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ABSTRACT
The present work proposes an innovative approach to surveys and demonstrates the 
effectiveness of bringing together traditional archaeological questions, such as the 
exploration and the analysis of settlement patterns, with the most innovative technologies 
related to Machine Learning. Namely, we applied Random Forest, an ensemble learning 
method based on decision trees, to perform archaeological predictive modeling (APM) 
for the Canton of Zurich, in Switzerland. This was done based on a dataset of known 
archaeological sites dating back to the Roman Age. The APM represents an automated 
decision-making and probabilistic reasoning tool that is relevant for archaeological risk 
assessment and cultural heritage management. Machine learning-based approaches 
can learn from data and make predictions, starting from the acquired knowledge, 
through the modeling of the hidden relationships between a set of observations, 
representing the dependent variable (i.e. the archeological sites), and the independent 
variables (i.e. the geo-environmental features prone to influence the site locations). 
The main objective of the present study is to assess the spatial probability of presence 
for Roman settlements within the study area. As results, we produced: 1) a probability 
map, expressing the likelihood of finding a Roman site at different locations; 2) the 
importance ranking of the geo-environmental features influencing the presence of the 
archeological sites. These outputs in our results are of paramount importance, not only 
in verifying the reliability of the data, but also in stimulating experts in different ways. 
Also, these results help evaluate the benefits and constraints of using such innovative 
techniques and, ultimately, help explore the performance of machine learning-based 
models in processing archaeological information.
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1. INTRODUCTION

The massive expansion of urban settlement areas and 
transport infrastructures, increasingly threatens our 
cultural heritage all over the world. In particular, in the 
few last decades, Switzerland has been experiencing 
constant growth in its infrastructures and modern 
agglomerations (Hafner 2013). Several areas, which were 
so far unexploited are nowadays critically threatened by 
modern development, which often results in permanent 
destruction to any possible archaeological remains 
not yet unearthed. Within the Swiss Confederation, 
archaeology per se is a prerogative of each single region 
or member state (i.e. canton). Due to the country’s 
decentralized political organization, each canton has 
its own specific procedures for archaeological heritage 
management (Kaeser 2013; 2012; Kaenel 2002). Each 
canton is also responsible for the protection of nature, 
landscape, and cultural heritage within its territorial 
boundaries. Hence, a multiplicity of approaches exists. 
This decentralized situation further strengthens the need 
of exploring new solutions and to develop objectified and 
quantitative tools that can help detect archaeological 
sites, identify them, and protect them.

Prediction and modeling have always played a 
relevant role in this regard (Nebbia et al. 2016; Arnoldus-
Huyzendveld, Citter & Pizziolo 2015; Rogers, Fischer 
& Huss 2014; McEwan 2012; Danese et al. 2014; van 
Leusen & Kamermans 2005; Lock 2000). Based on the 
assumption that human behavior can be patterned, 
the possibility to map this pattern can result in a helpful 
tool for the assessment of where we have the highest 
likelihood of (re)-discover archaeological remains not 
yet unearthed. Archaeological Predictive Models (APMs) 
have been studied and implemented both in academia, 
as “locational preference maps” or “distribution maps”, 
both in cultural resource management offices, making 
numerous steps forward (to cite few examples of APM: 
Cecamore & Castiello 2014; Nicu 2019; Visentin & Carrer 
2017; Anichini et al. 2011; Verhagen & Whitley 2011; 
Ford, Clarke & Reisen 2009; Rua 2009; Oštir et al. 2007; 
de Vries 2007; Verhagen 2007; Kamermans et al. 2005; 
Ducke & Münch 2005; Ejstrud 2003; Kvamme 1990). 
The APMs produced so far share a number of common 
aspects, such as the use of archaeological data and 
environmental variables and a methodological approach 
based on multivariate statistical techniques such as 
Logistic Regression (on this topic see for example: 
Wachtel et al. 2018; Carrer 2013; Vaughn & Crawford 
2009; Espa 2006; Kvamme 1999). Verhagen and Withley 
(2020) have recently published a comprehensive list of 
the most popular predictive models developed worldwide 
to predict the spatial location of archaeological sites. 
Authors highlight strengths and weaknesses of their 
applications stressing how, over the last decades, the 
academic research had to deal with the raising availability 
and complexity of archaeological datasets, as well as the 

