19 research outputs found

    Quantifying the relationship between SARS-CoV-2 viral load and infectiousness.

    Get PDF
    The relationship between SARS-CoV-2 viral load and infectiousness is poorly known. Using data from a cohort of cases and high-risk contacts, we reconstructed viral load at the time of contact and inferred the probability of infection. The effect of viral load was larger in household contacts than in non-household contacts, with a transmission probability as large as 48% when the viral load was greater than 1010 copies per mL. The transmission probability peaked at symptom onset, with a mean probability of transmission of 29%, with large individual variations. The model also projects the effects of variants on disease transmission. Based on the current knowledge that viral load is increased by two- to eightfold with variants of concern and assuming no changes in the pattern of contacts across variants, the model predicts that larger viral load levels could lead to a relative increase in the probability of transmission of 24% to 58% in household contacts, and of 15% to 39% in non-household contacts

    ModĂšles conjoints multi-niveaux de la dynamique des lĂ©sions cibles et de la survie : application Ă  la prĂ©diction de la rĂ©ponse Ă  l’immunothĂ©rapie dans le cancer de la vessie

    No full text
    Treatment evaluation in oncology relies on time-to-death and longitudinal measurements of the Sum of Longest Diameters (SLD) of target lesions. Both processes and their association can be analyzed together using a nonlinear joint model. However, using a composite marker such as SLD neglects the heterogeneity in lesion dynamics, which might be exacerbated under immunotherapy. The main objective of this PhD was to develop multilevel nonlinear joint models of tumor dynamics and their impact on survival, to better characterize all the source of variability in the response to treatment. We relied on data from a phase 2 (IMvigor210) and a phase 3 (IMvigor211) clinical trials of 300 and 900 advanced or metastatic Urothelial Carcinoma (UC) patients, treated with atezolizumab immune checkpoint inhibitor. In a first nonlinear joint model, we showed the impact of tumor location on its dynamics and association with survival. In particular, the liver lesions dynamics was strongly associated with the risk of death as compared to other location. Then, we showed the ability of HMC Bayesian algorithm implemented in Stan software to provide unbiased and precise estimation of the parameters of a nonlinear joint model of SLD and survival, with reasonable sensitivity to prior information. Finally, we developed a Bayesian hierarchical joint model of individual lesions and survival. An additional level of random effect was integrated, specific to the lesion, to quantify the inter-lesions variability under immunotherapy. Using individual dynamic prediction approaches, we showed the benefit of the individual lesions follow-up to identify most at risk patient as compared to SLD follow-up. This work paves the way for a better understanding of the inter and intra-patient variability in response to new immunotherapy treatments.L’évaluation des traitements en oncologie repose sur le temps de dĂ©cĂšs et des mesures longitudinales de la Sommes des plus Longs DiamĂštres (SLD) des lĂ©sions cibles, comme marqueur de la taille tumorale. La modĂ©lisation conjointe non-linĂ©aire permet l’analyse simultanĂ©e de ces deux processus et de leur association. Cependant, le SLD agrĂ©ge l’information et nĂ©glige l’hĂ©tĂ©rogĂ©nĂ©itĂ© des lĂ©sions, qui pourrait ĂȘtre exacerbĂ©e sous immunothĂ©rapie. L’objectif principal de cette thĂšse Ă©tait le dĂ©veloppement de modĂšles conjoints non-linĂ©aires de dynamique tumorale et de survie, pour mieux caractĂ©riser la variabilitĂ© dans la rĂ©ponse aux traitements. Nous nous sommes appuyĂ©s sur les donnĂ©es d’essais cliniques de phase 2 (IMvigor210) et de phase 3 (IMvigor211) incluant respectivement 300 et 900 patients atteints d’un Carcinome UrothĂ©lial (UC) mĂ©tastatique, traitĂ©s par un inhibiteur du point de contrĂŽle immunitaire, l’atezolizumab. Dans un premier modĂšle conjoint non-linĂ©aire, nous avons montrĂ© l’impact de la localisation de la tumeur sur sa dynamique et son association avec la survie. En particulier, la dynamique des lĂ©sions hĂ©patiques Ă©tait fortement associĂ©e au risque de dĂ©cĂšs. Puis nous avons montrĂ© la capacitĂ© de l’algorithme bayĂ©sien HMC implĂ©mentĂ© dans le logiciel Stan Ă  fournir des estimations non biaisĂ©es et prĂ©cises des paramĂštres d’un modĂšle conjoint non-linĂ©aire de SLD et de survie, avec une sensibilitĂ© raisonnable Ă  l’information a priori. Finalement, nous avons dĂ©veloppĂ© un modĂšle conjoint bayĂ©sien hiĂ©rarchique pour dĂ©crire l’évolution des lĂ©sions individuelles et leur lien avec la survie, sous immunothĂ©rapie. Un second niveau d’effet alĂ©atoire, spĂ©cifique Ă  la lĂ©sion, a Ă©tĂ© ajoutĂ© afin de quantifier la variabilitĂ© inter-lĂ©sion. Nous avons montrĂ©, par des approches de prĂ©dictions dynamiques individuelles, le bĂ©nĂ©fice du suivi des lĂ©sions individuelles pour identifier les patients les plus Ă  risque de dĂ©cĂšs, en comparaison avec le suivi du SLD. Ces travaux ouvrent la voie Ă  une meilleure comprĂ©hension de la variabilitĂ© inter et intra-patient de la rĂ©ponse aux nouveaux traitements par immunothĂ©rapie

