54 research outputs found

    From sexless to sexy: Why it is time for human genetics to consider and report analyses of sex

    Get PDF
    Science has come a long way with regard to the consideration of sex differences in clinical and preclinical research, but one field remains behind the curve: human statistical genetics. The goal of this commentary is to raise awareness and discussion about how to best consider and evaluate possible sex effects in the context of large-scale human genetic studies. Over the course of this commentary, we reinforce the importance of interpreting genetic results in the context of biological sex, establish evidence that sex differences are not being considered in human statistical genetics, and discuss how best to conduct and report such analyses. Our recommendation is to run stratified analyses by sex no matter the sample size or the result and report the findings. Summary statistics from stratified analyses are helpful for meta-analyses, and patterns of sex-dependent associations may be hidden in a combined dataset. In the age of declining sequencing costs, large consortia efforts, and a number of useful control samples, it is now time for the field of human genetics to appropriately include sex in the design, analysis, and reporting of results

    Stress-response pathways are altered in the hippocampus of chronic alcoholics

    Get PDF
    The chronic high-level alcohol consumption seen in alcoholism leads to dramatic effects on the hippocampus, including decreased white matter, loss of oligodendrocytes and other glial cells, and inhibition of neurogenesis. Examining gene expression in post mortem hippocampal tissue from 20 alcoholics and 19 controls allowed us to detect differentially expressed genes that may play a role in the risk for alcoholism or whose expression is modified by chronic consumption of alcohol. We identified 639 named genes whose expression significantly differed between alcoholics and controls at a False Discovery Rate (FDR) ≤ 0.20; 52% of these genes differed by at least 1.2-fold. Differentially expressed genes included the glucocorticoid receptor and the related gene FK506 binding protein 5 (FKBP5), UDP glycosyltransferase 8 (UGT8), urea transporter (SLC14A1), zinc transporter (SLC39A10), Interleukin 1 receptor type 1 (IL1R1), thioredoxin interacting protein (TXNIP), and many metallothioneins. Pathways related to inflammation, hypoxia, and stress showed activation, and pathways that play roles in neurogenesis and myelination showed decreases. The cortisol pathway dysregulation and increased inflammation identified here are seen in other stress-related conditions such as depression and post-traumatic stress disorder and most likely play a role in addiction. Many of the detrimental effects on the hippocampus appear to be mediated through NF-κB signaling. Twenty-four of the differentially regulated genes were previously identified by genome-wide association studies of alcohol use disorders; this raises the potential interest of genes not normally associated with alcoholism, such as suppression of tumorigenicity 18 (ST18), BCL2-associated athanogene 3 (BAG3), and von Willebrand factor (VWF)

    The interactive effect of neighborhood peer cigarette use and 5HTTLPR genotype on individual cigarette use

    Get PDF
    Previous cross-sectional research has shown that adolescents’ cigarette use is interactively associated with that of their school peers and their 5HTTLPR genotype, such that the cigarette use of persons with more copies of the 5HTTLPR*S’ allele is more dependent on school peers’ cigarette use behaviors than their counterparts. This analysis seeks to extend this novel finding by examining whether the same conclusion can be reached when substituting neighborhood peers for school peers and examining the timing of the initiation of any and regular smoking in adolescence. A similar conclusion is reached using an independent sample with longitudinal measures of cigarette use among 6th through 8th graders clustered in 82 neighborhoods, of whom 1,098 contributed genetic data. The proportion of respondents who had ever smoked cigarettes by the first wave was calculated for each Census block group in the study. 5HTTLPR genotype was assayed using the method of Whisman and colleagues (2011). The timing of any or regular smoking initiation and over four years were modeled as dependent variables using Cox proportional hazards models. The interaction of neighborhood peer smoking behavior in the first wave and 5HTTLPR genotype statistically significantly predicted any smoking initiation (hazard ratio: 3.532; p-value=0.002) and regular smoking initiation (hazard ratio: 5.686; p-value=0.000), net of controls for sex, race/ethnicity, grade in the first wave of data, and parental educational attainment. These findings reach the same conclusions as previous cross-sectional research. The findings for any smoking initiation are consistent with the diathesis-stress model of gene-environment interaction; the findings for regular smoking initiation are consistent with the differential susceptibility model

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts

    Get PDF
    Peer reviewe

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2,3 and etiologically related 4,5 behaviors that have been resistant to gene discovery efforts 6–11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Genetic diversity fuels gene discovery for tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury(1-4). These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries(5). Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.Peer reviewe
    corecore