complexity of the questions they raise. Questions that, in 
time, led archaeologists to establish new collaborations 
and exchange with experts in different research 
domains (Hintz, Laabs & Castiello 2019; Carlson 2017; 
Barcelo & Bogdanovic 2015; Dubbini & Lodoen 2014; 
Djindjian 2009; Giligny et al. 2010). It is only recently 
that archaeological researchers have started to explore 
more complex models, relying on innovative applications  
of spatial and statistical computing, as well as on  
Machine Learning (ML) techniques. So far, these studies are 
increasingly numerous when dealing with archeological 
site detection relying on high-resolution satellite or 
drone imagery, as well as in pottery classification (see for 
example the works of: Garcia-Molsosa et al. 2021; Orengo 
et al. 2020; Orengo & Garcia-Molsosa 2019; Caspari & 
Crespo 2019; Gattiglia 2018; Chen et al 2013). At the 
best of our knowledge, applications of ML in the field of 
archaeological site distribution dealing with settlement 
patterns and location probability assessment are very 
rare in literature. Märker and Heydari-Guran (2009) used 
Random Forest (RF) to predict the location of Paleolithic 
sites in the Zagros Mountains of Iran, which represents a 
first attempt of application of data-mining approaches 
in this domain. In a more recent study, Roalkvam (2020) 
compares logistic regression with RF to formalize and 
quantitatively evaluate environmental factors for coastal 
site location in Mesolithic Norway and to determine the 
evolution in time of the relative importance of these 
variables. Our study differs from the abovementioned 
ones not only in that it results in both the assessment 
of the environmental factors and the elaboration of a 
predictive map for archeological site location, but also 
in the implementation of an accurate procedure for the 
model evaluation and validation. In addition, despite 
the several examples produced at international level, 
only few studies concerning application in the domain 
of APM and mapping were realized for Switzerland. 
In this regard, the work carried out by Ebersbach 
(2015) provides a first and almost unique example in 
Switzerland where the author applies exploratory spatial-
statistical analysis for evaluating locational criteria 
of Roman villas and Neolithic sites in the Canton of  
Bern.

In the present study, we explore the potential of RF, 
a learning algorithm based on a multitude of regression 
trees, to elaborate predictive maps for archaeological 
Roman settlements in the Canton of Zurich. The 
predisposing factors suggesting the presence of Roman 
sites in the area are the environmental features. They 
are described by: (i) topographic indices derived from the 
digital elevation model (DEM); (ii) different characteristics 
related to the soil and its aptitude to agricultural activities; 
(iii) strategic and water-related criteria on which past 
populations may have based their site location choice. 
Although predictive models based on ML have been 
successfully applied in different environmental studies – 
such as geological prospection, geological and mineral 
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mapping (see: Oonk & Spijker 2015; Baudron et al. 2013; 
Abedi & Nouruzi 2012; Abedi, Nouruzi & Bahroudi 2012) 
and natural hazard susceptibility mapping (see: Tonini et 
al. 2020; Tehrany et al. 2019; Reichenbach et al. 2018; 
Deluigi 2018; Leuenberger et al. 2017; Zêzere et al. 
2017; Pham et al. 2016; Goetz et al. 2015) – the present 
research represents a first example of ML application to 
carry out an exhaustive analysis for APM and mapping in 
Switzerland.

2. MATERIALS AND METHODS
2.1 STUDY AREA
The study area lies in the current administrative limits of 
the Canton of Zurich, located in the northeastern part of 
Switzerland (Figure 1). The territory covers 1729 km² and 
nowadays is considered productive for about 80% of its 
area. Forests cover 505 km² and lakes 73 km². Most of the 
canton consists of narrow river valleys that go towards 
the Rhine River in the north. Together with the Lakes 
Zurich, Greifensee, Pfäffikersee, the rivers crossing the 
region have played important roles for commercial and 
communication purposes since the antiquity. Turicum 
(the ancient settlement of the City of Zurich) arose in 
the Limmat valley as a small artisan settlement (vicus) 
occupying both sides of the valley and becoming the first 
military post in the area (Horisberger 2017).