    ModĂšles conjoints multi-niveaux de la dynamique des lĂ©sions cibles et de la survie : application Ă  la prĂ©diction de la rĂ©ponse Ă  l’immunothĂ©rapie dans le cancer de la vessie

    No full text
    Treatment evaluation in oncology relies on time-to-death and longitudinal measurements of the Sum of Longest Diameters (SLD) of target lesions. Both processes and their association can be analyzed together using a nonlinear joint model. However, using a composite marker such as SLD neglects the heterogeneity in lesion dynamics, which might be exacerbated under immunotherapy. The main objective of this PhD was to develop multilevel nonlinear joint models of tumor dynamics and their impact on survival, to better characterize all the source of variability in the response to treatment. We relied on data from a phase 2 (IMvigor210) and a phase 3 (IMvigor211) clinical trials of 300 and 900 advanced or metastatic Urothelial Carcinoma (UC) patients, treated with atezolizumab immune checkpoint inhibitor. In a first nonlinear joint model, we showed the impact of tumor location on its dynamics and association with survival. In particular, the liver lesions dynamics was strongly associated with the risk of death as compared to other location. Then, we showed the ability of HMC Bayesian algorithm implemented in Stan software to provide unbiased and precise estimation of the parameters of a nonlinear joint model of SLD and survival, with reasonable sensitivity to prior information. Finally, we developed a Bayesian hierarchical joint model of individual lesions and survival. An additional level of random effect was integrated, specific to the lesion, to quantify the inter-lesions variability under immunotherapy. Using individual dynamic prediction approaches, we showed the benefit of the individual lesions follow-up to identify most at risk patient as compared to SLD follow-up. This work paves the way for a better understanding of the inter and intra-patient variability in response to new immunotherapy treatments.L’évaluation des traitements en oncologie repose sur le temps de dĂ©cĂšs et des mesures longitudinales de la Sommes des plus Longs DiamĂštres (SLD) des lĂ©sions cibles, comme marqueur de la taille tumorale. La modĂ©lisation conjointe non-linĂ©aire permet l’analyse simultanĂ©e de ces deux processus et de leur association. Cependant, le SLD agrĂ©ge l’information et nĂ©glige l’hĂ©tĂ©rogĂ©nĂ©itĂ© des lĂ©sions, qui pourrait ĂȘtre exacerbĂ©e sous immunothĂ©rapie. L’objectif principal de cette thĂšse Ă©tait le dĂ©veloppement de modĂšles conjoints non-linĂ©aires de dynamique tumorale et de survie, pour mieux caractĂ©riser la variabilitĂ© dans la rĂ©ponse aux traitements. Nous nous sommes appuyĂ©s sur les donnĂ©es d’essais cliniques de phase 2 (IMvigor210) et de phase 3 (IMvigor211) incluant respectivement 300 et 900 patients atteints d’un Carcinome UrothĂ©lial (UC) mĂ©tastatique, traitĂ©s par un inhibiteur du point de contrĂŽle immunitaire, l’atezolizumab. Dans un premier modĂšle conjoint non-linĂ©aire, nous avons montrĂ© l’impact de la localisation de la tumeur sur sa dynamique et son association avec la survie. En particulier, la dynamique des lĂ©sions hĂ©patiques Ă©tait fortement associĂ©e au risque de dĂ©cĂšs. Puis nous avons montrĂ© la capacitĂ© de l’algorithme bayĂ©sien HMC implĂ©mentĂ© dans le logiciel Stan Ă  fournir des estimations non biaisĂ©es et prĂ©cises des paramĂštres d’un modĂšle conjoint non-linĂ©aire de SLD et de survie, avec une sensibilitĂ© raisonnable Ă  l’information a priori. Finalement, nous avons dĂ©veloppĂ© un modĂšle conjoint bayĂ©sien hiĂ©rarchique pour dĂ©crire l’évolution des lĂ©sions individuelles et leur lien avec la survie, sous immunothĂ©rapie. Un second niveau d’effet alĂ©atoire, spĂ©cifique Ă  la lĂ©sion, a Ă©tĂ© ajoutĂ© afin de quantifier la variabilitĂ© inter-lĂ©sion. Nous avons montrĂ©, par des approches de prĂ©dictions dynamiques individuelles, le bĂ©nĂ©fice du suivi des lĂ©sions individuelles pour identifier les patients les plus Ă  risque de dĂ©cĂšs, en comparaison avec le suivi du SLD. Ces travaux ouvrent la voie Ă  une meilleure comprĂ©hension de la variabilitĂ© inter et intra-patient de la rĂ©ponse aux nouveaux traitements par immunothĂ©rapie

