (4.64)

where u{Bic = 1 0 ^G,Zc =  2 0 0 0 0 km) is the frequency of a mode for a field strength of lO^G 

and a thickness of the magnetic layer of 20000 km, and u{Bic = 10^G,Zc =  15000km) is the
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Figure 4.5: Changes in p —mode frequency calculated by Equation (4.64) for a reduction 

of 5000 km in the thickness of the magnetic layer. The results are plotted against mode 

frequencies for a field strength of lO^G and a thickness of 20000 km. The degree I = 30.

corresponding mode for a magnetic layer th a t has narrowed by 5000 km. The results are 

shown in Figure 4.5, with Ai/ plotted against v{B]c =  10^G , Zc =  20000km). The degree 

of the modes has been set equal to 30. From Figure 4.5 we see a more systematic change 

to  the mode frequencies in th a t aU modes show a frequency increase, with a steep increase 

at modes of low frequency followed by a levelling off of the curve as higher frequencies are 

reached. Again the n =  1 p —mode, which does not penetrate as far as the magnetic layer, 

is unaffected by changing the param eters of the magnetic layer.

4.6  A  P ossib le E xplanation  for the R esu lts o f  S ection  4.5

The results presented in Section 4.5 are not consistent with the observed solar cycle 

behaviour of the p —modes. We are unable to pinpoint the reason why some modes should 

show an increase in frequency with an increase in magnetic field strength while others show 

a decrease. Unfortunately, the dispersion relation given by Equation (4.43) is not amenable 

to  an analytical investigation but we may shed some light on the results of Section 4.5 if 

we consider the transit time tt  of the modes across their cavity (the frequency of the mode
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u oc l / r y ) .  The transit time is given by

rZcav
Tt

=  /o c i ( z ) '

where Zcav is the depth of the mode cavity. For this three layer model, 

Tt  =  Tti  +  TT2  +  TT3,

(4.65)

(4.66)

where t t i  is the transit time across the uppermost field-free layer, t t 2  is the transit time 

across the magnetic layer and t t 3  the transit time across the lower field-free layer to  the 

depth of the cavity. Hence, if we integrate across each layer in turn , 

dz
Tt i

1 +

TT2 =  r
Z i t r .

dz
Zuc ( c 2 - | - u ; j 2  (c 2  +  u 2 j 2

and

= iZfc

dz

( i  + î S t : )

2 (^0tt “I" ^uc)
(•̂ ou T ^uc)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

where Zcv = ^cav ~  Note th a t if we fix z^c, the upper boundary of the magnetic layer, 

Tti  is a constant and hence any variations in t t  come from t t 2  and t t 3 .

As a first example, let us hold the cavity depth Zcav and the Alfven speed Vac fixed

and allow the thickness of the magnetic layer to vary. We do this by varying z/c, to  z[  ̂ say.

This then results in new travel times T t 2  and of the modes, given by

(4.72)7T2

and

“̂T3

(Cc +

T ^uc} 1 + (4.73)
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where =  Zcav — The differences in travel times Ar^g and A rps are then given by

A t t 2 =  T t2 -  TT2 =
(eg +

where Az/c =  and

A tt3  =  'TT3 “  ^T3,

2(Zoti T ■2̂ uc) 1 +
( ■2’ou ff '̂ îic )

1 +

T ^uc) AZcu,

where

Az, 1 +
( , ^ 0 U  " b  ^ u c )  J  V  ( - ^ o u  T  ^ u c )  /

The to tal difference in travel time, A ry , is then given by

A ry  =  A t7’2 +  A prs,

Az/c 2(zou T Zy_c) A 
=  r  H------------------ AZc„.

(eg +  i;L)3

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

From Equation (4.80) we see th a t if zic is decreased, i.e. if the magnetic layer narrows, then 

Az(c is negative (hence A 7 ^ 2  < 0 , which serves to increase mode frequencies {y oc 1 / r ) )  

and vice versa. However, Azcw is positive for a decrease in z/c which increases the transit 

time and thus decreases mode frequencies. The dominant effect on mode frequencies comes 

from A rT 2 , however, as Az(c > >  Az^^, for aU z\^. This goes some way to explaining the 

results of Figure 4.5.

Turning now to a consideration of the magnetic param eters, we firstly investigate 

the consequences of increasing the magnetic field strength while zi^ and z^av are held fixed. 

Inspection of Equation (4.70) shows th a t t t s  is unaffected by these changes, but with a new 

magnetoacoustic fast speed, c^^(= (c^ +  u ^ )^ ), t t 2  changes by an amount

A t'7’2 — Argr
Tc Cfc

(4.81)

(4.82)
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(4.83)

Hence, if we increase the magnetic field strength, Ac/c is positive, but with the minus sign 

appearing in Equation (4.82) the travel time is decreased, imposing a frequency increase. 

However, in Section 4.5 some modes exhibited a frequency decrease with an increase in Bic, 

inconsistent with Equation (4.82).

In Section 4.5 the thickness of the magnetic layer was kept fixed while varying Bic, 

so the only other possible variation th a t may occur is an associated change in the cavity 

depth Zcav’ Then, the overall change in transit time in the lower region is

T ^uc)
A tt3 = 1 + 1 +

where “  (̂c and Zca =  z,

2 (^0U T ^uc)

(^ou T ^uc) J \  (•̂ ou T  ^nc)

cav -  Hence we write

A tt3 -AZr

where

AkZca — 1 + -  1 +
î ôu T  ^uc) J V (•̂ oti T ^uc)

The overall change in travel time is then given by 

A t t  =  - z .A c , .  +  A i2 L ± f2 £ )

(4.84)

(4.85)

(4.86)

(4.87)

If the cavity depth is decreased along with a rise in magnetic field strength, then Azca < 0 

and A tt < 0, for all z^^. However, if Zcav is increased then Azc« > 0. Large changes in 

magnetic field strength are necessary for small changes to c/c a t the base of the convection 

zone, owing to  the high gas pressure; therefore Ac/c is not always sufficiently large to 

counteract the negative effect of increasing the cavity depth.

4 .7  H ow  d oes th e  M agnetic Layer M odify th e  E igenfunctions  

o f th e  M odes?

As a final study for the p —modes of general degree /, we look at the behaviour 

of the eigenfunctions of the modes, concentrating our attention on the region around the
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Figure 4.6: The param eter related to the kinetic energy density of vertical motions, 

plotted against depth ^ for the mode of degree / =  50. The magnetic field strength is 

set equal to 3.10^0, close to  the equipartition field strength, in order to display clearly the 

behaviour of the mode around the magnetic layer.

magnetic layer. In order to accomplish this, we calculate which is related to the energy 

density of the modes (see Chapter 3); specifically,

(4.88)
{po '^z)z=Zuc

where '0 is normalised relative to  the depth z =  Zuc- Also, to  more clearly illustrate the 

behaviour of the modes as they encounter the magnetic layer, we set the strength of the 

magnetic field close to  its equipartition value. We choose Bic =  3.10^G.

In Figure 4.6 we show ^  plotted against depth z for the ps mode of degree I — 50. 

For comparison. Figure 4.7 shows the equivalent mode when Bic = 0. Note the different 

scales on ^  on the two figures. From Figures 4.6 and 4.7 the effect of the magnetic layer on 

^  is obvious. In the convection zone (0 < z < Zuc) the same quahtative behaviour of ^  is 

seen in both figures, with the nodes of ^  all a t the same depths. The difference in scales in 

the two figures is related to the depth z =  Zuc a t which we have normalised 'ip. The ps mode 

satisfies the condition th a t AAH^ < 1 and as a result becomes evanescent a t the depth of 

the magnetic layer. In fact, looking at Figure 4.7 we see th a t this mode begins to decay
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Figure 4.7: As in Figure 4.6 but with Bic = 0.

way above z — Zuc- In the presence of a strong magnetic field, we see tha t ijj is actually 

increased as it approaches z =  Zuc and is no longer smoothly evanescent in Figure 4.6, as it 

is in Figure 4.7.