The Roman epoch in Switzerland, lasting from 30 BC 
to 450 AD, is a well-known period of the history thanks 
to the numerous literature sources and archaeological 
discoveries. According to the Archaeological Department 
of the Canton of Zurich (“Amt fur Raumentwicklung 
Kantonsarchäologie Zurich”), the region in antiquity was 
particularly dense with roads and settlements (especially 
military camps). Numerous vici (small towns) were 
probably embedded in a wider and dense networking 
context connecting the heart of the Roman Empire and 
the Mediterranean coasts to the south, with its northern 
provinces. The settlements were mainly located on 
headlands or on the shores of main lakes and surrounded 
by trenches and fortifications, in an easy to defend 
position and suitable for the trades, (Flutsch et al. 2002; 
Furger et al. 2001; Frei-Stolba & Benedetti Martig 1991). 
At the time, they were probably provided for by a forum, 
tabernae or thermae, and one or more religious temples 
(Cramatte 2012; Bögli 1962). According to the historical 
sources, and to more recent archaeological investigations 
and analyses, the settlements were often located at a 
distance of 30 km from each other, corresponding to 
about one walking day. From the 1st to 3rd century AD, vici, 
as well as a certain number of urban domus, and hundreds 
of rural villae of varying sizes, intensively occupied the 
countryside, e.g. the villas of Dietikon, Neftenbach, 
Buchs, etc. (Ebnöther & Monnier 2002; Ebnöter 1995). 

Figure 1 The case study area – Canton of Zurich.
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Agriculture assumed a very important role as the main 
subsistence activity. Thus, environmental factors such as 
the suitability of the terrain for agriculture, the proximity 
to water resources, and the topographic indices are all 
highly relevant for the analysis developed in this study.

2.2 DATA ACQUISITION AND PRE-PROCESSING
2.2.1 Roman archaeological sites
The Roman archaeological sites discovered in the study 
area represent the dependent variable of our model. 
The original dataset was provided by the cantonal 
archaeological service of Zurich. It was in the form of 
a digital table containing a list of surveys carried out in 
previous decades (5812 entries catalogued until October 
2015) covering different epochs (from Mesolithic to Middle 
Age). But, our current analysis is limited to the Roman 
period. The table was structured into different columns 
(i.e. identifier, municipality, type of site, assigned epoch, 
X and Y geographic coordinates). However, a certain 
underlying degree of uncertainty exists at this stage, as 
not all entries had exact coordinates. The dataset was 
reworked and standardized in order to be processed 
into a GIS (Geographical Information System). The pre-
processing was thus necessary to check information 
and correct it, and to elaborate it in the form of a  
well-structured geo-localized punctual dataset. This 
included the transformation of the coordinates into 
the official Swiss projected coordinate system and the 
precision of the name of the modern municipalities, where 
the archaeological evidences were found. Additionally, 
the description of each previous survey was verified, and 
a short interpretation correctly defined and embedded. 
These interpretations provided detailed information 
about the nature of the findings or the nature of the site 
itself, such as a specific socio-economic function, whether 
it was a permanent or non-permanent settlement (e.g. 
housing, villae urbanae, rusticae, vici, etc.), a place of 
worship and of religious identity (e.g. funum, temple, etc.), 
a burial grave, a necropolis, an artisanal production center, 

etc. Further screenings allowed us to divide the dataset 
into two main categories: “settlements” sensu stricto, 
and “single finds”, like pottery shards, coins, etc. Figure 2 
shows the amount of discoveries attributed to each class. 
The final geo-dataset, containing only the information 
related to the presence of Roman settlements, consists 
of 227 occurrences. In addition, a random set of pseudo-
absences was generated, which are located across the 
landscape and assumed to be non-sites. This process 
resulted in a balanced binary geo-dataset of presences 
and absences for Roman settlements, which is essential 
for ML modeling purposes.