    Multilevel joint modelling of target lesions dynamics and survival : application to the prediction of the response to immunotherapy in bladder cancer

    No full text
    L’évaluation des traitements en oncologie repose sur le temps de dĂ©cĂšs et des mesures longitudinales de la Sommes des plus Longs DiamĂštres (SLD) des lĂ©sions cibles, comme marqueur de la taille tumorale. La modĂ©lisation conjointe non-linĂ©aire permet l’analyse simultanĂ©e de ces deux processus et de leur association. Cependant, le SLD agrĂ©ge l’information et nĂ©glige l’hĂ©tĂ©rogĂ©nĂ©itĂ© des lĂ©sions, qui pourrait ĂȘtre exacerbĂ©e sous immunothĂ©rapie. L’objectif principal de cette thĂšse Ă©tait le dĂ©veloppement de modĂšles conjoints non-linĂ©aires de dynamique tumorale et de survie, pour mieux caractĂ©riser la variabilitĂ© dans la rĂ©ponse aux traitements. Nous nous sommes appuyĂ©s sur les donnĂ©es d’essais cliniques de phase 2 (IMvigor210) et de phase 3 (IMvigor211) incluant respectivement 300 et 900 patients atteints d’un Carcinome UrothĂ©lial (UC) mĂ©tastatique, traitĂ©s par un inhibiteur du point de contrĂŽle immunitaire, l’atezolizumab. Dans un premier modĂšle conjoint non-linĂ©aire, nous avons montrĂ© l’impact de la localisation de la tumeur sur sa dynamique et son association avec la survie. En particulier, la dynamique des lĂ©sions hĂ©patiques Ă©tait fortement associĂ©e au risque de dĂ©cĂšs. Puis nous avons montrĂ© la capacitĂ© de l’algorithme bayĂ©sien HMC implĂ©mentĂ© dans le logiciel Stan Ă  fournir des estimations non biaisĂ©es et prĂ©cises des paramĂštres d’un modĂšle conjoint non-linĂ©aire de SLD et de survie, avec une sensibilitĂ© raisonnable Ă  l’information a priori. Finalement, nous avons dĂ©veloppĂ© un modĂšle conjoint bayĂ©sien hiĂ©rarchique pour dĂ©crire l’évolution des lĂ©sions individuelles et leur lien avec la survie, sous immunothĂ©rapie. Un second niveau d’effet alĂ©atoire, spĂ©cifique Ă  la lĂ©sion, a Ă©tĂ© ajoutĂ© afin de quantifier la variabilitĂ© inter-lĂ©sion. Nous avons montrĂ©, par des approches de prĂ©dictions dynamiques individuelles, le bĂ©nĂ©fice du suivi des lĂ©sions individuelles pour identifier les patients les plus Ă  risque de dĂ©cĂšs, en comparaison avec le suivi du SLD. Ces travaux ouvrent la voie Ă  une meilleure comprĂ©hension de la variabilitĂ© inter et intra-patient de la rĂ©ponse aux nouveaux traitements par immunothĂ©rapie.Treatment evaluation in oncology relies on time-to-death and longitudinal measurements of the Sum of Longest Diameters (SLD) of target lesions. Both processes and their association can be analyzed together using a nonlinear joint model. However, using a composite marker such as SLD neglects the heterogeneity in lesion dynamics, which might be exacerbated under immunotherapy. The main objective of this PhD was to develop multilevel nonlinear joint models of tumor dynamics and their impact on survival, to better characterize all the source of variability in the response to treatment. We relied on data from a phase 2 (IMvigor210) and a phase 3 (IMvigor211) clinical trials of 300 and 900 advanced or metastatic Urothelial Carcinoma (UC) patients, treated with atezolizumab immune checkpoint inhibitor. In a first nonlinear joint model, we showed the impact of tumor location on its dynamics and association with survival. In particular, the liver lesions dynamics was strongly associated with the risk of death as compared to other location. Then, we showed the ability of HMC Bayesian algorithm implemented in Stan software to provide unbiased and precise estimation of the parameters of a nonlinear joint model of SLD and survival, with reasonable sensitivity to prior information. Finally, we developed a Bayesian hierarchical joint model of individual lesions and survival. An additional level of random effect was integrated, specific to the lesion, to quantify the inter-lesions variability under immunotherapy. Using individual dynamic prediction approaches, we showed the benefit of the individual lesions follow-up to identify most at risk patient as compared to SLD follow-up. This work paves the way for a better understanding of the inter and intra-patient variability in response to new immunotherapy treatments

