69 research outputs found
Recruitment, retention, and training of citizen scientists in translational medicine research: a citizen science initiative on non-alcoholic fatty liver disease
Citizen science is a participatory science approach in which members of the public (citizens) collaborate with scientists and professional researchers and become involved in research and innovation activities, resulting in the co-creation of scientific knowledge and innovation. Citizen science has been widely applied in research, particularly in the social sciences, environmental sciences, information and communication technologies, and public health. However, the application of this approach in clinical sciences, particularly in translational medicine research, is still nascent. This exploratory study involved members of the public (citizen scientists) in a translational medicine experiment on non-alcoholic fatty liver disease that incorporated a lifestyle and weight-loss intervention. The aim of this paper is to report successful methods and approaches for the recruitment, retention, and training of citizen scientists. For the citizen scientists’ recruitment, online calls placed on the websites of our research project and biomedical research center and targeted emails were the most helpful. Of the 14 members of the public who expressed interest in our study, six were recruited as citizen scientists. Citizen scientists were mostly female (n = 5, 83%), white (n = 3, 50%), over 50 years of age (n = 4, 67%), educated to postgraduate level (n = 5, 83%), and either retired or not in employment (n = 5, 83%). The retention rate was 83% (n = 5), and the dropout rate was 17% (n = 1). We arranged instructor-led interactive online training sessions (an hour-long one-on-one session and two-hour group sessions). Research skills training covered ethics in research and qualitative and quantitative data analysis. Citizen scientists were given several incentives, such as reimbursement of travel and care costs, selection as citizen scientists of the month, publications of their blogs and perspective articles, and co-authorship and acknowledgement in papers and project deliverables. To conclude, members of the public (particularly middle-aged white women with postgraduate education) are interested in becoming citizen scientists in translational medicine research. Their retention rate is higher, and they can contribute to different research activities. However, they need training to develop their research skills and expertise. The training should be simple, comprehensive, and flexible to accommodate the schedules of individual citizen scientists. They deserve incentives as they work on a voluntary basis
Adopting a citizen science approach in translational experimental medicine research in non-alcoholic fatty liver disease: a study protocol
Citizen science approaches are widely and successfully used in biological, environmental, and ecological sciences; however, they are rarely applied in other domains, such as translational health research, notably in the field of liver disease and metabolism. We have designed a study that aims to explore the application of the citizen science approach in a translational experimental medicine study on non-alcoholic fatty liver disease (NAFLD) and a 12-week lifestyle and weight loss program. In this methodological paper, we describe the process of involving citizen scientists in the study.
We will recruit a convenience sample of 31 participants (with and without NAFLD) and a half-dozen citizen scientists (members of the public). Citizen scientists will work alongside clinical and non-clinical researchers in a translational experimental medicine study on NAFLD. Citizen scientists will be involved in the co-design and/or review of data collection tools (e.g., semi-structured open-ended questionnaire surveys and semi-structured wellbeing diaries completed by the participants), co-analysis of data on participants’ experiences and motivations, co-drafts of research findings and papers, and suggestions for policy recommendations. Citizen scientists will be trained in the research tasks they will undertake, and will be either co-authors or their names will be mentioned in the acknowledgements in research paper(s) based on the level of research contributions.
Lessons learned from implementing citizen science in this study will help to reveal the advantages, limitations, and implications of involving citizen scientists in the translational medicine research. Knowing citizen scientists’ motivations, expectations, training needs, and overall experience of involvement in this study could provide insights, which could inform the planning and conduct of future translational research studies.