2.2.2 Predisposing factors
The following geo-environmental features prone to 
influence the Roman sites location, acting as independent 
variables of the model, were taken into account: Digital 
Elevation Model (DEM; altitude) and derivates (slope, 
northness and eastness); Distance to water (lakes  
and rivers); Agricultural suitability; Depth of vegetal 
soil; Soil skeleton; Water saturation and Water storage 
capacity; Permeability and Nutrient storage capacity 
(Figure 3). We used a DEM with a cell resolution of  
100 m (pixel size = 100 m x 100 m), as for the digital  
layers on soil properties. Indeed, the present-day 
topography can be a useful factor to detect relations 
between site locations and their environmental 
surroundings (Märker & Bolus 2018). Northness and 
eastness, corresponding respectively to the cosine and 
to the minus sine of the aspect angle, were considered 
instead of the terrain orientation in order to avoid the 
use of a circular variable that can introduce bias, as  
very distinct values (0° and 360°) represent the same 
situation in reality (i.e. north orientation). We also 
considered the proximity of each archaeological site to 
lakes and rivers, intended as a source of water supply: 
the distance values were computed for each pixel, 
considering the Euclidean distance to the closest water 
element (i.e. lake or river).

Figure 2 Typological classes of the Roman sites in the Canton of Zurich.
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Furthermore, we used the soil map1 (Digitale 
Bodeneignungskarte der Schweiz, 2012) providing us with 
the most valuable information about a terrain’s suitability 
for agricultural. Such information provided specific soil 
properties, each stored as single digital raster layer 
(agricultural suitability, depth of vegetal soil, soil skeleton, 

water saturation capacity, water storage capacity, soil 
permeability capacity, nutrient storage capacity) ranked 
each into five or six classes based on the different 
aptitude of the soil for the specific characteristic (Table 1). 
Soil properties are considered to be significant factors 
in determining agricultural productivity, which, in turn, 

Figure 3 The geo-environmental features prone to influence the location of roman sites. The classes of each feature are visually 
expressed in a graduated scale of colors. DEM from 400 to 1.200 m.a.s.l.; SLOPE from 0° to 35°; EASTNESS and NORTHNESS from 
–1.0 to 1.0; DISTANCE TO RIVERS from 0 to 3.000 m; DISTANCE TO LAKES from 0 to 10.000 m. See Table 1 for the maps representing 
the soil properties (i.e. PERMEABILITY, DEEP SOIL, SKELETON SOIL, WATER SATURATION, WATER STORAGE, NUTRIENT STORAGE, 
AGRICULTURAL SUITABILITY); See Table 2 for the description of different categories of the geotechnical map.
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shapes the Roman site distribution patterns (Simpson et 
al. 2002; Westcott & Brandon 1999). Intensive land use 
changes and deforestation occurred during the Roman 
period, probably related to the introduction of agriculture 
and to the mass movements of human population. These 
changes are discernible from the soil properties, and 
confirmed also by recent studies on pollen-based land-
cover reconstructions, focused on northern and central 
Europe (Roberts et al. 2018; Wickham 2011). Hence, we 
decided to use these maps representing soil properties, 
such as agricultural suitability and nutrient storage 
capability, texture and specific soil depth, permeability, 
water saturation and water storage capacity (Nussbaum 
et al. 2018; Ebersbach 2015). Finally, the geotechnical 
map of Switzerland provided information about the 
distribution of the uppermost rock strata (Table 2).2

The ensemble of these spatial layers was pre-processed 
in order to correct and eliminate construction errors (e.g. 
no-data, and resampled to match the same spatial 
resolution of 100 meters). The pre- and post-processing 
of the geographical layers was performed in a GIS 
environment using ArcGIS Desktop, release 10.7 (ESRI).

