4,826 research outputs found
Numerical relativity simulation of GW150914 beyond general relativity
We produce the first astrophysically-relevant numerical binary black hole
gravitational waveform in a higher-curvature theory of gravity beyond general
relativity. We simulate a system with parameters consistent with GW150914, the
first LIGO detection, in order-reduced dynamical Chern-Simons gravity, a theory
with motivations in string theory and loop quantum gravity. We present results
for the leading-order corrections to the merger and ringdown waveforms, as well
as the ringdown quasi-normal mode spectrum. We estimate that such corrections
may be discriminated in detections with signal to noise ratio , with the precise value depending on the dimension of the GR waveform
family used in data analysis.Comment: 7 pages + appendices, 8 figures, Updated to match Phys. D. Rev
articl
An analysis of the mechanisms governing species replacements in crayfish
We investigated mechanisms governing replacement of the native crayfish Orconectes sanborni by an invading crayfish, Orconectes rusticus. The two species had similar life histories, habitat preferences, and feeding patterns in allopatric and sympatric stream areas. Orconectes rusticus young-of-year (YOY) grew faster than O. sanborni YOY in the field. Adult O. rusticus were larger and, hence, dominant over adult O. sanborni; YOY were non-aggressive. In laboratory experiments, adult crayfish (about 28 mm carapace length or larger) were not susceptable to predation by largemouth bass (Micropterus salmoides, 30 cm total length) and did not alter shelter use when fish were present. Orconectes rusticus YOY were less susceptible to predation than O. sanborni YOY. Orconectes rusticus YOY reduced their vulnerability to largemouth bass by occupying shelters more often than YOY O. sanborni. In mixed-species mate-selection experiments, male O. rusticus and male O. sanborni preferentially mated with O. rusticus females. Inappropriate mate selection in sympatry may have caused the 90% reduction in recruitment for both species in 1982. Orconectes rusticus probably maintains greater population growth than O. sanborni, because (1) more gravid O. rusticus females occurred in sympatry, (2) O. rusticus produced more young than O. sanborni, and (3) O. rusticus young grew faster. Reproductive interference, acting synergistically with differences in aggressive dominance and young-of-year susceptibility to predation, appears to serve as the major mechanisms regulating replacement of O. sanborni by O. rusticus in Ohio streams.Funding for this project was provided by the Ohio Department of Natural Resources - Division of Natural Areas and Preserves, a Sigma Xi Grant-in-aid of Research, and an Ohio State University Grant-in-aid of Research
Numerical binary black hole collisions in dynamical Chern-Simons gravity
We produce the first numerical relativity binary black hole gravitational waveforms in a higher-curvature theory beyond general relativity. In particular, we study head-on collisions of binary black holes in order-reduced dynamical Chern-Simons gravity. This is a precursor to producing beyond-general-relativity waveforms for inspiraling binary black hole systems that are useful for gravitational wave detection. Head-on collisions are interesting in their own right, however, as they cleanly probe the quasinormal mode spectrum of the final black hole. We thus compute the leading-order dynamical Chern-Simons modifications to the complex frequencies of the postmerger gravitational radiation. We consider equal-mass systems, with equal spins oriented along the axis of collision, resulting in remnant black holes with spin. We find modifications to the complex frequencies of the quasinormal mode spectrum that behave as a power law with the spin of the remnant, and that are not degenerate with the frequencies associated with a Kerr black hole of any mass and spin. We discuss these results in the context of testing general relativity with gravitational wave observations
Surrogate models for precessing binary black hole simulations with unequal masses
Only numerical relativity simulations can capture the full complexities of
binary black hole mergers. These simulations, however, are prohibitively
expensive for direct data analysis applications such as parameter estimation.
We present two new fast and accurate surrogate models for the outputs of these
simulations: the first model, NRSur7dq4, predicts the gravitational waveform
and the second model, \RemnantModel, predicts the properties of the remnant
black hole. These models extend previous 7-dimensional, non-eccentric
precessing models to higher mass ratios, and have been trained against 1528
simulations with mass ratios and spin magnitudes , with generic spin directions. The waveform model, NRSur7dq4, which begins
about 20 orbits before merger, includes all spin-weighted
spherical harmonic modes, as well as the precession frame dynamics and spin
evolution of the black holes. The final black hole model, \RemnantModel, models
the mass, spin, and recoil kick velocity of the remnant black hole. In their
training parameter range, both models are shown to be more accurate than
existing models by at least an order of magnitude, with errors comparable to
the estimated errors in the numerical relativity simulations. We also show that
the surrogate models work well even when extrapolated outside their training
parameter space range, up to mass ratios .Comment: Matches published version. Models publicly available at
https://zenodo.org/record/3455886#.XZ9s1-dKjBI and
https://pypi.org/project/surfinB
Incorporating Uncertainties in Atomic Data Into the Analysis of Solar and Stellar Observations: A Case Study in Fe XIII
Information about the physical properties of astrophysical objects cannot be
measured directly but is inferred by interpreting spectroscopic observations in
the context of atomic physics calculations. Ratios of emission lines, for
example, can be used to infer the electron density of the emitting plasma.
