40 research outputs found

    Magnon-drag thermopile

    Get PDF
    arXiv:1203.5628v1Thermoelectric effects in spintronics are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role; however, little is known about the underlying physical mechanisms involved. The reason is the lack of information about magnon interactions and of reliable methods to obtain it, in particular for electrical conductors because of the intricate influence of electrons. Here, we demonstrate a conceptually new device that enables us to gather information on magnon–electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon-drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. This information is crucial to understand the physics of electron–magnon interactions, magnon dynamics and thermal spin transport.This research was supported by the Spanish Ministerio de Ciencia e Innovación, MICINN (MAT2010-18065) and by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement NANOFUNCTION no 257375.Peer Reviewe

    Enhanced spin signal in nonlocal devices based on a ferromagnetic CoFeAl alloy

    Get PDF
    The Creative Commons Attribution 3.0 Unported License to their work.We systematically study the nonlocal spin signal in lateral spin valves based on CoFeAl injectors and detectors and compare the results with identically fabricated devices based on CoFe. The devices are fabricated by electron beam evaporation at room temperature. We observe a > 10-fold enhancement of the spin signal in the CoFeAl devices. We explain this increase as due to the formation of a highly spin-polarized Co2FeAl Heusler compound with large resistivity. These results suggest that Heusler compounds are promising candidates as spin polarized electrodes in lateral spin devices for future spintronic applications.We acknowledge the financial support from the Spanish Ministerio de Ciencia e Innovación, MICINN (MAT2010-18065, FIS2009-06671-E, and GICSERV program “Access to ICTS integrated nano- and microelectronics cleanroom”). J.V.d.V. acknowledges the support from FWO-VL.Peer Reviewe

    Resolving spin currents and spin densities generated by charge-spin interconversion in systems with reduced crystal symmetry

    Get PDF
    The ability to control the generation of spins in arbitrary directions is a long-sought goal in spintronics. Charge to spin interconversion (CSI) phenomena depend strongly on symmetry. Systems with reduced crystal symmetry allow anisotropic CSI with unconventional components, where charge and spin currents and the spin polarization are not mutually perpendicular to each other. Here, we demonstrate experimentally that the CSI in graphene-WTe induces spins with components in all three spatial directions. By performing multi-terminal nonlocal spin precession experiments, with specific magnetic fields orientations, we discuss how to disentangle the CSI from the spin Hall and inverse spin galvanic effects.We acknowledge support of the European Union's Horizon 2020 FET-PROACTIVE project TOCHA under Grant No. 824140 and of the Spanish Research Agency (AEI), Ministry of Science and Innovation, under Contracts No. PID2019-111773RB-I00/AEI/10.13039/501100011033, and SEV-2017-0706 Severo Ochoa. J F S acknowledges support from AEIunder contract RYC2019-028368-I/AEI/10.13039/50110001103, W S T and M V C from the European Union Horizon 2020 research and innovation program, Grant No. 881603 (Graphene Flagship), and I F A of a fellowship from 'la Caixa' Foundation (ID 100010434) with code LCF/BQ/DI18/11660030 and of H2020 Marie Skłodowska-Curie Grant No. 713673. J S acknowledges funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754558

    Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures

    Get PDF
    Spin-orbit coupling stands as a powerful tool to interconvert charge and spin currents and to manipulate the magnetization of magnetic materials through the spin torque phenomena. However, despite the diversity of existing bulk materials and the recent advent of interfacial and low-dimensional effects, control of the interconvertion at room-temperature remains elusive. Here, we unequivocally demonstrate strongly enhanced room-temperature spin-to-charge (StC) conversion in graphene driven by the proximity of a semiconducting transition metal dichalcogenide(WS2). By performing spin precession experiments in properly designed Hall bars, we separate the contributions of the spin Hall and the spin galvanic effects. Remarkably, their corresponding conversion effiencies can be tailored by electrostatic gating in magnitude and sign, peaking nearby the charge neutrality point with a magnitude that is comparable to the largest efficiencies reported to date. Such an unprecedented electric-field tunability provides a new building block for spin generation free from magnetic materials and for ultra-compact magnetic memory technologies.Comment: 13 pages, 4 figure

    Heat dissipation in few-layer MoS2and MoS2/hBN heterostructure

    Get PDF
    State-of-the-art fabrication and characterisation techniques have been employed to measure the thermal conductivity of suspended, single-crystalline MoS2 and MoS2/hBN heterostructures. Two-laser Raman scattering thermometry was used combined with real time measurements of the absorbed laser power. Measurements on MoS2 layers with thicknesses of 5 and 14 nm exhibit thermal conductivity in the range between 12 Wm-1 K-1 and 24 Wm-1 K-1. Additionally, after determining the thermal conductivity of the latter MoS2 sample, an hBN flake was transferred onto it and the effective thermal conductivity of the heterostructure was subsequently measured. Remarkably, despite that the thickness of the hBN layer was less than a hal of the thickness of the MoS2 layer, the heterostructure showed an almost eight-fold increase in the thermal conductivity, being able to dissipate more than ten times the laser power without any visible sign of damage. These results are consistent with a high thermal interface conductance G between MoS2 and hBN and an efficient in-plane heat spreading driven by hBN. Indeed, we estimate G ∼ 70 MW m-2 K-1 for hBN layer thermal conductivity of 450 Wm-1 K-1 which is significantly higher than previously reported values. Our work therefore demonstrates that the insertion of hBN layers in potential MoS2-based devices holds the promise for efficient thermal management.This work was partially funded by the European Union under the H2020 FET-OPEN NANOPOLY (GA 289061) and Spanish Ministry of Science projects SIP (PGC2018-101743-B-I00), ADAGIO (PGC2018-094490-B-C22), 2DTecBio (FIS2017-85787-R) and 2DENGINE (PID2019-111773RB- I00/AEI/10.13039/501100011033). E D C acknowledges the Spanish Ministry of Science for the Juan de la Cierva Fellowship (JC-2015-25201) and the Ramon y Cajal fellowship (RYC2019-027879-I). D N U and J F S acknowledge the Ramón y Cajal fellowships RYC2014-15392 and RYC2019-028368-I/AEI/10.13039/501100011033. M V C acknowledges project (Reference No. 103739) funded by the Agencia Estatal de Investigación through the PCI 2019 call. The Catalan Institute of Nanoscience and Nanotechnology (ICN2) is funded by the CERCA program/Generalitat de Catalunya, and is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706). K W and T T acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant Number JPMXP0112101001) and JSPS KAKENHI (Grant Numbers 19H05790 and JP20H00354)