The magnetic interface at z = Zuc gives rise to a sharp discontinuity in the gradient 

of -0 , and for the extremely strong field th a t we have chosen an ex tra  node is produced in 

the standing wave pattern  midway within the magnetic layer.

As a further example, Figure 4.8 shows ^  plotted against depth z for the ps mode 

of degree / =  50. This mode differs from the ps mode in th a t it satisfies the condition 

4Ai?c > 1, and the mode is oscillatory in nature throughout the magnetic layer. From 

Figure 4.8 we can see th a t the overall change in the behaviour of i/; around the magnetic 

layer is slight. A discontinuity in the gradient of ^  is present a t z =  Zuc and z =  zic but the 

magnetic layer simply causes a steeper drop in in the isothermal layer.

Finally, an interesting behaviour in ij) is seen in some of the higher order modes. 

Figure 4.9 displays ^  for the P22 mode plotted against depth z. The equivalent mode when 

Bic =  0 is shown in Figure 4.10. Figures 4.9 and 4.10 both show an oscillatory decay of 

1/» throughout the convection zone but now the presence of a high magnetic field has an 

extreme effect on the mode. In Figure 4.9, grows rapidly through the magnetic layer to 

values equivalent to those found in the upper convection zone. Below the magnetic layer
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Figure 4.8: The normalised value of ^  plotted against depth z for the ps mode of degree 

I = 50. As in Figure 4.6, Bic — S.IO^G.
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Figure 4.9: A plot of calculated from Equation (4.88) for the P2 2  mode of degree I ~  50, 

displaying an amplification of ^  through the magnetic layer. The vertical lines show the 

position of the magnetic layer. Note the change in horizontal scale compared to Figures 

4.6-4.8.
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Figure 4.10: As in Figure 4.9 but with Bic =  0.

i}} once again begins to  decay in an oscillatory manner but its m agnitude remains greatly 

enhanced compared to  the non-magnetic case of Figure 4.10. In Figure 4.9 the vertical lines 

show the position of the magnetic interfaces at z =  &nd z =  z/c- We have been unable 

to  offer a satisfactory explanation for this behaviour.

4.8 T he Special C ase I =  0

A special case th a t we may consider in the study of a buried magnetic layer is the 

radial modes of oscillation, i.e. modes of degree zero where I = 0 (see Chapter 2). The 

dispersion relation given by Equation (4.43) does not apply to  these modes but we may 

modify the model of Chapter 2 to include a magnetic region at the base of the convection 

zone. The equilibrium of the model is simply tha t given in Section 4.2 but, as in Chapter 

2 , the fluid is taken to range in depth z from 0  to Zj, where Zj is taken to  be the radius of 

the Sun, rather than  being semi-infinite in extent. A fuller explanation of why we proceed 

in this way is given in Chapter 2.
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4.8.1 T he governing differential equations and their solutions

The equilibrium tem perature, density and pressure profiles for this model are those 

of Section 4.2 but now we place a rigid wall a t z =  Zj. The equations governing plasma 

motions within the system are Equations (4.15)-(4.21). For modes of degree zero the velocity 

perturbation is

u = (0,0,w^(z)X'^\ (4.89)

where w is the angular frequency of the disturbance. The governing differential equation 

for the perturbation Uz is given by Equation (2.24) in Chapter 2, namely

A .
dz

Po{z)[cl{z) +  T  =  0. (4.90)

The solution of Equation (4.90) proceeds much as described in Chapter 2, and so

only a  brief treatm ent is necessary here. The flow Uz is given by

Uz =  r""" [ciJmir) +  C2y m (r)] , 0 < z < Zucy (4.91)

with

+  (4.92)

For the lower polytropic region (z^c < ^ < z/^) the m ethod of solution is analogous

to th a t in obtaining Equation (4.91). The sound speed squared in this region is given by

C s iz f  = cl f l  + zic < z  < Zd. (4.93)
\  ^ou ~v ^uc J

Substituting this sound speed profile into Equation (4.90) with Va{z) = 0 leads to

   ____________
Zqu T J dz Zqh T Zŷ c dz c

Setting

P = 1 +  /  (4.95)
'̂ ou "T ^uc

yields

Putting
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simplifies Equation (4.96) to

+ {2m + l ) s ^ ~ s ' ^ U z  -  0. (4.98)
ds^ ds

Finally, setting

(4.99)

leads to  Bessel’s equation for functions of order m  (Abramowitz and Stegun 1965: 9.1.1):

+  +  =  (4.100)
ds^ ds

The general solution to  Equation (4.100) is

X  = CsJmi^) +  CdYmis), (4.101)

where Jm(«s) and Ym{s) are Bessel functions of the first and second kind, and C3 and C4  are 

constants of integration.

The velocity perturbation Uz{z) in [z/c,^d] is therefore given by

Uz{z )  -  s ' '^ [C3Jm{s )  +  C4Y m { s %  (4.102)

where

2 w(z<,„ +  Zu,) (  ̂ ^  _ 5  . -^ " (4.103)
Cc \  Z(yy T Z yc  /

Turning now to the isothermal magnetic layer on [zucyZ:ic], Equation (4.90), under 

the assumption of constant sound and Alfven speeds, reduces to

Equation (4.104) has solutions of the form 

izX%) =  (4.105)

where

2HcfJ>± = —1 i  1 1 -------- 2--] ' (4.106)
\  ^ c m a c  J

Note th a t both solutions to Equation (4.104) are retained in Equation (4.105). This is

because there is no boundary condition on the to tal decay of the kinetic energy density

applied in this region.
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In Equation (4.106) we have introduced the cut-off frequency oJcmac of the magnetic 

layer, defined by

_ ( 4  + v l ) (4.107)

The square root in Equation (4.106) again defines whether the modes are either evanescent 

a t the depth of the magnetic layer or are stiU oscillatory in nature (see Section 4.3.2), but 

now the condition is somewhat simpler with w either satisfying or

Because He is large in the submerged region, uJcmac is generally very small. Hence, as w is 

usually greater than  cOcmacy we write the param eter /a as

,2

2 Hcfi± = — 1 ±  Î cu,2cmac
-  1

and Equation (4.105) may be cast in the form 

Uz{z) = e '^[C sin a z  + V  cos az], 

where

2 He.a =
LJ

W2
cmac

-  1

(4.108)

(4.109)

(4.110)

Overall, then, the vertical velocity disturbance Uz{z) takes on different forms, 

depending on whether w is less than or greater than  tOcmac- if w < u>cmacy the to ta l velocity 

profile for the model is given by

r [ciJm (r) +  C2l ^ ( r ) ) ,

[c3Tm(s) -f C4 l^ ( s ) ]  , 

and if w > Wcmac it is given by

r " ’" [ciJm (r) +  C2Ym{r)], 

Uz ~  {  e ^ [ C  s in  c r z - f  X> COS c rz ],  

S~'^ [C3jm(s) +  C4 Tm(g)] ,

0  Z <Z Zye ) 

^uc ^  Z <C. Z[ey 

Zfc <  2: <  Z j ,

0 ■<! Z Zyey

^uc ^  Z <C Zfc, 

Zfc <  Z  <  Z j .

(4.111)

(4.112)

Here

2 wz
C q V Zey ,

2HcP± =  — 1 ±  I 1 —
OJ

OJ.2cmac

(4.113)

(4.114)
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2^r,<7 =  ( - ^  -  i V  , (4.115)
^cmac

and

5  =  (  1 +  '  , (4.116)
Cc V ôu 4" ûc J

The derivatives of Uz may be found quite easily, using Equations (2.42)-(2.43) and Equation 

(2.45) for the Bessel function solutions.