2.3 METHOD
Random Forest (RF) (Breiman et al. 2018), a machine 
learning based approach, was used to estimate the 
probability of discovering archaeological remains, 
namely Roman sites, in a given area. RF is an ensemble 
learning algorithm based on decision trees, capable  
of learning from data and making predictions, starting 
from the acquired knowledge (i.e., observations) through 
the modeling of the hidden relationships between a set 
of input variables (i.e, geo-environmental features prone 
to influence the location of Roman sites) and output 
variables (i.e., the archaeological sites). In detail, a 
decision tree is a decision support system using a tree-
like model. The paths from root to leaf represent the rules 
of the model which, for a binary classification problem 
(e.g., presence or absence of Roman sites) works as 
follows: internal nodes allow splitting the observations 
based on the value of a specific attribute (e.g., elevation 
below or above a certain value); each branch represents 
the outcome of the previous step, where data are split 

in two main groups by maximizing the difference among 
them in terms of presences and absences; each leaf node 
represents a class label, after computing all attributes (if a 
roman site is present or absent at pixel level). RF constructs 
a huge number of independent trees and the prediction 
of new data is finally computed taking the majority or 
the soft voting. The latter consists in converting the 
results of a binary classification, such as the prediction 
of presence (“yes”) or absence (“no”) of a Roman site, by 
counting how many times each observation is classified 
as “yes” or “no”, and by normalizing the result over the 
total number of predictions. This provides probabilistic 
outputs, which can be used to elaborate maps identifying 
areas susceptible to experience the presence of a Roman 
site, over a rank from very low to very high.

Operationally, a subset of the training dataset is 
generated by bootstrapping (i.e. random sampling with 
replacement), while about one-third of the cases, called 

CLASS 1 2 3 4 5 6

SOIL PROPERTIES

Agricultural Suitability Unknown Hindered Good Very good Sufficient __

Deep Soil Unknown Very shallow Shallow Medium Deep Very deep

Skeleton Unknown Not stony Slightly stony Stony Very stony Extremely stony

Water Saturation Unknown Absent Humid Slightly wet Wet __

Water Storage Unknown Very poor Poor Medium Good Very good

Permeability Unknown Very slow Slower Slightly slower Normal Extreme

Nutrients Storage Unknown Very poor Poor Medium Good Very good

Table 1 List of the different soil properties and their classes used as independent variables in RF.

GEOTECHNICAL MAP

CATEGORY TYPE

1 Lakes

3 Silt, Clay Pan, Ground Moraine, Frontal Moraine

4 Loam argillaceous, Clay

5 Gravel Pits and Sand (Glacial Deposit)

6 Gravel Pits and Sand (Modern Deposit)

7 Gravel Grit, blocs, Landslide

8 Marlstone with Sandstone inclusions weakly 
solidified

13 Conglomerates, from weakly to mildly  
solidified

14 Conglomerates, from weakly to mildly  
solidified

19 Solid Limestone

21 Schists Deposit

Table 2 List of the geotechnical categories derived from 
the Geotechnical map of the Canton of Zurich (The category 
numbers are not continuous, as the geotechnical map 
describes the entire Swiss territory and not all soil types are 
present within the Canton of Zurich).
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‘out-of-bag’, are left out at each iteration. Then the 
algorithm creates a decision tree for each training subset, 
and a reduced number of independent variables are 
randomly sampled as candidates at each split, which is 
done by measuring the node impurity. This lets the trees 
grow and eventually stops when each terminal node 
contains less than a pre-fixed amount of observations. 
The out-of-bag are used to optimize the parameters 
of RF (basically, the number of trees and the reduced 
number of variables), while a third dataset, named the 
testing dataset, is used to evaluate the error rate of the 
final optimized model and to assess its generalization 
performance. Indeed, at the beginning of the computation, 
a fraction of the original dataset is normally held out from 
the construction of the learning model, and used in the 
final step to assess the ability of the algorithm, trained 
on independent data (the training dataset), to make good 
predictions on unused observations (the testing dataset).

Our model involves the generation of pseudo-absences 
representing the non-sites. To assure a good generalization 
of the model and to avoid the overestimation of the lower 
classes, a balanced number of pseudo-absences (i.e. in 
a number equal to the observed presences) need to be 
specified. Moreover, RF allows us to measure the relative 
importance of each variable on the prediction. This is 
assessed by evaluating the mean decrease accuracy, 
computed by looking at how much the tree nodes, 
which use that variable, reduce the mean square errors 
estimated with the out-of-bag, across all the trees in the 
forest. Additionally, the partial dependence plots give us 

a graphical depiction of the marginal effect that each 
variable has on the class probability.

