807 research outputs found

    JAK/STAT signaling and human in vitro myogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A population of satellite cells exists in skeletal muscle. These cells are thought to be primarily responsible for postnatal muscle growth and injury-induced muscle regeneration. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade has a crucial role in regulating myogenesis. In rodent skeletal muscle, STAT3 is essential for satellite cell migration and myogenic differentiation, regulating the expression of myogenic factors. The aim of the present study was to investigate and compare the expression profile of JAK/STAT family members, using cultured primary human skeletal muscle cells.</p> <p>Results</p> <p>Near confluent proliferating myoblasts were induced to differentiate for 1, 5 or 10 days. During these developmental stages, members of the JAK/STAT family were examined, along with factors known to regulate myogenesis. We demonstrate the phosphorylation of JAK1 and STAT1 only during myoblast proliferation, while JAK2 and STAT3 phosphorylation increases during differentiation. These increases were correlated with the upregulation of genes associated with muscle maturation and hypertrophy.</p> <p>Conclusions</p> <p>Taken together, these results provide insight into JAK/STAT signaling in human skeletal muscle development, and confirm recent observations in rodents.</p

    From sexless to sexy: Why it is time for human genetics to consider and report analyses of sex

    Get PDF
    Science has come a long way with regard to the consideration of sex differences in clinical and preclinical research, but one field remains behind the curve: human statistical genetics. The goal of this commentary is to raise awareness and discussion about how to best consider and evaluate possible sex effects in the context of large-scale human genetic studies. Over the course of this commentary, we reinforce the importance of interpreting genetic results in the context of biological sex, establish evidence that sex differences are not being considered in human statistical genetics, and discuss how best to conduct and report such analyses. Our recommendation is to run stratified analyses by sex no matter the sample size or the result and report the findings. Summary statistics from stratified analyses are helpful for meta-analyses, and patterns of sex-dependent associations may be hidden in a combined dataset. In the age of declining sequencing costs, large consortia efforts, and a number of useful control samples, it is now time for the field of human genetics to appropriately include sex in the design, analysis, and reporting of results

    Water-soluble saponins accumulate in drought-stressed switchgrass and may inhibit yeast growth during bioethanol production

    Get PDF
    Background: Developing economically viable pathways to produce renewable energy has become an important research theme in recent years. Lignocellulosic biomass is a promising feedstock that can be converted into second-generation biofuels and bioproducts. Global warming has adversely affected climate change causing many environmental changes that have impacted earth surface temperature and rainfall patterns. Recent research has shown that environmental growth conditions altered the composition of drought-stressed switchgrass and directly influenced the extent of biomass conversion to fuels by completely inhibiting yeast growth during fermentation. Our goal in this project was to find a way to overcome the microbial inhibition and characterize specific compounds that led to this inhibition. Additionally, we also determined if these microbial inhibitors were plant-generated compounds, by-products of the pretreatment process, or a combination of both. Results: Switchgrass harvested in drought (2012) and non-drought (2010) years were pretreated using Ammonia Fiber Expansion (AFEX). Untreated and AFEX processed samples were then extracted using solvents (i.e., water, ethanol, and ethyl acetate) to selectively remove potential inhibitory compounds and determine whether pretreatment affects the inhibition. High solids loading enzymatic hydrolysis was performed on all samples, followed by fermentation using engineered Saccharomyces cerevisiae. Fermentation rate, cell growth, sugar consumption, and ethanol production were used to evaluate fermentation performance. We found that water extraction of drought-year switchgrass before AFEX pretreatment reduced the inhibition of yeast fermentation. The extracts were analyzed using liquid chromatography–mass spectrometry (LC–MS) to detect compounds enriched in the extracted fractions. Saponins, a class of plant-generated triterpene or steroidal glycosides, were found to be significantly more abundant in the water extracts from drought-year (inhibitory) switchgrass. The inhibitory nature of the saponins in switchgrass hydrolysate was validated by spiking commercially available saponin standard (protodioscin) in non-inhibitory switchgrass hydrolysate harvested in normal year. Conclusions: Adding a water extraction step prior to AFEX-pretreatment of drought-stressed switchgrass effectively overcame inhibition of yeast growth during bioethanol production. Saponins appear to be generated by the plant as a response to drought as they were significantly more abundant in the drought-stressed switchgrass water extracts and may contribute toward yeast inhibition in drought-stressed switchgrass hydrolysates