Involving citizen scientists in translational medicine research is an important step in extending research opportunities for members of the public; however, there may be methodological challenges, which may be identified and resolved by more research studies
COVID-19 and liver disease: mechanistic and clinical perspectives
Our understanding of the hepatic consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its resultant coronavirus disease 2019 (COVID-19) has evolved rapidly since the onset of the pandemic. In this Review, we discuss the hepatotropism of SARS-CoV-2, including the differential expression of viral receptors on liver cell types, and we describe the liver histology features present in patients with COVID-19. We also provide an overview of the pattern and relevance of abnormal liver biochemistry during COVID-19 and present the possible underlying direct and indirect mechanisms for liver injury. Furthermore, large international cohorts have been able to characterize the disease course of COVID-19 in patients with pre-existing chronic liver disease. Patients with cirrhosis have particularly high rates of hepatic decompensation and death following SARS-CoV-2 infection and we outline hypotheses to explain these findings, including the possible role of cirrhosis-associated immune dysfunction. This finding contrasts with outcome data in pharmacologically immunosuppressed patients after liver transplantation who seem to have comparatively better outcomes from COVID-19 than those with advanced liver disease. Finally, we discuss the approach to SARS-CoV-2 vaccination in patients with cirrhosis and after liver transplantation and predict how changes in social behaviours and clinical care pathways during the pandemic might lead to increased liver disease incidence and severity. © 2021, Springer Nature Limited
RAMP2 influences glucagon receptor pharmacology via trafficking and signaling
Endogenous satiety hormones provide an attractive target for obesity drugs. Glucagon causes weight loss by reducing food intake and increasing energy expenditure. To further understand the cellular mechanisms by which glucagon and related ligands activate the glucagon receptor (GCGR), we investigated the interaction of the GCGR with receptor activity modifying protein (RAMP)2, a member of the family of receptor activity modifying proteins. We used a combination of competition binding experiments, cell surface enzyme-linked immunosorbent assay, functional assays assessing the Gαs and Gαq pathways and β-arrestin recruitment, and small interfering RNA knockdown to examine the effect of RAMP2 on the GCGR. Ligands tested were glucagon; glucagonlike peptide-1 (GLP-1); oxyntomodulin; and analog G(X), a GLP-1/glucagon coagonist developed in-house. Confocal microscopy was used to assess whether RAMP2 affects the subcellular distribution of GCGR. Here we demonstrate that coexpression of RAMP2 and the GCGR results in reduced cell surface expression of the GCGR. This was confirmed by confocal microscopy, which demonstrated that RAMP2 colocalizes with the GCGR and causes significant GCGR cellular redistribution. Furthermore, the presence of RAMP2 influences signaling through the Gαs and Gαq pathways, as well as recruitment of β-arrestin. This work suggests that RAMP2 may modify the agonist activity and trafficking of the GCGR, with potential relevance to production of new peptide analogs with selective agonist activities
Determining risk factors for mortality in liver transplant patients with COVID-19
We read with great interest the Correspondence from Bhoori and colleagues1 describing the effect of coronavirus disease 2019 (COVID-19) on their centre's adult liver transplant population.1 Within their cohort of over 150 transplant recipients, the authors identified six patients with COVID-19, including three resulting deaths. Each of those who died was transplanted over 10 years previously and were older than 65 years, male, overweight, and had hypertension and diabetes. The authors speculated as to whether these characteristics might be major risk factors for mortality
Examining the immunological effects of COVID-19 vaccination in patients with conditions potentially leading to diminished immune response capacity – the OCTAVE trial
SARS-COV-2 vaccines have been shown to be efficacious primarily in healthy volunteer populations and population level studies. Immune responses following SARS-CoV-2 vaccination are less well characterised in potentially immune vulnerable patient groups, including those with immune-mediated inflammatory and chronic diseases (inflammatory arthritis [IA] incorporating rheumatoid arthritis [RA] and psoriatic arthritis [PsA]; ANCA-Associated Vasculitis [AAV]; inflammatory bowel disease [IBD]); hepatic disease (HepD), end stage kidney disease requiring haemodialysis (HD) without or with immunosuppression (HDIS); solid cancers (SC) and haematological malignancies (HM), and those that have undergone haemopoietic stem cell transplant (HSCT). The OCTAVE trial is a multi-centre, multi-disease, prospective cohort that will comprehensively assess SARS-CoV-2 vaccine responses within and between the abovementioned disease cohorts using common analytical platforms in patients recruited across the United Kingdom (UK). The majority of subjects received either COVID-19 mRNA Vaccine BNT162b2 (Pfizer/BioNTech) or ChAdOx1 Vaccine (AstraZeneca formerly AZD1222) as part of the UK National COVID19 vaccination programme. As of 13 th August 2021; 2,583 patients have been recruited. We report herein the humoral and T cell immune response results from the first 600 participants recruited where serology data are available at baseline, pre-second vaccine dose (boost) and/or 4 weeks post second dose. We also include in the analysis, data obtained from 231 healthy individuals from the PITCH (Protective Immunity from T cells in Healthcare workers) study. Overall, in comparison to PITCH where 100% of tested individuals (n=93) generated anti-Spike antibodies after vaccine doses, 89% of patients within OCTAVE seroconverted 4 