Two models were compared in this study: the first, 
including all the geo-environmental features, and a second 
one considering only the first six most important features 
resulting from the previous model. The final probability 
map was elaborated based on the results of the second 
model. Analyses were performed with the R language and 
environment for statistical computing (R Core Team, 2018). 
Specifically, for probability mapping we used the package 
randomForest (Liaw and Wiener 2002).

2.3.1. Model validation
When dealing with spatial data, as in the present study, 
observations belonging to the testing dataset are most 
likely located close to the training ones. This leads to 
overestimating the predictive performance of the model. 
This circumstance is known as “spatial autocorrelation”, 
which implies that observations close to each other hold 
similar characteristics. One way to solve this issue is to 
select the training and testing data far enough apart 
in the geographic space by adopting, for example, a 
statistical technique called spatial k-fold cross validation. 
This technique consists in splitting the original dataset 
into a number k of non-overlapping groups, training the 
model on k-1 sets, and then testing it on the hold out set. 
The process is repeated k-times and the k-error estimates 
are finally averaged to yield the overall error rate. In this 
study, we adopted a 5-folds spatial cross validation 
(Figure 4). The blockCV package (Valavi et al. 2018) was 

Figure 4 Spatial k fold cross validation. The figure shows the Study Area divided in 5-folds or spatial blocks with the real presences 
and pseudo absences overlaid.
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used for performing spatial cross validation. The model 
was finally evaluated by using the ROC curve (Receiver 
Operating Characteristic). This is a graphical technique 
based on the plotting of the true positives rate (TPR) 
against the false positives rate (FPR), both expressed as a 
percentage of the total number, where true positives (TP) 
(or true negatives, TN) are the correct classifications, while 
false positives (FP) occurs when outcomes are incorrectly 
predicted as “yes” when it is actually “no” (and vice-versa 
for false negatives, or FN). The value of the “Area Under 
the ROC Curve” (AUC) lies between 0.5, denoting a bad 
classifier, and 1, denoting an excellent classifier. Both the 
ROC curve and the corresponding AUC were estimated to 
evaluate the performance of the model.

3. RESULTS AND DISCUSSION

The spatial probability of Roman settlements presence in 
the Canton of Zurich was assessed by using the RF model 
we implemented. As by-product, the model returns the 
variable importance ranking. The six most important 
variables (i.e., DEM, slope, water saturation capacity, 
geotechnical map, distance to lakes, and soil skeleton) 
are highlighted in Figure 5a (red rectangle): these were 
retained as input independent variables in the second 

model. Their relative importance, resulting from this last, 
is shown in Figure 5b. Concerning the model validation and 
the estimation of its predictive performance (Figure 6), 
the AUC using all the variables is equal to 0.71 (blue line), 
while for the second model (i.e. considering only the six 
most important variables) it is slightly higher and equal 
to 0.72 (red line), which is considered as an acceptable 
discrimination according to the criteria of Hosmer and 
Lemeshow (2000). This result attests that variables low 
in the ranking do not add any supplementary predictive 
power to the model. They can thus be removed to 
estimate the final probabilistic output.

Figure 7 shows the output probability map obtained 
by the second model. The probability of finding Roman 
settlements in a certain area is expressed as percentage, 
and displayed in ten classes of equal intervals. The 
highest probability (red areas) are located around the 
modern urban agglomerates of the cities of Zurich and 
Winterthur, and in the middle area between these two 
municipalities, as well as around the main lake, Lake 
Zurich. This phenomenon can be interpreted in two ways. 
(i) Modern urban centers in the region were built upon 
the remaining of ancient settlements, in continuum with 
the main old vici (like Zurich or Winterthur). This cultural 
factor may have affected the preference for location 
choices of past populations, and may have led to new 

Figure 5 Ranking of variables importance. Mean decrease accuracy, allowing to measure the relative importance of each variable in 
the prediction, evaluated for all the features (a) and considering only the first six most important variables (red rectangle in 5a) (b).
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settlements in their neighborhood. (ii) Urbanized areas 
are more intensively excavated as most archaeological 
surveys are rescue operations, which happen prior to any 
construction activity. By consequence, the majority of 
the archaeological sites discovered today are sites where 
such excavations take place.