4 ,8 .2  D is p e r s io n  r e la t io n s  an d  m o d e  fre q u en c ie s

W ith the inclusion of a  magnetic layer into the model described in Chapter 2 , two 

more boundary conditions must also be appHed, additional to those of Chapter 2 , to furnish 

us with the correct dispersion relation. The rigid walls at z = 0 and z = require th a t

Uz = 0 a t z =  0 and z =  Zj. (4,117)

A further two conditions are simply tha t

Uz is continuous across z =  Zy,c and z =  z/c- (4.118)

Finally, the Lagrangian pressure perturbation must be continuous across the magnetic in­

terfaces. This requires tha t

(4.119)

is continuous across z =  z^c and z =  zic (see Chapter 2 ).

Application of the six boundary conditions (4.117)-(4.119) leads, after some alge­

bra, to the dispersion relation of the model. For the case u> > oJcmac', the dispersion relation 

is

\AHla'^aiOt2  -f ( $ « 3  -  cKi)(#0!4 -  0 :2 )] sincrzc

=  2H c(t^  [0 (10:4 -  0 2 O3 ] cos crzc, (4.120)

where

<S =  ■, (4.121)
1 c^fc^cmac

0% =  J m { ,^ u c }Y fY i (^ T o )  F ^ ( 7 ’u c ) ‘^m (^'o) j (4 .1 2 2 )
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0 2  =  ~  ^m(^lc)^m(^d)7 (4.123)

0 3 =  <7m-|-l (^uc)Trn(^o) -^^-{-1 (^uc)<^m(^o) ; (4.124)

and

0 4 =  «7m+l (^ic)-^^(^rf) ̂ m-i-l('^lc)^m('^d)' (4.125)

The magnetoacoustic fast speed c/c within the magnetic layer is

c/c = (Cg +  oL)^. (4.126)

The param eters arising in the Bessel function combinations of Equations (4.122)-(4.125)

are

_ (4 127)
Cg Cs \  Z’ou /

and

5 ,  ̂ =  M f l + i ï s l ,  ^  2 a>(z,„ +  0 ..,) /  ^  (4.128)
Cc \ ^ou T ^uc )

W hen w < Wcmac we may write 

a  =  m , (4.129)

where

2Ec K= I 1 -  . (4.130)
\  ^cmac /

Therefore, remembering tha t

sin 2Z =  2 sinh z and cos 7Z =  cosh z, (4.131)

Equation (4.120) becomes

|^ ( $ 0 3  — 0 i ) ( $ 0 4  -  0 2 ) -  AHlK^OLia<^ sinh kzc

= 2J?cKŸ [0 1 O4 -  0 2 O3 ] cosh KZc. (4.132)

Equation (4.120) or (4.132) provides the dispersion relation for a model consisting 

of three layers of fluid confined at z =  0  and z =  ẑ / by rigid boundaries. The outer two 

layers of the model are polytropic in nature, whilst the middle layer contains a magnetic field 

structured in such a way so as to give a constant Alfvén speed. It is specifically derived for
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Param eter Value

Zuc

Tc
Puc
("C

=  0 )

2 0 0 , 0 0 0  km
15.000 km 

3,415,212° K
1.666 X 10® kg m"^ s~^ 

191.25 km s~i
80.000 km

Table 4.2: The param eters for the isothermal layer used in solving Equations (4.120) and 

(4.132) when Buc is set to  zero. The values at z =  0 correspond to  those at the tem perature 

minimum given in Table 2 .1  of Chapter 2.

modes of degree zero and cannot be reproduced analytically by letting fca, 0  in Equation 

(4.43).
Before we solve the dispersion relation numerically, note th a t Equations (4.120) 

and (4.132) have oJcmac as a  solution. For this frequency, both a  and k are zero and it can 

be shown th a t the only solution for Uz is the trivial one. AU of the constants on [zucZid 

are zero for this case, except C, which tends to infinity. However, as it appears in the 

combination C sin a z  it is easy to show th a t

Um [C sin az] = 0.
(7-+0

(4.133)

Using this, we may show th a t the constants of integration in the other two layers, c\ — C4 , 

are also zero. Hence, for disturbances with the frequency w =  uJcmac then =  0.

To test the dispersion relation given by Equations (4.120) and (4.132), let us first 

set Buc =  0 and choose the thickness of the magnetic layer to be Zc =  1.5 x 10^ km. Also, 

we set the param eters of the model relative to z =  0  and use the param eters given by 

Table 2.1. This is simply an exercise in checking the dispersion relation of this section by 

comparing it to the model of Chapter 2. The dispersion relation is simplified somewhat by 

setting Vac =  0 , for which the magnetoacoustic cut-off frequency Ucmac ^caci where ojcac 

is the acoustic cut-off frequency of the now field-free layer defined by

(4.134)Wr

and the param eter $  becomes 

w
OJr

(4.135)
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Figure 4.11: Mode Frequencies (in mHz) plotted against radial order n  for the case when 

Bic =  0 and Zc =  15000 km, shown as the lower line of dots (...). The crosses (+ )  are the 

observed frequencies of Libbrecht et al. (1990) and the stars (*) those of Elsworth et al. 

(1994). The upper row of dots show the calculated frequencies displayed in Figure 2.1 of 

Chapter 2 .

The typical solar values given in Table 2.1 are used again for conditions at z =  0 

in the numerical solutions of Equations (4.120) and (4.132). The values given a t the depth 

of the upper boundary of the magnetic layer and the tem perature and sound speed within 

the magnetic layer are then as given in Table 4.2.

From Equations (4.120) and (4.132) with the cut-off frequency given by Equation

(4.134) and $  given by Equation (4.135), we are able to reproduce the linear dependence of 

mode frequency on radial order, n. The sequence of solutions calculated from the dispersion 

relation are displayed in Figure 4.11 as the lower hne of dots (....). Figure 4.11 shows mode 

frequency i> (=  w/27r) in mHz plotted against radial order, n ranging from 0 to 40.

For comparison with observational results and the findings of Chapter 2  we have 

re-plotted the results of Figure 2.1 in Figure 4.11. As in Figure 2.1, the crosses (4 - -f -f) 

are taken from the observations of Libbrecht et al. (1990) and the stars (* + *) from the 

observations of Elsworth et al. (1994). The upper line of dots (...) are the base mode 

frequencies of Chapter 2, calculated from Equation (2.64).
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Figure 4.12: The changes in mode frequency found from Equation (4.136) for modes of 

degree zero. The results are plotted against the frequencies for a field strength of lO^G. 

Increases in magnetic field strength to S.IO^G (solid curve), 5.10^G (dotted curve), T.IO^G 

(dashed curve) and 9.10^G (dot-dashed curve) are used.

From Figure 4.11 we may see th a t the resultant mode frequencies for a model with 

a submerged isothermal layer are somewhat less than  their purely polytropic counterparts. 

This result is not difficult to  understand. In the three layer model, the range of z taken is 

on the range [0, Zj], the same as th a t in Chapter 2. However, the tem perature a t the lower 

interface (z =  zic) is the same as th a t at the upper interface (z =  z^c). As a  result there 

is a lower tem perature at z =  Zj in the model of this chapter. Hence the inclusion of the 

isothermal layer leads to  an increased transit time for the modes which serves to  decrease 

their frequency.

To see if the region of magnetic field below the convection zone has any bearing on 

the solar cycle behaviour of p —modes, the strength of the field will be allowed to  vary, as in 

Section 4.5, and the resultant changes in mode frequency calculated. In order to compare 

results, we now set the param eters for this model equal to those given in Table 4.1.
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4 .8 .3  T h e  e ffe c t  o f  v a r ia t io n s  o f  th e  m a g n e tic  layer  on  o s c il la t io n  fr e q u e n ­

c ie s

The procedure th a t we shall follow for determining frequency changes within the 

model will be analogous to th a t used in Section 4.5. Again, we set a base strength for the 

magnetic field within the isothermal layer to represent conditions a t solar minimum. In 

this section, we use base field strengths of lO^G and 10®G and then allow the field to  grow 

above these values. The first frequency difference tha t we calculate is given by

Ai/ =  =  lO^G), (4.136)

where u{Bic =  lO^G) is the base frequency of a  radial mode in the presence of a lO^G 

magnetic field and u{B\c) is a  mode of equivalent radial order for an increase in Bic- The 

frequency shifts Ai/ of Equation (4.136) are shown in Figure 4.12 plotted against u{Bic = 

lO^G). Figure 4.12 displays the frequency changes brought about by field strengths of 

3 .1 0 ^G (solid curve), 5.10®G (dotted curve), T.IO^G (dashed curve) and 9.10^G (dot-dashed 

curve).

