311 research outputs found

    Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor

    No full text
    This study deals with the potential and the limitations of dynamic models for describing and predicting nitrous oxide (N2O) emissions associated with biological nitrogen removal from wastewater. The results of a three-week monitoring campaign on a full-scale partial nitritation reactor were reproduced through a state-of-the-art model including different biological N2O formation pathways. The partial nitritation reactor under study was a SHARON reactor treating the effluent from a municipal wastewater treatment plant sludge digester. A qualitative and quantitative comparison between experimental data and simulation results was performed to identify N2O formation pathways as well as for model identification. Heterotrophic denitrifying bacteria and ammonium oxidizing bacteria (AOB) were responsible for N2O formation under anoxic conditions, whereas under aerated conditions the AOB were the most important N2O producers. Relative to previously proposed models, hydroxylamine (NH2OH) had to be included as a state variable in the AOB conversions in order to describe potential N2O formation by AOB under anoxic conditions. An oxygen inhibition term in the corresponding reaction kinetics was required to fairly represent the relative contribution of the different AOB pathways for N2O production. Nevertheless, quantitative prediction of N2O emissions with models remains a challenge, which is discussed

    Effect of temperature on Nâ‚‚O emissions from a highly enriched nitrifying granular sludge performing partial nitritation of a lowstrength wastewater

    Get PDF
    In the race to achieve a sustainable urban wastewater treatment plant, not only the energy requirements have to be considered but also the environmental impact of the facility. Thus, nitrous oxide (N₂O) emissions are a key-factor to pay attention to, since they can dominate the total greenhouse gases emissions from biological wastewater treatment. In this study, N2O production factors were calculated during the operation of a granular sludge airlift reactor performing partial nitritation treating a low-strength synthetic influent, and furthermore, the effect of temperature on N₂O production was assessed. Average gas emission relative to conversion of ammonium was 1.5 ± 0.3% and 3.7 ± 0.5% while the effluent contained 0.5 ± 0.1% and 0.7 ± 0.1% (% N-oxidized) at 10 and 20 ºC, respectively. Hence, temperature increase resulted in higher N2O production. The reasons why high temperature favoured N₂O production remained unclear, but different theoretical hypotheses were suggested

    Strategies to enhance the removal of Fluoroquinolones

    Get PDF
    Fluoroquinolones (FQs) are broad-spectrum antibiotics that play an important role in the treatment of serious bacterial infections. Currently, several FQs are available but ciprofloxacin (CPF), ofloxacin (OFL) and norfloxacin (NOR) are amongst the most worldwide prescribed antibiotics. Antibiotics can reach wastewater treatment plants (WWTP) from different routes. Thus removal of these contaminants during the biotreatment process is of major importance in order to avoid their release to other environmental matrices. Granular sludge sequencing batch reactors (SBR) constitute a novel biofilm technology for wastewater treatment extremely promising for the treatment of effluents containing toxic compounds. Therefore, in this study a granular sludge SBR, established with activated sludge from a WWTP, was operated for the treatment of an aqueous stream containing FQs. No evidence of FQ biodegradation followed by HPLC with Fluorescence Detection was observed but FQs adsorbed to the aerobic granular sludge, being gradually released into the medium after withdrawal of the FQs in the inlet stream. In a previous study, Labrys portucalensis F11 demonstrated to be able to degrade FQs, namely OFL, NOR and CPF, when supplied individually or as a mixture, in the presence of an easy degradable carbon source. Different removal extents were obtained for the tested concentrations (ranging from 0.8 to 30 μM), but overall the uptake capacity of strain F11 for individual FQs decreased with increasing the initial FQ concentration. When supplied with a mixture FQs, strain F11 concomitantly removed each target antibiotic but a decrease on the biodegradability of FQs was observed which could be explained by competition mechanisms. The ability of Labrys portucalensis F11 to grow using the readily available carbon source while maintain its ability to degrade FQs reinforce the potential of this strain in bioaugmentation processes. As the indigenous microbial communities in biotreatment processes rarely are able to remove such contaminants, using this promising FQ-degrading strain, bioaugmentation strategies such as inoculation of the degrading strain, as a suspension or immobilized on carrier material, or using a plasmid donor strain carrying the degradative genes, could be assessed to improve FQ removal. Acknowledgments: C.L. Amorim, A.S. Maia and I.S. Moreira wish to acknowledge the research grants from Fundação para a Ciência e Tecnologia (FCT), Portugal (Ref. SFRH/BD/47109/2008, SFRH/BD/86939/2012 and SFRH/BPD/87251/2012, respectively) and Fundo Social Europeu (Programa Operacional Potencial Humano (POPH), Quadro de Referência Estratégico Nacional (QREN))). This work was supported by FCT through the projects PTDC/EBB-EBI/111699/2009 and PEst-OE/EQB/LA0016/2011

    Unravelling the removal mechanisms of bacterial and viral surrogates in aerobic granular sludge systems