weeks after second vaccine dose. By corollary, approximately 11% of patients across all disease cohorts fail to generate antibodies that react to SARS-CoV-2 spike 4 weeks after two vaccines. Failure to generate spike reactive antibodies was found at a higher proportion in some specific patient subgroups, particularly AAV (72.4%), HD-IS (16.7%) and HepD (16.7%). Importantly, all recruited AAV patients had received Rituximab; a targeted B cell depletion therapy. Furthermore, even in those who seroconverted, 40% of patients across disease cohorts generate lower levels of SARS-CoV-2 antibody reactivity compared to healthy subjects after two SARS-CoV-2 vaccines; the functional significance of these findings in providing protection from subsequent SARS-CoV-2 exposure is not currently known. In contrast to the observed serological response, evaluation of the Spike-specific T cell response revealed that across all patient sub-groups (including AAV) a response similar to healthy individuals was generated. Our data argue strongly for further vaccination strategies to optimise humoral immune responses against SARS-CoV-2 in patients with chronic diseases and/or patients on immune suppressive therapies. Trial Registration: The trial is registered on ISRCTN 12821688.Funding: This work was supported by the Medical Research Council COVID-19 Immunity – National Core Study (IMM-NCS) [grant number MC-PC-20031]. Staff at the Cancer Research UK Clinical Trials Unit (CRCTU) are supported by a core funding grant from Cancer Research UK (C22436/A25354). PK and EB are supported by the NIHR Birmingham Biomedical Research Centres at the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham Biomedical Research Centres. EB and PK are supported by an NIHR Senior Investigator award. PK is funded by WT109965MA. SJD is funded by an NIHR Global Research Professorship (NIHR300791). TdS is funded by a Wellcome Trust Intermediate Clinical Fellowship (110058/Z/15/Z). DS is supported by the NIHR Academic Clinical Lecturer programme in Oxford. LT is supported by the Wellcome Trust (grant number 205228/Z/16/Z), the U.S. Food and Drug Administration Medical Countermeasures Initiative contract 75F40120C00085. and the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections (NIHR200907) at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford. The PITCH (Protective Immunity from T cells to Covid-19 in Health workers) Consortium, is funded by the UK Department of Health and Social Care with contributions from UKRI/NIHR through the UK Coronavirus Immunology Consortium (UKCIC), the Huo Family Foundation and The National Institute for Health Research (UKRIDHSC COVID-19 Rapid Response Rolling Call, Grant Reference Number COV19-RECPLAS).Declaration of Interest: None to declare. Ethical Approval: This study was approved by the UK Medicines and Healthcare Products Regulatory Agency on the 5th February 2021 and the London and Chelsea Research Ethics Committee (REC Ref:21/HRA/0489) on 12th February 2021, with subsequent amendments approved on 3rd March 2021, 19th April 2021 and 26th April 2021)
Bio-Repository of DNA in stroke (BRAINS): A study protocol
<p>Abstract</p> <p>Background</p> <p>Stroke is one of the commonest causes of mortality in the world and anticipated to be an increasing burden to the developing world. Stroke has a genetic basis and identifying those genes may not only help us define the mechanisms that cause stroke but also identify novel therapeutic targets. However, large scale highly phenotyped DNA repositories are required in order for this to be achieved.</p> <p>Methods</p> <p>The proposed Bio-Repository of DNA in Stroke (BRAINS) will recruit all subtypes of stroke as well as controls from two different continents, Europe and Asia. Subjects recruited from the UK will include stroke patients of European ancestry as well as British South Asians. Stroke subjects from South Asia will be recruited from India and Sri Lanka. South Asian cases will also have control subjects recruited.</p> <p>Discussion</p> <p>We describe a study protocol to establish a large and highly characterized stroke biobank in those of European and South Asian descent. With different ethnic populations being recruited, BRAINS has the ability to compare and contrast genetic risk factors between those of differing ancestral descent as well as those who migrate into different environments.</p
11β-HSD1 inhibition in men mitigates prednisolone-induced adverse effects in a proof-of-concept randomised double-blind placebo-controlled trial
Glucocorticoids prescribed to limit inflammation, have significant adverse effects. As 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regenerates active glucocorticoid, we investigated whether 11β-HSD1 inhibition with AZD4017 could mitigate adverse glucocorticoid effects without compromising their anti-inflammatory actions. We conducted a proof-of-concept, randomized, double-blind, placebo-controlled study at Research Unit, Churchill Hospital, Oxford, UK (NCT03111810). 32 healthy male volunteers were randomized to AZD4017 or placebo, alongside prednisolone treatment. Although the primary endpoint of the study (change in glucose disposal during a two-step hyperinsulinemic, normoglycemic clamp) wasn’t met, hepatic insulin sensitivity worsened in the placebo-treated but not in the AZD4017-treated group. Protective effects of AZD4017 on markers of lipid metabolism and bone turnover were observed. Night-time blood pressure was higher in the placebo-treated but not in the AZD4017-treated group. Urinary (5aTHF+THF)/THE ratio was lower in the AZD4017-treated but remained the same in the placebo-treated group. Most anti-inflammatory actions of prednisolone persisted with AZD4017 co-treatment. Four adverse events were reported with AZD4017 and no serious adverse events. Here we show that co-administration of AZD4017 with prednisolone in men is a potential strategy to limit adverse glucocorticoid effects
From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research"
In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome
- …