In Figure 4.12 the frequency shifts incurred by raising the internal magnetic field 

strength show a scatter, but now they are different to the results of Section 4.5 and there is 

a positive gradient overall to  At/ as w increases, with the frequency shifts scattered about 

this gradient. As in Section 4.5 the m agnitude of the frequency shifts increases as Bic is 

raised. Note also th a t the magnitude of the frequency differences are comparable in Figures

4.12 and 4.2, indicating th a t the frequency shifts are not highly dependent on the degree 

of the modes. The scatter in frequency changes around a generally increasing trend may 

be explained by the rigid walls we have placed at z = 0 and z = Zj. The fixed range in 

depth z of the model tends to  force preferred wavelengths on to  the system, which do not 

change when varying Bic- As a result this leads to a discretisation of the modes with the 

frequencies being forced to  fit these wavelengths.

Finally, we raise the internal base field strength to 10®G and calculate the frequency 

difference A i/ given by

Az/ =  z/(Bf,) -  =  lO^G), (4.137)

where u{Bic =  lO^G) is the frequency of a mode at the base field strength and y{Bic) is the 

equivalent mode for a  higher value of B\c. The results of Equation (4.137), with Az/ plotted 

against p{Bic =  lO^G), are shown in Figure 4.13. The same trend in Az/ is seen in Figure
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Figure 4.13: The results of Equation (4.137) plotted against the base frequencies for a  field 

of lO^G. The curves shown correspond to  increases in magnetic field strength to  3.10®G 

(solid curve), 5.10®G (dotted  curve), 7.10®G (dashed curve) and 9.10®G (dot-dashed curve) 

are used.

4.13 but as expected the magnitude of A u  is much greater than  seen in Figure 4.12. Again, 

as in Section 4.5, Figures 4.12 and 4.13 point to A u  being proportional to

4.9  D iscu ssion

In this chapter, a three layer model has been used to assess the influence of an 

internal, sub-convective, magnetic field on p —mode frequencies. The two field-free layers 

contain linear equilibrium tem perature profiles stratified in such a way so as to  m aintain 

stability to convective motions. Between these two layers we have a thin isotherm al layer 

perm eated by a horizontal magnetic field, the equilibrium structure of which is taken to be 

such tha t a  constant Alfvén speed is present in the layer. A rigid wall is placed a t z =  0.

Variations in the strength of the buried magnetic layer will lead to corresponding 

variations in the frequencies of the p —modes whose cavities extend to or below the depth 

of the magnetic region. Through this, we hope to place bounds on the highly controversial 

question of the strength of the sub-convective zone magnetic field (see Section 4.1) by
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attem pting to  match the frequency changes imposed on the p —modes of this model with 

the observed solar cycle variation.

The results th a t we have found from this model have not reproduced the observed 

variation of the p —mode frequencies with the solar cycle. By choosing base field strengths 

of lO'^G, lO^G or lO^G (Section 4.5), modes of degree I = 30 showed no system atic trend 

to  frequency changes when the field strength was increased above these values (Figures 

4 .1-4.3). Some modes showed an increase in frequency while others exhibited a decrease. 

The presence of a  magnetic layer a t the base of the convection zone varied the frequencies 

of the p —modes by an amount proportional to the square of the magnetic field strength. 

For example, raising the strength of the magnetic field from lO^G to 5.10'^G increased the 

frequency of the pe mode by 7.10“ ® fiRz. The same mode under a  rise in Bic from 10®G to 

5 .1 0 ®G showed a 0.007 ^Hz increase, and when the field was increased from 1 0 ®G to 5.10®G 

it suffered a 0.7 pHz increase. Making a tentative comparison with the observations, Figure

4 . 3  would appear to  indicate th a t a  base field strength of 1 0 ®G is most likely; it is very 

unlikely th a t the field would increase to  strengths of 3.10®G-5.10®G over the course of 

the solar cycle. This is comparable to  (though somewhat higher than) the result found by 

Campbell and Roberts (1986) who predict a peak field strength of 5.10®G-10®G as necessary 

to produce the required frequency shifts. We are not claiming th a t this large increase in 

the strength of the sub-convective magnetic field is actually present in the Sun.

We compared the results of Figure 4.2 with the same changes in magnetic field 

strength but for higher degree modes (specifically I ~  100; see Figure 4.4). As expected, 

more modes in Figure 4.4 showed no change in mode frequency. However a similar, appar­

ently random , spread in A u  was seen for I = 1 0 0  modes tha t penetrate the magnetic layer 

as we saw for modes with / =  30. Also, the frequency changes for I = 1 0 0  modes were only 

approximately twice those of the I = 30 modes, indicating th a t the frequency changes are 

only weakly dependent on I in this model.

Finally, for modes of general /, we examined the effect of varying the thickness 

of the magnetic layer. From this, we saw th a t a decrease in the thickness of the magnetic 

layer of 5000 km, while the magnetic field strength remained fixed at 10®G, led to  a  steep 

rise in mode frequencies in the frequency range 1-2 mHz, with the shift curve becoming 

more shallow at higher frequencies. Although through this we were not able to reproduce a 

downturn a t higher frequencies, the actual magnitude of the frequency variations was not 

too far away from the observed values, with frequency shifts up to  1 filiz  being seen.
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As a limiting case for this study, we have looked at the model th a t specifically 

describes the radial modes of the Sun for which I = 0 (Section 4.8). Figures 4.12 and 4.13 

would again appear to  indicate th a t frequency changes brought about by the magnetic layer 

are oc but we cannot reproduce the observed frequency variations by altering Bic alone. 

However, for the modes of degree zero, there is a  trend to the frequency shifts in th a t the 

n =  0  and n =  1 modes show a frequency decrease, while aU others show an increase, and 

th a t on average, there is a systematic increase in the m agnitude of A u  as u increases.

This model has been unable to  reproduce the observed solar cycle variation in 

the p —mode frequencies. However, this does not discount the possibility th a t it may in 

fact be variations in the sub-convective magnetic field tha t are responsible for the observed 

shifts. Our model takes no account of the stability aspects of such a magnetic field (since 

we are using a plane-parallel model with the magnetic field being horizontal and infinite 

in extent). Also of im portance is the very simple and basic assumption th a t the magnetic 

layer is isothermal; a  more complex therm al structure may produce significant differences. 

However, our wish has been to  examine an analytical model and the model presented here 

perm its such an approach whereas a  more complicated model would require a fully numerical 

approach. Therefore, we may conclude th a t although this model sheds no further light on 

the position within the Sun responsible for varying p -m o d e  frequencies over the course of 

the solar cycle, the influence of the region at the base of the convection zone cannot be 

ruled out and it may take a model utilising more sophisticated physics to study the effects 

of this layer on mode frequencies in greater detail.
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C hapter 5

T h e Surface and B o d y  W aves 

A sso c ia ted  w ith  th e  M agn etic  

Layer at th e  B ase  o f  th e  

C on vection  Zone

5.1 In troduction

Magnetoacoustic surface waves exist wherever there is an abrupt change in the 

magnetic field strength, or plasma density, pressure, or tem perature. In the Sun, rapid 

changes in magnetic field strength and plasma density are seen in structures such as 

sunspots, coronal loops and prominences, to name but a few.