Similarly, the relative intensities of emission lines formed over a wide range
of temperatures yield information on the temperature structure. A critical
component of this analysis is understanding how uncertainties in the underlying
atomic physics propagates to the uncertainties in the inferred plasma
parameters. At present, however, atomic physics databases do not include
uncertainties on the atomic parameters and there is no established methodology
for using them even if they did. In this paper we develop simple models for the
uncertainties in the collision strengths and decay rates for Fe XIII and apply
them to the interpretation of density sensitive lines observed with the EUV
Imagining spectrometer (EIS) on Hinode. We incorporate these uncertainties in a
Bayesian framework. We consider both a pragmatic Bayesian method where the
atomic physics information is unaffected by the observed data, and a fully
Bayesian method where the data can be used to probe the physics. The former
generally increases the uncertainty in the inferred density by about a factor
of 5 compared with models that incorporate only statistical uncertainties. The
latter reduces the uncertainties on the inferred densities, but identifies
areas of possible systematic problems with either the atomic physics or the
observed intensities.Comment: in press at Ap
Life After Death in Lake Erie: Nutrient Controls Drive Fish Species Richness, Rehabilitation
We explored the recent (1969–1996) dynamics of fish communities within Lake Erie, a system formerly degraded by eutrophication and now undergoing oligotrophication owing to phosphorus abatement programs. By merging bottom trawl data from two lake basins of contrasting productivity with life-history information (i.e., tolerances to environmental degradation, diet and temperature preferences), we examined (1) the relationship between system productivity and species richness, (2) whether fish communities are resilient to eutrophication, and
(3) whether oligotrophication necessarily leads to reduced sport and commercial fish production. Reduced phosphorus loading has led to fish community rehabilitation. In the productive west basin, six species tolerant of eutrophy (i.e., anoxia, turbidity) declined in abundance, whereas the abundance of three intolerant species increased through time. In the less productive central basin, although only one tolerant species declined, four species intolerant of eutrophic conditions recovered with oligotrophication. These differential responses appear to derive from dissimilar mechanisms by which reduced productivity alters habitat and resource availability for fishes. Specifically, enhanced bottom oxygen, combined with reduced biogenic turbidity and sedimentation, likely drove the loss of tolerant species in the west basin by reducing detrital mass or the ability of these species to compete with intolerant species under conditions of improved water clarity. In contrast, reduced bottom anoxia, which enhanced availability of cool- and cold-water habitat and benthic macroinvertebrate communities, appears important to the recovery of intolerant species in the central basin. Ultimately, these productivity-induced shifts caused species richness to decline in Lake Erie’s west basin and to increase in its central basin. Beyond confirming that unimodal models of productivity and species diversity can describe fish community change in a recovering system, our results provide optimism in an otherwise dismal state of affairs in fisheries management (e.g., overexploitation), given that many recovering intolerant species are desired sport or commercial fishes.Support for this work was provided by (1) Federal Aid in Sport Fish Restoration F-69-P (to R. A. Stein), administered jointly by the U.S. Fish and Wildlife Service and ODNR-ODW, (2) the Department of Evolution, Ecology, and Organismal Biology at The Ohio State University, and (3) a Presidential Fellowship awarded to S. A. Ludsin by The Ohio State University
Modeling sources of variation for growth and predatory demand of Lake Erie walleye (Stizostedion vitreum), 1986-1995
Abstract in English and FrenchGiven the variable nature of the Lake Erie ecosystem, we investigated biotic and abiotic sources of variation for walleye (Stizostedion vitreum) growth, consumption, and population-wide predatory demand. We
determined how temperature, population structure, and age-specific consumption influenced walleye growth and
consumption during 1986-1995. For each year, we used individual-based bioenergetics modeling to compare growth
and consumption by walleye in Lake Erie's western or central basin with those of walleye moving seasonally
between basins. Population structure strongly affected walleye growth and consumption but had little influence on
interbasin growth rate comparisons. Based on water temperature alone, growth and consumption by western basin
walleye were generally lower than for central basin or migratory populations and were more limited by summer
water temperatures. In simulations combining effects of population structure, temperature, and age-specific
consumption, migratory walleye grew most rapidly, taking advantage of temperature-related growth peaks in both
basins. Estimates of walleye predatory demand declined with population size from 1988 through 1995. With natural
feedbacks, predatory demand interacts with prey production, limiting walleye reproductive potential when prey
availability is low. However, immediate impact on predatory inertia is limited, complicating our ability to predict
how predatory demand and prey availability interact in Lake Erie.Support for
this project was provided by a University Fellowship from the Graduate School of the Ohio State University (to
M.W.K.) and by Federal Aid in Sportfish Restoration F-69-P, administered jointly by the U.S. Fish and Wildlife
Service and the Ohio Division of Wildlife, and by the Department of Zoology, Ohio State University
Stochastic resonance in Gaussian quantum channels
We determine conditions for the presence of stochastic resonance in a lossy
bosonic channel with a nonlinear, threshold decoding. The stochastic resonance
effect occurs if and only if the detection threshold is outside of a "forbidden
interval". We show that it takes place in different settings: when transmitting
classical messages through a lossy bosonic channel, when transmitting over an
entanglement-assisted lossy bosonic channel, and when discriminating channels
with different loss parameters. Moreover, we consider a setting in which
stochastic resonance occurs in the transmission of a qubit over a lossy bosonic
channel with a particular encoding and decoding. In all cases, we assume the
addition of Gaussian noise to the signal and show that it does not matter who,
between sender and receiver, introduces such a noise. Remarkably, different
results are obtained when considering a setting for private communication. In
this case the symmetry between sender and receiver is broken and the "forbidden
interval" may vanish, leading to the occurrence of stochastic resonance effects
for any value of the detection threshold.Comment: 17 pages, 6 figures. Manuscript improved in many ways. New results on
private communication adde
- …
