We produce the first astrophysically-relevant numerical binary black hole
gravitational waveform in a higher-curvature theory of gravity beyond general
relativity. We simulate a system with parameters consistent with GW150914, the
first LIGO detection, in order-reduced dynamical Chern-Simons gravity, a theory
with motivations in string theory and loop quantum gravity. We present results
for the leading-order corrections to the merger and ringdown waveforms, as well
as the ringdown quasi-normal mode spectrum. We estimate that such corrections
may be discriminated in detections with signal to noise ratio ≳180−240, with the precise value depending on the dimension of the GR waveform
family used in data analysis.Comment: 7 pages + appendices, 8 figures, Updated to match Phys. D. Rev
articl