In an attem pt to understand the waves such objects may support, various struc­

tures have been used: the step function, where the magnetic field changes discontinuously 

from one place to another; an isolated slab or cylinder of magnetic flux; and an embedded 

slab or cylinder of magnetic flux. The solar atmosphere shows a number of objects th a t 

may be described approximately by these simple structures although in reality the objects 

themselves are far more complex. For example, the isolated tube is seen in the photosphere, 

and embedded tubes of flux are akin to coronal loops in the magnetically filled corona. Such 

objects may be viewed as containing step functions as, for example, the interface between 

the field-free photosphere and the horizontal canopy field of the chromosphere.

Many studies of magnetohydrodynamic waves have been made for the case of a
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single magnetic interface in an incompressible medium (see the discussion in Chandrasekhar 

1961). The surface waves arising for this case are seen to have a phase speed c^h given by

(5.1)
\  Po -r pe J

where po &ud Vao are the plasma density and the Alfvén speed, respectively, on one side of 

the interface, and pe and Vae are the equivalent values on the other side of the interface. The 

phase speed given in Equation (5.1) has also arisen in studies of surface waves in magnetic 

flux tubes (see, for example, Spruit 1983; Spruit and Roberts 1983; Ryutova 1990).

Models of surface waves in compressible media have also been studied. The case 

of a  single magnetic interface has been studied by, for example, Wentzel (1979), Roberts 

(1981o) and Miles and Roberts (1989). The effect of compressibility showed an ex tra  mode 

in the work of Roberts (1981a) over the simple incompressible case.

One m ajor candidate for a magnetoacoustic surface wave is the running penumbral 

wave observed to propagate outwards from the umbrae of sunspots. They were suggested 

to be magnetoacoustic-gravity modes by Nye and Thomas (1974; 19766) and to  be fast 

magnetoacoustic surface modes by Small and Roberts (1984).

Finally, Roberts (19816) has considered the modes of oscillation of an isolated slab 

of magnetic flux in the absence of gravity. The properties of the plasma within and outside 

the slab are assumed to be uniform, but not necessarily equal. His analysis showed that 

slow (cp/i <min[co,Ua], where Cq is the speed of sound within the slab) surface and body 

modes are always able to propagate. However, if the surroundings are hotter than  the slab, 

i.e. Cg > Co where Cg is the speed of sound in the surrounding media, fa s t  waves may also 

propagate. Their nature is dependent on the field strength within the slab. If the field 

strength is such th a t Cg > Cq > Ua, where Va is the Alfvén speed in the magnetic slab, the 

wave propagates as a fast body wave with Cg < Cph < Cq. If > Cg > Co then the mode 

takes on the form of a  fast surface wave.

As yet there exists no study of the fully compressible modes of an isolated slab in 

the presence of gravity where the tem peratures of the field-free regions are not isothermal, 

but contain linear tem perature profiles. The model of Chapter 4 provides the ideal situation 

for studying surface waves under these conditions. To recap, the model equilibrium consists 

of a semi-infinite region of fluid contained by a rigid wall at z =  0. W ithin this region, there 

are two field-free layers of fluid, each containing linear tem perature profiles which increase
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with depth. Between these two layers resides a slab of magnetic flux structured in such a 

way as to  m aintain a  constant Alfvén speed. In this chapter we are interested in the surface 

and body modes this slab may support.

In Section 5.2 we recap on the model of Chapter 4 and present the dispersion 

relation. The dispersion relation is solved numerically to find the surface and body modes 

of the magnetic layer. In Section 5.3 we examine the behaviour of the modes in and around 

the magnetic layer, and we discuss the results in Section 5.4.

5.2 T h e D isp ersion  R elation  and M ode Frequencies

We wish to  examine the surface and body waves associated with the sub-convective 

magnetic field. The model used is th a t of Chapter 4. The interior of the Sun is modelled as 

a semi-infinite region of fluid, ranging from z =  0  to z =  -j-oo and containing three layers of 

plasma. In the  field-free regions, the equilibrium tem perature profile is taken to  be linear in 

z with the gradient chosen such th a t the plasm a is marginally stable to  convective motions. 

In Zy,c < z  < zicy between the two field-free layers, there is an isothermal layer of magnetic 

flux. A rigid wall is placed a t z =  0 and the entire medium is gravitationally stratified in 

depth .2?. The tem perature profile is structured so as to give a continuous profile a t z =  Zuc 

and z =  zic- For m athem atical simplicity we have assumed a magnetic field profile tha t 

provides us with a constant Alfvén speed in the magnetic layer.

In Chapter 4 we were concerned with the variation in the frequencies of the 

p —modes as the magnetic field strength within the layer changed. However, the presence 

of a magnetic layer in < z < zic leads to a discontinuity in the plasma density profile at 

z =  Zuc and z = z/g. If we denote the plasma density immediately within the field as prnag 

and the plasma density immediately across the interface as Pnonmag-, we saw in Chapter 4 

th a t

= E i, (5.2)
Pnonmag T

where 7  is the adiabatic index and Fg is the magnetically modified index. This ratio  is the 

same a t both interfaces, even though Pmag and Pnonmag are themselves different a t these 

two depths. From Equation (5.2) we therefore see th a t the magnetic field causes a decrease 

in the plasma density within the layer in order to maintain pressure balance.

The discontinuity in the equilibrium plasma density profile allows surface waves
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to  occur. The magnetic slab will also contain body modes, motions of the whole layer, of 

course.

As derived in Chapter 4, a  velocity perturbation of the form

u  =  (Ua;(z), 0, Uz(z))exp -  k ^x ) ] , (5.3)

applied to the above equilibrium (see Equations (4.15)-(4.21)) provides us, after much al­

gebra, with the dispersion relation for the model:

(5.4)

where

a  -  Aa,Cg(9  ̂+  1) -  rj =  2akxü ‘̂ cl, (5.5)

$  =  eM {~a, m -{- 2 ,2ks;Zou) +  ( - a ,  m -h 2 ,2kxZou), (5.6)

^  -  ÔU{1 ~ a , m  + ù,2kxZou)------- ^ M ( l  -  a ,m - f  3,2fca,Zou)j (5.7)
m  z

6 — AyAf(—a, m -}- 2 ,2kx{zuc + ^ou)) + rn ■{- 2^^^  — a, m -f- 3 ,2kx{zuc T Zou))i (5.8)

e  =  A q U { 1  -  a, m -I- 3 , 2 k x { z u c  +  ^ o u ) )  ~  A j U ( - a ,  m -1- 2 , 2 k x { z u c  +  Z o u ) ) ,  (5.9)

As =  EgAsr, Â7 =  FcO-As -  Ae, (5.10)

r = 2 akxÜ~^cl and a — kxcl(ü^  +  1) — (5,11)

If 4AFTg < 1, then A5 and Ae appearing in Equation (5.10) are given by

Ae =  (5,12)
A2

and

As =  ( 1  +  /3)(sfi2 -  fc^4 ,)(A + 0_  +  A _/_) +  ^ ( 0 _  +  /_ ) ,  (5.13)

where

I_  = g(A+-A_)zc _  A4.A3] and 0 _  =  AsA_ -  A4 . (5.14)

For the condition 4AH ^ > 1,

Ac =  (5,15)
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and

As =  (1 +  -  kx4 'c){^+ n  -  +  gkxPI+, (5.16)

where

1+ =  A3

and

0 + =  A3 

For both cases,

A4 =  5ffca;/3A2, A3 =  Fc(l +  /3)(pO^ — A:a;C^g)Ai, (5.19)

A2 =  l { g ^ ^  -  &zCc)(0'* -  l ) t / ( - a ,m  +  2,2kx{zuc +  Zou)) -  FgAi, (5.20)

K cos KZc  — 2 ^  sin KZc

K sin KZc  +  —̂  cos KZc

A4 sin KZg (5.17)

+  A4 cos KZg. (5.18)

and

Ai =  c r t / ( - a ,m +  2^2kx{zuc +  Zou)) -  rU { l  -  a ,m  + 3y2kx(zuc +  ^ou))- (5.21)

The identification of the surface and body modes from Equation (5.4) is straight­

forward. The energy density of a surface wave decays exponentially from both sides of 

the interfaces at z =  z^c and z =  Zfg, whereas the body modes show an oscillatory kinetic 

energy density within the magnetic layer and become evanescent in the field-free regions. 

