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Abstract

Thermoelectric effects in spintronics [1] are gathering increasing attention as a means

of managing heat in nanoscale structures and of controlling spin information by using

heat flow [2–10]. Thermal magnons (spin-wave quanta) are expected to play a major

role [2, 5, 11, 12], however, little is known about the underlying physical mechanisms

involved. The reason is the lack of information about magnon interactions and of

reliable methods to obtain it, in particular for electrical conductors because of the in-

tricate influence of electrons [12, 13]. Here, we demonstrate a conceptually new device

that allows us to gather information on magnon-electron scattering and magnon-drag

effects. The device resembles a thermopile [14] formed by a large number of pairs of

ferromagnetic wires placed between a hot and a cold source and connected thermally

in parallel and electrically in series. By controlling the relative orientation of the

magnetization in pairs of wires, the magnon-drag can be studied independently of the

electron and phonon-drag thermoelectric effects. Measurements as a function of tem-

perature reveal the effect on magnon drag following a variation of magnon and phonon

populations. This information is crucial to understand the physics of electron-magnon

interactions, magnon dynamics and thermal spin transport.
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A ferromagnet subject to a temperature gradient contains a higher density of magnons

in the hotter region, which by diffusive motion move towards the cooler region. Because of

electron-magnon collisions, the diffusion of magnons may add a magnon-drag contribution to

the Seebeck coefficient of the ferromagnet. Owing to the analogy between electron scattering

processes by phonons and magnons, it has long been accepted that the theory of magnon

drag should follow that of phonon drag [15], but this has hardly been observed [11, 16, 17].

Indeed, it is remarkable the scarce evidence of magnon-drag effects in 3d ferromagnets, even

after more than 40 years of intense research on these materials. The presence of magnon drag

is usually inferred indirectly from measurements of the temperature variation of the Seebeck

effect, whose interpretation is difficult and masked by phonon and electron contributions.

In principle, measurements as a function of magnetic field should provide information on

magnon drag but the experiments have been performed above a few Tesla at low (< 4 K)

temperatures [16]. This is due to the low sensitivity of such measurements and in order to

avoid the presence of magnetic domains and intrinsic anisotropic magnetoresistance effects

that are common at lower magnetic fields [16, 18, 19]. Information at low magnetic fields

has therefore proven even more difficult to obtain, even though it is particularly relevant

for ongoing thermoelectric experiments in magnetic systems [2, 4–11, 20]. Overall, the ex-

perimental results have been interpreted only qualitatively and comparison with theoretical

modeling has not been possible.

Our measurement scheme (Fig. 1) allows us to study magnon-drag effects at low magnetic

fields (∼ 0.1 T) isolated from such spurious and competing phenomena. The scheme relies on

the fact that a magnetic field parallel (antiparallel) to the magnetization leads to a decrease

(increase) of the magnon population, as demonstrated by magnetoresistance measurements

[18, 19] (Fig. 1a). This can be understood by inspecting the magnon dispersion relation for

magnon wave vector q, which has the quadratic form E(q) ≈ Dq2+gµBBint [18, 19, 21], where

D ∼ D0(1 − d1T
2) is the magnon mass renormalization, D0 the zero temperature magnon

mass and the d1T
2 term accounts for the temperature dependence of the Fermi distribution

that leads to an increase of the effective magnon mass. In the second term, Bint = B+µ0M

corresponds to the magnetic field induction B plus the ferromagnet magnetization µ0M . A

change in B modifies Bint and the magnon modes that are attainable at a given temperature.

Therefore, a B antiparallel (parallel) to M should make the highest wave vector modes

(un)reachable.

2



FIG. 1. Magnon-drag detection principle and geometry of the device. a, The magnon population in

ferromagnetic wires is represented schematically by an arrow with a given precession angle. A magnetic

field, B > 0, applied parallel to the magnetization, leads to a reduction/damping of the magnon population

(represented by a reduction in the precession angle). In contrast, a magnetic field B < 0, antiparallel to

the magnetization, results in an increase of the magnon population (increase in the precession angle). b,

c, Magnon-drag measurements. The wires are connected thermally in parallel and electrically in series.