Meanwhile, the lowest probability (blue areas) mainly 
occurs at the highest altitudes (above 700 m a.s.l. in the 
south-east of the region), and where unproductive zones 
(for agriculture) are located. Moreover, different partial 
dependence plots were evaluated, encapsulating how 
much each specific class for every single variable has 
positively or negatively influenced the location of Roman 
settlements. The partial dependence plots referring to 
the six most important variables are shown in Figure 8. 
When looking closely at the partial dependence plots 
of the DEM and the Slope variables, we can see that the 
high probability to re-discover sites is mainly located 
between 400 and 600 m a.s.l. (within a slope of less than 
eight degrees). With regard to the distance to lakes, the 
highest probability lies between 5.5 km and 8.5 km away 
from the lakes. This is not surprising, as a high proportion 
of the study area is located in a certain distance to 
the nearest lake. Nevertheless, a small peak of high 

probability can be observed in close vicinity to the lakes, 
but not in their immediate vicinity. This points, in fact, 
to the certain importance of the lakeshores as preferred 
settlement areas, while avoiding the marshy or humid 
areas that existed along the lake coasts (also attested 
by the historical Dufour Map of Switzerland, published 
between 1845 and 1865). The partial dependence plot 
of the geotechnical classes, showing clays, gravels and 
glacial moraine deposits, as wells as marls, reveals 
recurrent types, corresponding to soils that are well-suited 
for agricultural uses. The partial dependence plots of 
the water saturation capacity and soil skeleton variables 
show that the class #1 (unknown, see Table 1) occurs as 
the most influencing factor for the location of Roman 
settlements. Class #1 corresponds to the urbanized areas 
where no soil analyses were performed. It is essential to 
remember here that these variables, along with the depth 
of vegetal soil, water storage, permeability and nutrient 
storage capacity, derive directly from the soil map, and 
were compiled first for agricultural purposes by the Swiss 
Federal Office for Agriculture, in 2012. It therefore should 
come as no surprise that the digitization process may 
have produced less accurate information, or no data at 
all, with respect to those areas falling within modern 

Figure 6 AUC-ROC. Receiver Operating Characteristic (ROC curves) considering all the features (blue line; AUC = 0.7077) and using 
only the six most important variables (red line; AUC = 0.7232).
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urbanized agglomerations. This observation corroborates 
the correspondence we saw between high probability 
classes in urbanized areas, as discussed above.

Dealing with archeological remains, which are by nature 
under-sampled spatio-temporal data, is a fundamental 
issue in archeological predictive modeling. The final 
dataset of Roman settlements in the Canton of Zurich 
examined in the present study includes only 227 cases 
over an area of 1729 km2. The scarcity of observations 
can explain the model’s fair performance, as evaluated 
with an AUC of 0.72. Nevertheless, our model allows us 
to discover an interesting pattern in the distribution of 
the areas falling into the probability classes above the 

50% threshold. These areas are generally located at: (i) 
about 7 km walking distance from the observed sites; (ii) 
an elevation of about 500 m.a.s.l. and a slope of less than 
10°; (iii) more than 8 km distance from a lake; (iv) they 
belong to the areas defined as already urbanized in the 
modern soil map.