This behaviour is governed by the form of the velocity perturbation Uz given by Equations 

(4.36) and (4.39), and is reflected in the dispersion relation given above. Simply, the mag­

netoacoustic surface modes satisfy the condition AAH^ < 1 while for the magnetoacoustic 

body modes AAH'^ > 1 .

The surface and body modes we obtain fall into one of two categories. Firstly, 

disturbances within the magnetic layer may be symmetrical about the centre of the slab. 

These modes are characterised in the zero gravity case by having a zero in a t the centre 

of the slab (a condition th a t we have not demanded here), and Uz being an odd function 

of z. The modes may therefore be viewed as a succession of symmetric compressions and 

rarefactions travelling along the slab, and are called sausage modes after their obvious 

appearance. Secondly, there is a  class of modes representing an anti-symmetric disturbance 

of the slab or its edges. For these modes, the centre of the slab is usually a maximum
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Figure 5.1: A pictorial representation of the surface and body modes of a magnetic slab, 

along with the disturbances classified as sausage and kink modes (taken from Roberts 1990).

or a  minimum of the perturbed velocity, and Uz is represented by an even function of z. 

The modes of this type foUow a pattern  along the tube which is analogous to  the motions 

of a snake’s body as it moves forward; these are termed k ink  modes. Figure 5.1 displays 

what we understand by the term s surface and body waves, and depicts the mode structure 

formed by sausage modes and kink modes.

5 .2 .1  A  d ia g n o s t ic  d ia g r a m

The surface and body waves contained in Equation (5.4) are quite difficult to 

resolve numerically because of the overbearing dominance of the p -m odes in the numerical 

code. We therefore found it convenient to use a very high magnetic field strength in the 

numerical solution of Equation (5.4) as this makes the modes much easier to pick up. As in 

Section 4.7 of Chapter 4, we choose Bic = 3.10^G, which is close to the equipartition field 

strength. The values th a t this field strength gives to the relevant physical param eters that 

we require are displayed in Table 5.1. The other param eters th a t we shall use, such as the 

tem perature and pressure at the base of the convection zone, are displayed in Table 4.1.

Figure 5 . 2  shows the results of solving the dispersion relation (5.4). The horizon­

tal phase speed Cph (=  <^/kx) of the modes is plotted against k^Hc- The sausage modes
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Parameter Value

Cc 191 km s“ ^
' âc 306 km s“ ^
^fc 360 km s"^
CTc 161 km s~^
He 250194 km
To 0.532

Table 5.1: The param eters used in the numerical solution of Equation (5.4). They are 

calculated for magnetic field strength of 3.10^G.

are shown as a solid line (----- ) and the kink modes as dashed curves (----- ). The curves

appearing in Figure 5.2 cover a range of kj;Hc from 3.75 to 18.15 (corresponding to hori­

zontal wavelengths of 416960 km to  86600 km, respectively). We have not calculated mode 

frequencies for modes with k^Hc < 3.15 because, as we have said in previous chapters, the 

application oi the model becomes less valid for modes which feel the spherical nature of the 

Sun. We do not extend the range in k^Hc beyond 18.15 simply for numerical reasons; the 

modes become more and more difficult to extract as kx increases. The two horizontal dotted 

lines display the tube speed ctc &nd the sound speed c .̂ Finally, note th a t the vertical axis 

does not extend up to  such values as the Alfvén speed Vac and the fast speed cjc’, this is 

simply to display more clearly the modes th a t we have found.

The modes presented in Figure 5.2 are the slow magnetoacoustic surface modes 

and slow magnetoacoustic body modes of a magnetic layer at the base of the convection 

zone. There are no fast modes present in this model because the slab is not cooler than 

its immediate surroundings, a  condition necessary for them to occur in an unstratified slab 

(Roberts 19816). The slow magnetoacoustic surface modes satisfy the condition Cp̂  < cxcy 

with Cph —> 0  as fca; 0  for the kink surface mode and Cph -> ctc as fca, 0  for the sausage 

surface mode. These modes are principally acoustic in nature with ctc ~  Cc (<C Vac)- The 

slow body modes, on the other hand, have phase speeds in the range ctc < Cph < Cc- For 

clarity, we have shown only the first two body modes of the slab. There are, of course, an 

infinite number of slow body modes consisting of the fundamental mode and its overtones. 

These are categorised by the number of nodes, n, that the mode has across the slab. The 

kink modes have an even number of nodes, n = 0 , 2 ,4 ,...; while the sausage modes contain an 

odd number of nodes, n =  1 ,3 ,5 ,..,. In Figure 5.2 the kink mode shown is the fundam ental
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Figure 5 .2 : The phase speed Cph{= w/ kx)  of the surface and body modes of the magnetic 

layer, plotted against k^Hc- The kink (anti-symmetric) modes are plotted as dashed curves

(---- ) and the sausage (symmetric) modes are shown as solid curves. The horizontal dotted

lines indicate the tube speed ctc &ud sound speed Cq within the magnetic slab. The surface 

modes have phase speeds such th a t Cph < ctc and the body modes are confined to  the range

C j’c Cp/i <C Cc-

body oscillation of the layer with n =  0 , and the sausage mode is the first harmonic with 

n =  1. The whole continuous spectrum  of body modes form an anti-Sturm ian sequence 

with Cph decreasing as n  increases for a specific horizontal wavenumber k^. From Figure

5 .2 , we can also see th a t Cph -> ctc as k^ —̂ 0 , for all n.

5.3 T he B ehaviour o f th e  M odes in and around th e  M agnetic  

Layer

In this brief initial investigation into the compressible magnetoacoustic-gravity 

surface and body modes of a sub-convective magnetic field, we round off the numerical 

study by considering the structure of the modes in and around the magnetic layer. To do 

this, we follow the approach of Chapters 3 and 4 and calculate the normalised square root
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kink surface  m ode0.8

k^H^=ia.15
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s
II 0 .2

0.0
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Depth, z (km)
3 x 1 0

Figure 5.3: The normalised square root of the energy density, plotted against depth z 

for the kink surface mode with k^Hc — 18.15. The vertical dotted lines show the position 

of the magnetic layer. The mode is highly localised on the magnetic interfaces.

of the kinetic energy density of vertical motions. This quantity is denoted by given by

'tp = Po U, (5.22)
( P o  ' ^ z ) z u c

where z — z^c is the depth at which -ip is normalised.

In Figure 5.3 we have plotted ^  against depth z for the kink magnetoacoustic 

surface mode with k^Hc =  18.15 and Bic =  3.10^G. The two vertical dotted lines indicate 

the position of the magnetic layer. From Figure 5.3 we can see th a t the disturbance is highly 

localised on the interfaces at z = ẑ c and z = Zfg. The value of xp decreases exponentially 

into the magnetic layer, exhibiting a minimum at a depth just below the centre of the layer. 

In the field-free region beneath the magnetic layer, 'ip rapidly decays exponentially and any 

indication of the disturbance has disappeared by a depth of 3.3x10^ km. In the layer above 

the magnetic slab, the behaviour of ip is somewhat different. There is still an exponential 

decay present, but 'ip becomes oscillatory in nature as the surface layers are approached. For 

the kink mode pictured in Figure 5.3 this behaviour is almost negligible. A decay in -0 tha t 

is not entirely exponential throughout the upper field-free layer is understandable because 

no boundary condition has been placed on the kinetic energy density in this layer. The

j
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Figure 5.4: As in Figure 5.3 but for the sausage surface mode with kxHc=lS.lb .  Note the 

change of scale on the vertical axis.

onset of an oscillatory motion in the near surface layers is less clearly understood, however. 