For parallel magnetization orientation (b), the thermoelectric voltage is zero because the contribution from

each wire is the same and has opposite sign. For the antiparallel configuration (c), in the presence of B,

a nonzero thermoelectric voltage is measured due to the difference in magnon-drag effect, directly related

to the difference in magnon populations induced by B. d, Scanning electron microscope image (SEM) of a

typical device. A large number of pairs of NiFe wires (blue) are connected in series with Ag wires (red). A

wide Pt wire (yellow) serves as a heater to generate a thermal gradient, ∇T .

In our devices (Fig. 1d), we use narrow NiFe wires (20 nm thick, 30 nm wide and 5 µm

long) that contain a single magnetic domain. A large number N of pairs of wires are placed

between a hot and a cold source and are connected thermally in parallel and electrically in

series in the presence of a magnetic field along the magnetization direction. Each wire in a

pair is identical to the other except for a short broader region in one of them. This results

in different coercive fields (Bc1 < Bc2) that allow us to control the relative orientation of the

wire magnetizations.

The device is effectively a magnon-drag thermopile. When the magnetizations are in

the parallel configuration, the measured thermoelectric voltage V is zero and independent
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of magnetic field because the contributions of each wire are of the same magnitude and

have opposite sign (see Fig. 1b). However, when the magnetizations are in the antipar-

allel configuration the measured thermoelectric voltage is determined by the difference in

magnon populations induced by the magnetic field (Fig. 1c). Other contributions to the

thermoelectric voltage, related to electrons and phonons, are independent of the magne-

tization orientation and cancel out in each pair. The effect of the Lorentz force, relevant

at high fields, is also negligible below one Tesla [18]. As in a conventional thermopile, the

thermopower for a single pair S is multiplied by the number of pairs, which in our case is

N = 20. The device thus generates the magnon-drag thermopower, SN = NS, which would

be undetectable using a single pair. Note that S is an intrinsic property of the ferromagnet

in contrast to conventional thermopower measurements, which include the thermopower of

both the material of interest and the material of the measurement electrodes.

We prepare the devices using two electron-beam lithography steps and a two-angle

shadow-mask evaporation technique [22–24]. First a Pt heater is defined. Then, the ther-

mopile is created by depositing sequentially, using a shadow mask, the NiFe wires and

transverse Ag wires that connect the NiFe wires electrically in series (Supplementary Figure

1).

We first characterize our devices electrically. We use magnetoresistance (MR) measure-

ments as in Ref. [19] to demonstrate the change in magnon population as a function of

magnetic field and to obtain the temperature variation of the magnon mass. Fig. 2a shows

typical measurements at room temperature. The magnetic field is swept along the axis of the

ferromagnets. At large enough negative B, the magnetizations of the wires are in a parallel

configuration. As B is swept from negative to positive, the magnetizations of the wires with

lower coercive field (Bc1) reverse and the device switches to an antiparallel configuration

(see inset Fig. 2a). As B is further increased, the magnetizations of the remaining wires

also reverse (at Bc2) and a parallel configuration is recovered. An analogous sequence occurs

when sweeping the magnetic field from positive to negative starting at large positive B.

In the parallel configuration, the device presents a linear non-saturating negative MR,

consistent with recent reports on thin films [18, 19]. This decrease is attributed to the reduc-

tion of electron-magnon scattering processes due to the decrease in the magnon population.

In the antiparallel configuration, in contrast, the resistance shows a plateau with B. This

is so because for the wire with M antiparallel to B, MR increases with B, whereas for the
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wire with M parallel to B, MR decreases with B, therefore, their contributions to the total

MR tend to cancel each other out (Fig. 2a inset).

The magnetoresistance is strongly temperature dependent. Fig. 2b shows the resistance

difference ∆R between parallel and antiparallel magnetization configurations at fixed B =

0.125 T. At low enough temperatures, the thermally excited population of magnons drops

significantly resulting in a drop in ∆R. From these measurements, both D0 and d1 are

determined [19] (Fig. 2b). By introducing a value of M = 1 T [25], we obtain a very good

fit with d1 ≈ 4× 10−6 K−2, in agreement with previous studies in Ni and Fe films [18].