    Control of spin-orbit torques by interface engineering in topological insulator heterostructures

    Full text link
    (Bi1x_{1-x}Sbx_x)2_2Te3_3 topological insulators (TIs) are gathering increasing attention owing to their large charge-to-spin conversion efficiency and the ensuing spin-orbit torques (SOTs) that can be used to manipulate the magnetization of a ferromagnet (FM). The origin of the torques, however, remains elusive, while the implications of hybridized states and the strong material intermixing at the TI/FM interface are essentially unexplored. By combining interface chemical analysis and spin-transfer ferromagnetic resonance (ST-FMR) measurements, we demonstrate that intermixing plays a critical role in the generation of SOTs. By inserting a suitable normal metal spacer, material intermixing is reduced and the TI properties at the interface are largely improved, resulting in strong variations in the nature of the SOTs. A dramatic enhancement of a field-like torque, opposing and surpassing the Oersted-field torque, is observed, which can be attributed to the non-equilibrium spin density in Rashba-split surface bands and to the suppression of spin memory loss.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nanoletters, \copyright American Chemical Society after peer revie

    Thermoelectric spin voltage in graphene

    Get PDF
    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents. Amongst the most intriguing phenomena is the spin Seebeck effect, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport, energy-dependent carrier mobility and unique density of states. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias

    Spin-orbit torques and magnetization switching in (Bi,Sb)2Te3/Fe3GeTe2 heterostructures grown by molecular beam epitaxy

    Get PDF
    Topological insulators (TIs) hold promise for manipulating the magnetization of a ferromagnet (FM) through the spin-orbit torque (SOT) mechanism. However, integrating TIs with conventional FMs often leads to significant device-to-device variations and a broad distribution of SOT magnitudes. In this work, we present a scalable approach to grow a full van der Waals FM/TI heterostructure by molecular beam epitaxy, combining the charge-compensated TI (Bi,Sb)2Te3 with 2D FM Fe3GeTe2 (FGT). Harmonic magnetotransport measurements reveal that the SOT efficiency exhibits a non-monotonic temperature dependence and experiences a substantial enhancement with a reduction of the FGT thickness to 2 monolayers. Our study further demonstrates that the magnetization of ultrathin FGT films can be switched with a current density of Jc ∼ 1010 A/m2, with minimal device-to-device variations compared to previous investigations involving traditional FMs.This research has received funding from the European Union’s Horizon 2020 (EU H2020) research and innovation programme under grant agreement 881603 (Graphene Flagship) and was supported by the FLAG-ERA grant MNEMOSYN. ICN2 acknowledges support from the Spanish Ministry of Science and Innovation (MCIN) and Spanish Research Agency (AEI/10.13039/501100011033) under contracts PID2019-111773RB-I00, PCI2021-122035-2A, PID2022-143162OB-I00 (including FEDER funds), and Severo Ochoa CEX2021-001214-S. SPINTEC acknowledges support from the French ANR under contracts ANR-21-GRF1-0005-01 and ANR-20-CE24-0015 (ELMAX). T.G. and R.G. acknowledge support from EU H2020 programme under the Marie Skłodowska-Curie Grant Agreement Nos. 754510 and 840588 (GRISOTO, Marie Sklodowska-Curie fellowship), respectively, and JFS from MCIN/AEI/10.13039/50110001103 under contract RYC2019-028368-I.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001214-S).Peer reviewe

    Strongly anisotropic spin relaxation in graphene/transition metal dichalcogenide heterostructures at room temperature

    Get PDF
    Graphene has emerged as the foremost material for future two-dimensional spintronics due to its tuneable electronic properties. In graphene, spin information can be transported over long distances and, in principle, be manipulated by using magnetic correlations or large spin-orbit coupling (SOC) induced by proximity effects. In particular, a dramatic SOC enhancement has been predicted when interfacing graphene with a semiconducting transition metal dechalcogenide, such as tungsten disulphide (WS2_2). Signatures of such an enhancement have recently been reported but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and WS2_2. By using out-of-plane spin precession, we show that the spin lifetime is largest when the spins point out of the graphene plane. Moreover, we observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, indicating that the strong spin-valley coupling in WS2_2 is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin-valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials

    Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection

    Get PDF
    International audienceModern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple, scalable and compatible with present-day magnetic recording technolog
    corecore