One suggestion may be tha t a low frequency disturbance such as the kink surface mode 

is unable to drive an oscillation outside of the magnetic layer in the deep convection zone 

where the plasma density is high, but carries enough energy to  disturb the upper, rarefied, 

layers. As it is, this consideration is purely academic because the motions th a t the kink 

mode drives at the near surface are hardly likely to be measured above the vastly larger 

motions of the p —modes.

Finally, what do the different magnitudes of on each interface tell us about the 

nature of the modes? In a zero gravity situation, with uniform plasma densities, we would 

expect the amplitude of the disturbance to  be equal at z =  Zuc and z =  zic. In Figure

5.3, '0 is greater a t the upper interface. From an inspection of Equation (5.22) we see that 

this implies a much greater value of a t z =  z^c than at z =  z/c, because the plasma 

density po(z) grows exponentially through the magnetic layer. The effect of gravitational 

stratification of the atmosphere seems therefore to diminish the mode energy (oc at the 

lower interface. This seems acceptable when we consider th a t a disturbance has to  work 

against much more dense plasma as we move deeper into the model, a direct consequence of 

stratification. The implication th a t this has for the slab itself is th a t as the mode propagates

a



162
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Figure 5.5: The quantity i>{z) plotted against depth, z, for the kink body mode with 

^^^g=18.15, and n — 0. Note the larger scale on the vertical axis here than  in Figures 5,3 

and 5.4 indicating th a t the relative disturbances of the body modes are far greater than  the 

surface modes.

along the slab it displaces the upper interface more than the lower one. This leads to a 

small expansion of slab in areas where the mode is moving the surfaces slightly towards the 

model surface and a slight compression of the layer at places where the surfaces are being 

perturbed downwards.

In Figure 5.4 we have plotted against depth z for the sausage surface mode, 

again with k^ffc  = 18.15. This mode is the symmetric partner of the antisymm etric kink 

mode shown in Figure 5.3. In Figure 5.4 we see tha t the sausage surface mode, similar to 

the kink mode, is highly localised on the interfaces at z =  Zuc and z =  z/c. As expected for 

a surface mode, decreases exponentially from each interface as we move into the magnetic 

layer and the deeper field-free layer. Again, ijj decreases exponentially into the upper field- 

free layer, with the sausage mode showing similar behaviour to the kink mode in tha t -ifj 

becomes oscillatory as we move upwards from the layer. This oscillatory behaviour begins 

at much deeper depths for the sausage surface mode than the kink surface mode however. 

From the numerical code used to evaluate Equation (5.22) we find tha t the velocity node 

within the magnetic layer is about 2 0 0  km above the centre of the slab. Different to  Figure

..
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Figure 5.6: As in Figure 5.5 but for the first overtone (n 

kxHc=lS.15. Note the change of scale on the vertical axis.

1 ) sausage body mode with

5 .3 , the lower interface shows a greater m agnitude of 'tp than the upper one for the sausage 

surface mode. This does not necessarily imply a greater velocity perturbation Uz at the 

lower interface for the sausage mode, because we must remember tha t the plasma density 

is significantly larger at z =  Zuc than it is at z =  z/c.

Finally, we show the fundam ental (n =  0) kink body mode in Figure 5.5 and the 

first overtone {n = 1) sausage body mode in Figure 5.6. For both figures, kxHc=^lS.16. As 

we would expect, decays exponentially away from the magnetic slab into the field-free 

regions, showing an oscillatory behaviour in the upper field-free layer in both Figure 5.5 

and Figure 5.6. The magnitude of 'tp is far greater for both the kink body mode and sausage 

body mode within the magnetic layer than it is for the surface modes, however. For the 

kink body mode in Figure 5.5, i> is approximately seven times larger a t the centre of the 

slab than  it is at the interfaces, while for the sausage mode in Figure 5.6 the maximum of 

Ip is approximately twelve times the value it takes a t the interfaces.
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5.4  D iscussion

In this chapter we have studied the modes of oscillation of the magnetic layer 

believed to  reside a t the base of the convection zone. The model used is the one presented 

in Chapter 4 where we considered the influence of the magnetic layer on the frequencies 

of the p —modes. To recap, a semi-infinite three layer model has been used. The outer 

two, field-free, layers contain linear tem perature profiles, the gradients of which are chosen 

to  m aintain plasma stability to convective motions. Between these layers resides a  layer 

of magnetic field, the equilibrium profile of which provides a constant Alfvén speed in the 

layer. The magnetic layer is assumed to  be isothermal. A rigid wall is placed at z =  0 and 

the entire medium is stratified under gravity.

We have seen th a t the magnetic slab embedded in a compressible field-free plasma 

sustains a variety of modes of oscillation (see Figure 5.2). The slab does not support fast 

magnetoacoustic waves because there is no discontinuity in the tem perature profile a t the 

edges of the slab at z =  z,,. and z =  zic (see Roberts 19816 for the conditions for fast wave 

propagation in a magnetic slab). However, the slow magnetoacoustic waves may exist either 

as surface waves or as body waves in the form of harmonics of the slab. The slow surface 

waves propagate with phase speeds Cph < ctc  whereas the slow body waves propagate with 

phase speeds in the narrow region ctc < c.ph < Cc-

As far as we are aware, there have been no other attem pts as yet to study the 

modes of an isolated magnetic slab in the presence of gravity. The case when gravity is 

absent has been studied by Roberts (19816). There are similarities and differences between 

the work presented here and Roberts (19816). Comparing Figure 5.2 to Figure 1(b) of 

Roberts (19816) we see th a t both studies show the slow surface modes, to possess phase 

speeds which are less than  the tube speed of the slab, and the body modes to  have phase 

speeds between the tube speed and the sound speed within the slab. However, in Roberts 

(19816) the phase speeds of the body modes increases rapidly to  the sound speed in the 

slab as increases. In Figure 5.2, however, the phase speed of the body modes shows 

only a slight increase over the range of k^ chosen. Comparison between the two figures 

is difficult because Roberts (19816) provides only a schematic of the modes and does not 

indicate the range of k^ taken in his study. By visually comparing the two Figures though 

we may see the difference. In Figure 5.2 note the difference in phase speeds between the 

kink surface mode and sausage surface mode when k^Hc—10. At this point the kink and
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sausage body modes have Cph % ctc in Figure 5.2. From Figure 1 (b) of Roberts (19816), 

if we approxim ate the same gap between the phase speeds of the kink and sausage surface 

modes, the body modes of his model already have phase speeds approaching the sound 

speed within the magnetic slab.

There are several possible explanations. Firstly, it may be the fact th a t we have 

included gravity th a t causes a  shallower gradient in the phase speeds of the body modes. 

Also, it may be th a t in this chapter the field-free regions are not isothermal, as they were 

in the work of Roberts (19816), but contain linear tem perature profiles. Also, it must be 

remembered th a t we have used an exceptionally large and unrealistic value for the strength 

of the magnetic field at the base of the magnetic layer in order to pick out the modes 

more easily. This leads to  the slow modes being principally acoustic in nature (co % ctc)- 

However, this study has been necessarily brief and we have not been able to fuUy investigate 

these modes. More detailed studies into their properties may shed further light on the 

behaviour reported in this chapter.
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C h a p te r  6

C on clu sion s and S u ggestion s For 

Further W ork

In this thesis we have examined, through a magnetohydrodynamic formalism, the 

effect th a t various layers of the solar atmosphere and interior have on the frequencies of 

the global solar oscillations (p—modes). The investigations have been concerned, either 

independently or jointly, with therm al and magnetic field strength variations in the chro­

mosphere, the thin superadiabatic layer a t the upper extremes of the convection zone, and 

the magnetic field believed to reside at the base of the convection zone. Each individual 

study has attem pted to  model the basic structure of the solar atmosphere and interior to 

allow an analytical investigation; an undoubtedly simple approach, but one which allows 

us to single out the physical changes th a t may be responsible for the variations in p —mode 

frequencies over the course of the solar cycle.