Furthermore, the machine learning modeling 
procedure revealed significant advantages with regard to 
the state of the art in archaeological predictive modeling 
studies. It represents an alternative to more classical 
statistical approaches. The reason why and the advantage 
of this innovative approach are exposed in the following. 
(i) It is not affected by any kind of subjective assumption; 

Figure 7 Probability map of the Canton of Zurich. The probability of finding Roman settlements in a certain area is expressed as a 
percentage and ordered in 10 classes with equal intervals.
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that is, the selection of variables as well as their weight 
in the prediction procedure is performed independently, 
and without any previous assignment of reclassification 
or threshold values. (ii) No supplementary testing data 
is needed because the model quality assessment is part 
of the modeling procedure, as the input data are split in 
training, testing, and validation (performed by using the 
‘out of bag’). (iii) The spatial k-cross validation strategy 
for assessing the AUC using the testing dataset avoided 
inferring a model from new data that could be very close 
to, and hold the same characteristics of, the testing 
set. That would thus result in meaningless modeling 
performances. In other words, when assuming that two 
neighboring pixels are (almost) identical, the main goal 
of the spatial sampling is to avoid using archaeological 
site evidence for training, and identical evidence (in 
terms of geo-spatial characteristics) for testing the 
model. The quality of our classification was thus more 
honest since it was computed on different data. (iv) The 
variable ranking allows us to assess which environmental 
factor is a stronger player, while the partial dependence 
plot to determine the influence of each class belonging 

to the considered factors. (v) The model can manage 
thousands of variables and classes, both categorical 
and numerical at once, without internal conflict. (vi) The 
model we developed can be applied to investigate any 
kind of archaeological evidences and epochs, and (vii) it 
provides graphical outputs that non-expert readers can 
easily interpret, including a predictive map allowing 
them to identify areas where the likelihood of finding an 
archaeological site is very high.

4. CONCLUSIONS

This study aimed to outline and test a new predictive 
modeling technique based on Machine Learning 
approach, namely Random Forest, in order to identify 
Roman sites in the canton of Zurich, north-eastern 
Switzerland, with the help of institutional/legacy 
data. The predictive model we built here can be easily 
implemented and updated with the data collected 
during the most recent surveys (as from October 2015 
to date). The model prediction can also be tested on the 

Figure 8 Partial dependence plots of the six most important variables resulting from the second model. The graphics indicate the 
influence (or marginal effect) of the specific class/range of values on the computed probability of Roman site location. The Y axis of 
each plot indicates the ‘Partial Dependence’, thus positive values (above 0.0) on this axis show that Roman sites are likely to be found 
for that value of the independent variable (x-axis), while negative values (below 0.0) indicate that Roman sites are less likely to be 
found. Zero implies no average impact on Roman site prediction according to the model.
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field through planned surveys. However the quality and 
quantity of the data used are an important constraint for 
such such kind of applications, as it is often the case when 
dealing with archaeological information and modern 
environmental variables. Thus, the results obtained 
in this study inevitably raise interesting questions for 
archaeological managers and researchers, and also shed 
further light on possible future research avenues. Can 
Archaeological Predictive Models (APMs) really be used 
to comply with inventory requirements? To implement 
and improve data collection and storage strategies? 
To forecast effects, and make proactive streamlined 
management decisions regarding where to focus 
Cultural Heritage Management efforts? As this study 
shows, the answer to these questions is affirmative. The 
Random Forest based approach has demonstrated that 
it is a helpful instrument in overcoming issues related  
to data size, structure, and reliability. This study showed 
the importance of quantitative analysis for assessing 
the reliability of data on Roman settlement patterns in  
the Canton of Zurich and it has provided important 
insights for the interpretation and quantification of the 
variables that were only empirically considered to be 
important factors for locational strategies. Machine 
learning-based approaches are indeed able to extract 
insights and knowledge directly from data, and the 
algorithm can successfully highlight the relationships 
among the observed events (i.e., the archeological sites) 
and the prone environmental features, thus identifying 
trends and patterns hardly discernible by the human eye.

Finally, it is worth pointing out that the research 
developed in the present study is very promising in 
terms of technological innovation. Given the lack of 
previous quantitative investigations in this region, our 
study raises awareness on the necessity of employing 
quantitative methods to tackling more urgent questions, 
such as the protection and preservation of endangered 
archaeological sites. It also helps assess the importance 
of research biases and locational choices.

NOTES
1 https://www.blw.admin.ch/blw/de/home/politik/

datenmanagement/geografisches-informationssystem-gis/
download-geodaten.html.

2 https://shop.swisstopo.admin.ch/en/products/maps/geology/
GK500/GK500_DIGITAL.
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