Having demonstrated that the MR induced by magnons presents the expected magnetic

field and temperature responses, we perform thermopower measurements, SN = V /∆T ,

in the same device in order to study magnon-drag effects. For this purpose, we measure

the dc voltage, V , between the V + and V − electrodes that results from a temperature

difference ∆T between the two ends of the wires (Fig. 1d). The temperature difference is

determined in an identical sample with built-up Pt thermometers at the locations of the

Ag wires [26, 27]. Figure 3a shows typical data at 50 K and 105 K. The magnetic field is

again swept along the wires. The thermoelectric signal, SN , only appears in the antiparallel

configuration, it is linear with B, and extrapolates to zero at B = 0. At B = 0, the

magnetization configuration is always parallel in these measurements. However, Fig. 3b

shows that both parallel and antiparallel configurations are possible at B = 0 and that they

can be prepared in a controlled way. The antiparallel configuration is achieved by reversing

the sweep direction of B at Bc1 < B < Bc2. In this situation, the voltage follows the linear

dependence until B = −Bc1, where the parallel configuration is recovered.

The minor hysteresis loop in Fig. 3b helps verify that SN indeed extrapolates to zero

at B = 0. Note that the voltage at B = 0 is zero independently of the magnetization

configuration, which is evidence that SN is due to a difference in magnon population induced

by the applied field. The thermoelectric origin of the signal is further proved in Fig. 3c,

where V = SN∆T is found to be proportional to the square of the heater current, thus to

the temperature gradient.

Measurements of the magnon drag as a function of temperature should reflect the change

in the electron-magnon and magnon-magnon collisions resulting from the variation of the

magnon population. The thermopower at B = 0.125 T as a function of temperature is shown

in Fig. 4a. It first increases with temperature and then, around Tpeak = 180 K (about one
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FIG. 2. Magnon-induced magnetoresistance (MR). a, Typical magnetoresistance measurements at 295 K.

The blue and red arrows indicate the B sweep direction. A linear decrease of the magnetoresistance is

attributed to magnon damping. The hysteresis around zero field occurs when the device switches from

parallel to antiparallel configurations. Inset, schematic illustration of the MR hysteresis at low B. The B

swept direction is marked by arrows. The top arrows indicate the relative magnetization orientation of the

wires. A plateau is observed for Bc1 < B < Bc2 in the antiparallel configuration. b, Change in R, ∆R,

between parallel and antiparallel configurations at B = 0.125 T as a function of temperature. The solid line

represents a fit to a model based on magnon-electron interactions [18, 19]. The error bars indicate noise

estimates from the raw measurements (a) (± 2 s.d.).

fifth of the NiFe Curie temperature), it starts decreasing rapidly. This behaviour agrees with

the expectations from the phonon-drag analogy. Following this analogy, the initial increase

is the result of an increase of the magnon population, whereas the subsequent decrease is

due to a larger probability of magnon-magnon or magnon-phonon collisions that reduce the

momentum transfer from magnons to electrons.

Quantitatively, the magnon-drag contribution to the thermoelectric voltage depends on

the extent of magnon momentum transfer to the electrons as compared to the transfer to
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FIG. 3. Magnon-drag. a, Thermopower, SN , as a function of B at 50 K and 105 K. The red (blue) lines

correspond to the negative (positive) sweep direction of B. A dc voltage V is observed in the antiparallel

configuration that varies with B. V varies linearly with |B| and extrapolates to zero for B = 0. For clarity,

the 105 K data is offset upwards and a constant background was subtracted. b, Minor hysteresis loop that

preserves the antiparallel configuration at B = 0. The B sweep direction is marked by arrows. Starting at

B < 0, the sweep direction is reversed at +0.12 T < Bc2. The magnetic configuration remains antiparallel

until B = −Bc1 and a linear behaviour is observed for −Bc1 < B < Bc2. T = 50 K. c, Thermoelectric

voltage, V = SN∆T as a function of the heater current, Ih. T = 50 K. The error bars indicate noise

estimates from the raw measurements of V (± 2 s.d.).