6.1 C onclusions

In Chapter 2, we focussed our attention on the radial modes of oscillation of the 

Sun, modes for which the degree / =  0. The role of a magnetic chromosphere in influencing 

the frequencies of the modes was investigated. For a field-free atmosphere we found tha t 

an increase in chromospheric tem perature led to  a decrease in frequency for all modes, a 

result also shown by Johnston (1994) for / =  0 modes, and for modes of non-zero degree by 

Evans (1990), Evans and Roberts (1990, 1991, 1992), Jain (1994), and Jain and Roberts 

(1994, 1996). A magnetic field permeating the chromosphere th a t is structured in such a
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way so as to give a constant Alfvén speed produced qualitatively similar results to the field- 

free case when the strength of the magnetic field was increased. However, the m agnitude of 

the frequency shift was considerably less for magnetic changes than for therm al variations 

in the field-free case. Finally, for a uniform magnetic field, simply raising  the strength  of 

the magnetic field led to  an increase  in the frequencies of the modes. Combining magnetic 

field strength increases with a  simultaneous increase in chromospheric tem perature led to 

frequency shift curves which displayed an increase in frequency for all modes, but ones 

which exhibited a peak in frequency shift for frequencies of around 3.8 mHz with a turnover 

and subsequent downturn for frequencies above this value. This result is in good agreement 

with observations, especially the results of Chaplin et al. (1998) which indicate th a t from 

solar minimum to maodmum, the I =  0  modes exhibit a rise in mode frequency up to 

frequencies of around 3.T-3.9 mHz, followed by a sharp downturn in the frequency increase 

a t frequencies above this value. This observational feature detected in the low degree modes 

is similar but less pronounced to  th a t observed in intermediate degree modes by Libbrecht 

and W oodard (1990).

The model presented in Chapter 3 investigated the influence th a t the superadi­

abatic layer of the upper convection zone may have on the frequencies of the p —modes. 

The superadiabatic layer is unstable to convective motions and as a result may give rise 

to convective modes (p~—modes). In Chapter 3, we have also investigated their properties 

and the variations th a t they may experience over the solar cycle.

For the p —modes, it was found th a t by increasing the tem perature gradient of 

the superadiabatic layer, the frequencies of the p —modes were increased over their base 

values. The frequency shift curves for these conditions displayed a steep increase in the low 

frequency range (2-3) mHz, followed by a levelling off at frequencies above this value. The 

effect of steepening the tem perature gradient of the superadiabatic layer was seen to be 

more pronounced as I increased; a result we would expect because modes of higher / sample 

more of this layer than  modes of lower I, When the above variation was combined with 

a rise in atmospheric tem perature we found tha t we were able to reproduce qualitatively 

the observed solar cycle variation in the p —mode frequencies. Relatively small tem perature 

increases were required {ATai % 10 — 50®K) compared with the changes ATat ~  1500'^K 

th a t Jain and Roberts (1994) found necessary to produce a turnover.

In the presence of a magnetic atmosphere the p —modes showed an increase  in fre­

quency for an increase in magnetic field strength. The m agnitude of the frequency increases
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was less than  those reported by Evans and Roberts (1990), a  result we have understood 

by the fact th a t our reference level has a much higher gas pressure than the reference level 

used in Evans and Roberts (1990), leading to  a greater domination of the pliasma over the 

magnetic field for our model (i.e. (3 is higher for this model for an equal magnetic field 

strength). As before, we have been able to produce a downturn in the frequency shifts by 

simultaneously increasing the tem perature gradient of the superadiabatic layer and raising 

the atmospheric tem perature along with increases to the magnetic field strength. However, 

we have found th a t much larger increases {ATat ~  100 —250°K) in atmospheric tem perature 

are required to  produce the observed peak and subsequent downturn.

The convective modes (gf"—modes) have been studied by investigating the sensi­

tivity of their growth times to  the same changes tha t have been applied to  the p —modes. 

By steepening the tem perature gradient of the superadiabatic layer, the mode showed 

a decrease in its growth time while the overtones were suppressed (i.e. their growth times 

increased). W hen the atmospheric tem perature was simultaneously increased with the de­

crease in ruu, the decrease in the growth time of the —mode was lessened for higher 

tem peratures, while the overtones were further suppressed. For a magnetic atm osphere, an 

increase in magnetic field strength led to an increase in the growth time of all modes, but 

the g]"—mode still displayed a decrease in its growth time when an increase in magnetic 

field strength was coupled with a  steeper tem perature gradient in the superadiabatic layer.

In Chapter 4 we introduced a model th a t included a thin magnetic layer taken to 

represent the stored magnetic field believed to  reside at the base of the convection zone. 

By increasing the magnetic field strength a t the base of this layer, some rather interesting, 

but confusing, results were found. There appeared to be no systematic (monotonie) trend 

to the changes in mode frequency with some modes showing a decrease in frequency with 

an increase in magnetic field strength while others displayed an increase. However, by 

decreasing the thickness of the magnetic layer while the field strength was kept fixed, the 

frequency shifts show a smooth behaviour, exhibiting a steep rise in frequency for frequencies 

between 1-1.5 mHz followed by a levelling off for frequencies above this value.

The magnetic layer a t the base of the convection zone was also incorporated into a 

model similar to th a t used in Chapter 2 , to  analyse its effect on modes of degree zero. Again 

the distinctive frequency changes th a t are observed could not be reproduced by increasing 

the magnetic field strength alone. However, frequency shifts are more orderly than for 

modes of general degree, with an average positive gradient to the changes in frequency.
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Finally, in Chapter 5 we made a brief study of the surface and body modes of 

the magnetic layer a t the base of the convection zone. We presented a diagnostic diagram 

showing the surface modes to  have phase speeds Cph such th a t Cph < ctci where ctc is the 

tube speed within the magnetic slab; the body modes are seen to  be confined to  the range 

CTc < Cp/i < Cc, where Cc is the speed of sound in the magnetic layer.

6.2 S uggestions For Further W ork

The radial modes of oscillation of the Sun are of interest because the m athem atics 

required to study their behaviour is relatively simple. This allows for a  deeper analytical 

investigation, especially through some asymptotic expansions of the alternative form of the 

dispersion relation, given in Section 2.6. Also, the assumption of an isothermal chromo­

sphere should be discarded. However, as far as we are aware there is not yet an analytical 

equilibrium solution for a  linear tem perature profile threaded by a uniform horizontal mag­

netic field. However, it may be the more subtle influence of a change in the tem perature 

gradient of the chromosphere, rather than  the extreme changes we apply, th a t are respon­

sible for the downturn in the observed frequency shifts. Combining the chromospheric 

effects th a t we have investigated with the influence of the magnetic field at the base of the 

convection zone could also prove instructive.

B etter models of the thin superadiabatic shell of the upper convection zone would 

seem to be required following the results of Chapter 3. Our assumption of a simple linear 

tem perature profile for this region is crude, but it does provide us with some rather encour­

aging results for determining the location of the layer responsible for solar cycle variations. 

To be more realistic a purely numerical approach is necessary. Also, it would be of inter­

est to  discard the assumption of isothermality in the overlying atmosphere, and maybe to 

include the additional effects of vertical fields through the superadiabatic layer.

The magnetic layer a t the base of the convection zone is little understood. Even 

the field strength there is not known. For simplicity, we have assumed th a t this layer is 

isothermal and th a t the magnetic field is structured so as to  give a constant Alfvén speed. 

This layer needs to be investigated further, especially as it is still unresolved whether there 

is an alternative to  either neutral buoyancy or therm al equilibrium th a t holds the layer in 

place.

Finally, the surface and body modes of a magnetic slab in the presence of gravity
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need to  be studied further. The modes of an unstratified magnetic slab are well known, but 

stratification introduces a  number of complications and there have been very few investiga­

tions in this area. We hope th a t our brief study prompts further investigations into these 

modes.
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