36 research outputs found

    Cluster recognition in spatial-temporal sequences: the case of forest fires

    Get PDF
    Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous are

    Using data-driven algorithms for semi-automated geomorphological mapping

    Get PDF
    In this paper, we compare the performance of two data-driven algorithms to deal with an automatic classification problem in geomorphology: Direct Sampling (DS) and Random Forest (RF). The main goal is to provide a semi-automated procedure for the geomorphological mapping of alpine environments, using a manually mapped zone as training dataset and predictor variables to infer the classification of a target zone. The applicability of DS to geomorphological classification was never investigated before. Instead, RF based classification has already been applied in few studies, but only with a limited number of geomorphological classes. The outcomes of both approaches are validated by comparing the eight detected classes with a geomorphological map elaborated on the field and considered as ground truth. Both DS and RF give satisfactory results and provide similar performances in term of accuracy and Cohen’s Kappa values. The map obtained with RF presents a noisier spatial distribution of classes than when using DS, because DS takes into account the spatial dependence of the different classes. Results suggest that DS and RF are both suitable techniques for the semi-automated geomorphological mapping in alpine environments at regional scale, opening the way for further improvements

    Quantitative Assessment of the Relationship between Land Use/Land Cover Changes and Wildfires in Southern Europe

    Get PDF
    Wildfires are key drivers of land use/land cover (LULC) dynamics by burning vegetation and affecting human infrastructure. On the contrary, LULC changes (LULCCs) may affect the fire regime by influencing vegetation type, burnable areas, fuel loads and continuity. This study investigates the relationship between LULCC and wildfires. We developed a methodology based on different indicators, which allowed us to quantitatively assess and better understand the transitions between LULC classes and burnt area (BA) in Europe in the last two decades (2000–2019). The assessment was performed for the entire European continent and, independently, for each of the five European countries most affected by wildfires: Portugal, Spain, France, Italy and Greece. The main results are the following: (i) LULCC analysis revealed a net loss in forests and arable land and a net gain in shrubs; (ii) most of the BA occurred in forests (42% for the whole of Europe), especially in coniferous forests; (iii) transitions from BA generally were to transitional woodland/shrub or, again, to BA. Overall, our results confirm the existence of a strong relationship between wildfires and LULCCs in Europe, which was quantified in the present study. These findings are of paramount importance in fire and environmental system management and ecology.info:eu-repo/semantics/publishedVersio

    Spatial pattern of landslides in Swiss Rhone Valley

    Get PDF
    The present study analyses the spatial pattern of quaternary gravitational slope deformations (GSD) and historical/present-day instabilities (HPI) inventoried in the Swiss Rhone Valley. The main objective is to test if these events are clustered (spatial attraction) or randomly distributed (spatial independency). Moreover, analogies with the cluster behaviour of earthquakes inventoried in the same area were examined. The Ripley's K-function was applied to measure and test for randomness. This indicator allows describing the spatial pattern of a point process at increasing distance values. To account for the non-constant intensity of the geological phenomena, a modification of the K-function for inhomogeneous point processes was adopted. The specific goal is to explore the spatial attraction (i.e. cluster behaviour) among landslide events and between gravitational slope deformations and earthquakes. To discover if the two classes of instabilities (GSD and HPI) are spatially independently distributed, the cross K-function was computed. The results show that all the geological events under study are spatially clustered at a well-defined distance range. GSD and HPI show a similar pattern distribution with clusters in the range 0.75-9km. The cross K-function reveals an attraction between the two classes of instabilities in the range 0-4km confirming that HPI are more prone to occur within large-scale slope deformations. The K-function computed for GSD and earthquakes indicates that both present a cluster tendency in the range 0-10km, suggesting that earthquakes could represent a potential predisposing factor which could influence the GSD distribution
    corecore