other magnons, phonons and impurities. Following the theory of phonon drag [28], we

assume that the magnon-drag magnitude is proportional to the probability of magnon-

electron interaction, Pm,e, divided by the probability of a magnon interacting with any

particle including electrons, i.e. Pm,x+Pm,e. Written in terms of interaction times, τm,e,

τm,x, the magnon-drag contribution to the thermopower is SMD ∝ Pm,e/(Pm,x + Pm,e) ∝

τm,x/(τm,x + τm,e). By considering the drift of electron and magnons and the quadratic

dispersion relation for magnons, SMD (for a single wire) can be calculated [16, 21],
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FIG. 4. Temperature variation of the magnon-drag effect. a, SN as a function of T . Experimental data

is shown with solid dots. The black solid line represents a best fit to equation (1) in the low temperature

region. b, Extracted τm,x/τm,e using equation (1) and data in a. B = 0.125 T.

SMD(B, T ) =
1

n′

ee

k
5/2
B T 3/2F (y)

6π2D3/2

(

τm,x

τm,x + τm,e

)

, (1)

where y = (gµBBint/kBT ) and F (y) is the ‘quenching function’, which gives the magnetic

field contribution to the magnon-drag effect (see Supplementary Information), and D is the

exchange stiffness constant obtained from the MR analysis. For y < 0.1, i.e. the low field

regime (B . 3 T at 50 K), F (y) is linear, which explains the linear dependence in Figs. 3a

and b. In equation (1), n′

e = ne/α, where ne is the number of conduction electrons per unit

volume and α is a phenomenological parameter of order 1. This parameter accounts for the

fraction of electrons that are involved in collisions with magnons. It reflects the fact that

electrons with high mobility and strong 4s character will likely dominate the collisions when

compared to the low mobility electrons with 3d character [16].

At low temperatures, the population of magnons is low and therefore we expect that

τm,e ≪ τm,x, that is τm,x/(τm,x + τm,e) ≈ 1. The momentum transfer between magnons

and electrons will occur with high probability and α becomes the only fitting parameter in
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equation (1). To fit our experimental results, we note that the above model predicts that

the measured thermoelectric response in the antiparallel configuration at temperature T and

magnetic field B is SN = V/∆T = N [SMD(T,−B)−SMD(T,+B)]. The two terms account

for the wires whose magnetization is antiparallel to B (first term) and parallel to B (second

term). The best fit to this expression shows excellent agreement with our data (line in Fig.

4), specially considering that it involves only one fitting parameter (α ≈ 3). This strongly

supports the assumption that τm,e ≪ τm,x below Tpeak and our model of magnon drag.

The signal decrease at high temperatures is the result of magnon-magnon and magnon-

phonon interactions. At the peak τm,x ∼ τm,e, whereas at higher temperatures magnon

collisions not involving electrons become more frequent such that τm,x ≪ τm,e and SMD ∝

τm,x/τm,e. Around room temperature, the magnon momentum loss turns out to be large

enough to almost completely suppress the magnon drag effect. If we extrapolate the low

temperature fit to temperatures above the peak, we can estimate the ratio τm,x/τm,e that

gives place to the suppression of the thermopower indicated by the dotted arrow in Fig.

4a (see Fig. 4b). This ratio provides an important insight into the thermal dynamics of

magnons. However, further theoretical studies are required to model the experimental results

in this temperature range, in particular, to predict the value of α, the magnitude of the drop

at large temperatures, or even the position of the peak Tpeak.

We have thus presented magnon-drag measurements in NiFe using a thermopile-like de-

vice, and modeled the effect at low temperatures using a single fitting parameter. Our results

not only demonstrate the existence of magnon-drag in NiFe but also ratify a technique that

provides reliable information on magnon-drag at low magnetic fields and in a broad tem-

perature range that was not accessible before. Although it is not possible with our current

analysis to separate magnon scattering times with magnons and phonons, these results have

important implications for thermoelectricity in magnetic structures [4–9, 11]. For example,

the difference in the effective temperatures of magnons and electrons and their interactions

are gaining relevance for modeling novel thermoelectric effects. The dominant interaction

of magnons below Tpeak = 180 K is with electrons and not phonons (or other magnons) and

therefore the temperature difference would likely vanish below Tpeak.
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