    “I Think That’s the Most Beneficial Change That WIC Has Made in a Really Long Time”: Perceptions and Awareness of an Increase in the WIC Cash Value Benefit

    Get PDF
    During the COVID-19 pandemic, the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) Cash Value Benefit (CVB) for fruits and vegetables increased by roughly USD 25/month/person. We sought to understand WIC participant perceptions of this change and barriers and facilitators to using the CVB. We conducted 10 virtual focus groups (5 rural, 5 urban/suburban) with WIC participants (n = 55) in North Carolina in March 2022. Focus groups were recorded and transcribed. We open-coded the content and used thematic analysis to uncover consistencies within and between sampled groups. Participants expressed favorable perceptions of the CVB increase and stated the pre-pandemic CVB amount was insufficient. Barriers to using the increased CVB were identifying WIC-approved fruits and vegetables in stores and insufficient supply of fruits and vegetables. Barriers were more pronounced in rural groups. Facilitators of CVB use were existing household preferences for fruits and vegetables and the variety of products that can be purchased with CVB relative to other components of the WIC food package. Participants felt the CVB increase allowed their families to eat a wider variety of fruits and vegetables. The CVB increase may improve fruit and vegetable intake, particularly if made permanent, but barriers to CVB and WIC benefit use may limit the potential impact

    Uncultivated Microbial Eukaryotic Diversity: A Method to Link ssu rRNA Gene Sequences with Morphology

    Get PDF
    Protists have traditionally been identified by cultivation and classified taxonomically based on their cellular morphologies and behavior. In the past decade, however, many novel protist taxa have been identified using cultivation independent ssu rRNA sequence surveys. New rRNA “phylotypes” from uncultivated eukaryotes have no connection to the wealth of prior morphological descriptions of protists. To link phylogenetically informative sequences with taxonomically informative morphological descriptions, we demonstrate several methods for combining whole cell rRNA-targeted fluorescent in situ hybridization (FISH) with cytoskeletal or organellar immunostaining. Either eukaryote or ciliate-specific ssu rRNA probes were combined with an anti-α-tubulin antibody or phalloidin, a common actin stain, to define cytoskeletal features of uncultivated protists in several environmental samples. The eukaryote ssu rRNA probe was also combined with Mitotracker® or a hydrogenosomal-specific anti-Hsp70 antibody to localize mitochondria and hydrogenosomes, respectively, in uncultivated protists from different environments. Using rRNA probes in combination with immunostaining, we linked ssu rRNA phylotypes with microtubule structure to describe flagellate and ciliate morphology in three diverse environments, and linked Naegleria spp. to their amoeboid morphology using actin staining in hay infusion samples. We also linked uncultivated ciliates to morphologically similar Colpoda-like ciliates using tubulin immunostaining with a ciliate-specific rRNA probe. Combining rRNA-targeted FISH with cytoskeletal immunostaining or stains targeting specific organelles provides a fast, efficient, high throughput method for linking genetic sequences with morphological features in uncultivated protists. When linked to phylotype, morphological descriptions of protists can both complement and vet the increasing number of sequences from uncultivated protists, including those of novel lineages, identified in diverse environments

    Driving oxygen coordinated ligand exchange at nanocrystal surfaces using trialkylsilylated chalcogenides

    Get PDF
    A general, efficient method is demonstrated for exchanging native oxyanionic ligands on inorganic nanocrystals with functional trimethylsilylated (TMS) chalcogenido ligands. In addition, newly synthesized TMS mixed chalcogenides leverage preferential reactivity of TMS-S bonds over TMS-O bonds, enabling efficient transfer of luminescent nanocrystals into aqueous media with retention of their optical properties

    Ecto-5′-Nucleotidase: A Candidate Virulence Factor in Streptococcus sanguinis Experimental Endocarditis

    Get PDF
    Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5′-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P<0.05) to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P = 0.98). In the absence of nt5e, S. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (P<0.01) and recovered bacterial loads (log10CFU, P = 0.01), suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii) Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE
    corecore