    Get PDF
    The aerobic granular sludge (AGS) process is an effective wastewater treatment technology for organic matter and nutrient removal that has been introduced in the market rapidly. Until now, limited information is available on AGS regarding the removal of bacterial and viral pathogenic organisms present in sewage. This study focussed on determining the relation between reactor operational conditions (plug flow feeding, turbulent aeration and settling) and physical and biological mechanisms on removing two faecal surrogates, Escherichia coli and MS2 bacteriophages. Two AGS laboratory-scale systems were separately fed with influent spiked with 1.0 × 106 CFU/100 mL of E. coli and 1.3 × 108 PFU/100 mL of MS2 bacteriophages and followed during the different operational phases. The reactors contained only granular sludge and no flocculent sludge. Both systems showed reductions in the liquid phase of 0.3 Log10 during anaerobic feeding caused by a dilution factor and attachment of the organisms on the granules. Higher removal efficiencies were achieved during aeration, approximately 1 Log10 for E. coli and 0.6 Log10 for the MS2 bacteriophages caused mainly by predation. The 18S sequencing analysis revealed high operational taxonomic units (OTUs) of free-living protozoa genera Rhogostoma and Telotrochidium concerning the whole eukaryotic community. Attached ciliates propagated after the addition of the E. coli, an active contribution of the genera Epistylis, Vorticella, and Pseudovorticella was found when the reactor reached stability. In contrast, no significant growth of predators occurred when spiking the system with MS2 bacteriophages, indicating a low contribution of protozoa on the phage removal. Settling did not contribute to the removal of the studied bacterial and viral surrogates.M.L. Barrios-Hernández acknowledges the Technological Institute of Costa Rica for providing the fellowship (Grant Number 007-2014-M) to pursue her PhD programme (2016-2020) at IHE-Delft, the Netherlands. K. Mora-Cabrera acknowledges the Generalitat Valenciana (GRISOLIAP/2017/173) and the European Social Funds (BEFPI/2019/065) for their financial support

    Integrated resource recovery from aerobic granular sludge plants

    No full text
    The study evaluated the combined phosphorus, nitrogen, methane, and extracellular polymeric substances (EPS) recovery from aerobic granular sludge (AGS) wastewater treatment plants. About 30% of sludge organics are recovered as EPS and 25–30% as methane (≈260 ml methane/g VS) by integrating alkaline anaerobic digestion (AD). It was shown that 20% of excess sludge total phosphorus (TP) ends in the EPS. Further, 20–30% ends in an acidic liquid waste stream (≈600 mg PO4-P/L), and 15% in the AD centrate (≈800 mg PO4-P/L) as ortho-phosphates in both streams and is recoverable via chemical precipitation. 30% of sludge total nitrogen (TN) is recovered as organic nitrogen in the EPS. Ammonium recovery from the alkaline high-temperature liquid stream is attractive, but it is not feasible for existing large-scale technologies because of low ammonium concentration. However, ammonium concentration in the AD centrate was calculated to be 2600 mg NH4-N/L – and ≈20% of TN, making it feasible for recovery. The methodology used in this study consisted of three main steps. The first step was to develop a laboratory protocol mimicking demonstration-scale EPS extraction conditions. The second step was to establish mass balances over the EPS extraction process on laboratory and demonstration scales within a full-scale AGS WWTP. Finally, the feasibility of resource recovery was evaluated based on concentrations, loads, and integration of existing technologies for resource recovery.</p

    Impact of the anaerobic feeding mode on substrate distribution in aerobic granular sludge

    No full text
    There is a growing interest to implement aerobic granular sludge (AGS) in existing conventional activated sludge (CAS) systems with a continuous flow-through configuration. The mode of anaerobic contact of raw sewage with the sludge is an important aspect in the adaptation of CAS systems to accommodate AGS. It remains unclear how the distribution of substrate over the sludge by a conventional anaerobic selector compares to the distribution via bottom-feeding applied in sequencing batch reactors (SBRs). This study investigated the effect of the anaerobic contact mode on the substrate (and storage) distribution by operating two lab-scale SBRs; one with the traditional bottom-feeding through a settled sludge bed similar to full-scale AGS systems, and one where the synthetic wastewater was fed as a pulse at the start of the anaerobic phase while the reactor was mixed through sparging of nitrogen gas (mimicking a plug-flow anaerobic selector in continuous flow-through systems). The distribution of the substrate over the sludge particle population was quantified via PHA analysis, combined with the obtained granule size distribution. Bottom-feeding was found to primarily direct substrate towards the large granular size classes (i.e. large volume and close to the bottom), while completely mixed pulse-feeding gives a more equal distribution of substrate over all granule sizes (i.e. surface area dependant). The anaerobic contact mode directly controls the substrate distribution over the different granule sizes, irrespective of the solids retention time of a granule as an entity. Preferential feeding of the larger granules will enhance and stabilise the granulation compared to pulse-feeding, certainly under less advantageous conditions imposed by real sewage.</p

    A settling model for full-scale aerobic granular sludge

    No full text
    The settling behavior of aerobic granular sludge (AGS) in full-scale reactors is different from the settling of normal activated sludge. Current activated sludge models lack the features to describe the segregation of granules based on size during the settling process. This segregation plays an important role in the granulation process and therefore a better understanding of the settling is essential. The goal of this study was to model and evaluate the segregation of different granule sizes during settling and feeding in full-scale aerobic granular sludge reactors. Hereto the Patwardhan and Tien model was used. This model is an implementation of the Richardson and Zaki model, allowing for multiple classes of particles. To create the granular settling model, the most relevant parameters were identified using aerobic granular sludge from different full-scale Nereda® reactors. The settling properties of individual granules were measured as was the bulk behavior of granular sludge beds with uniform granular sludge particles. The obtained parameters were combined in a model containing multiple granule classes, which then was validated for granular sludge settling in a full-scale Nereda® reactor. In practice a hydraulic selection pressure is used to select for granular sludge. Under the same hydraulic selection pressure the model predicted that different stable granular size distributions can occur. This indicates that granular size distribution control would need a different mechanism then the hydraulic selection pressure alone. This model can be used to better understand and optimize operational parameters of AGS reactors that depend on granular sludge size, like biological nutrient removal. Furthermore insights from this model can also be used in the development of continuously fed AGS systems.BT/Environmental Biotechnolog
    • …
    corecore