    GALTON-WATSON PROCESS AND BAYESIAN INFERENCE: A TURNKEY METHOD FOR THE VIABILITY STUDY OF SMALL POPULATIONS

    No full text
    1 Sharp prediction of extinction times is needed in biodiversity monitoring and conservation management. 2 The Galton-Watson process is a classical stochastic model for describing population dynamics. Its evolution is like the matrix population model where offspring numbers are random. Extinction probability, extinction time, abundance are well known and given by explicit formulas. In contrast with the deterministic model, it can be applied to small populations. 3 Parameters of this model can be estimated through the Bayesian inference framework. This enables to consider non-arbitrary scenarios. 4 We show how coupling Bayesian inference with the Galton-Watson model provides several features: i) a flexible modelling approach with easily understandable parameters ii) compatibility with the classical matrix population model (Leslie type model) iii) A non-computational approach which then leads to more information with less computing iv) a non-arbitrary choice for scenarios, parameters... It can be seen to go one step further than the classical matrix population model for the viability problem. 5 To illustrate these features, we provide analysis details for two examples whose one of which is a real life example

    GALTON-WATSON PROCESS AND BAYESIAN INFERENCE: A TURNKEY METHOD FOR THE VIABILITY STUDY OF SMALL POPULATIONS

    No full text
    1 Sharp prediction of extinction times is needed in biodiversity monitoring and conservation management. 2 The Galton-Watson process is a classical stochastic model for describing population dynamics. Its evolution is like the matrix population model where offspring numbers are random. Extinction probability, extinction time, abundance are well known and given by explicit formulas. In contrast with the deterministic model, it can be applied to small populations. 3 Parameters of this model can be estimated through the Bayesian inference framework. This enables to consider non-arbitrary scenarios. 4 We show how coupling Bayesian inference with the Galton-Watson model provides several features: i) a flexible modelling approach with easily understandable parameters ii) compatibility with the classical matrix population model (Leslie type model) iii) A non-computational approach which then leads to more information with less computing iv) a non-arbitrary choice for scenarios, parameters... It can be seen to go one step further than the classical matrix population model for the viability problem. 5 To illustrate these features, we provide analysis details for two examples whose one of which is a real life example

    Modelling the association between biomarkers and clinical outcome: An introduction to nonlinear joint models

    No full text
    International audienceNonlinear joint models are a powerful tool to precisely analyse the association between a nonlinear biomarker and a time‐to‐event process, such as death. Here, we review the main methodological techniques required to build these models and to make inferences and predictions. We describe the main clinical applications and discuss the future developments of such models

    Nonlinear multilevel joint model for individual lesion kinetics and survival to characterize intra-individual heterogeneity in patients with advanced cancer

    No full text
    In advanced cancer patients, tumor burden assessment relies on the Sum of the Longest Diameters (SLD) of the target lesions, a marker that lumps all lesions together and ignores intra-patient heterogeneity. Here, we relied on a rich dataset of 342 metastatic bladder cancer patients treated with a novel immunotherapy agent to develop a Bayesian multilevel joint model that can quantify the heterogeneity in lesion dynamics and measure their impact on survival. Using a nonlinear model of tumor growth inhibition, we estimated that dynamics differed greatly among lesions, and inter-lesion variability accounted for about 35% of the total variance of both tumor shrinkage and treatment effect duration. Next, we investigated the impact of individual lesion dynamics on survival. Lesions located in the liver and in the bladder had twice as much impact on the instantaneous risk of death as compared to those located in the lung or the lymph nodes. Finally we evaluated the gain of individual lesion follow-up for dynamic predictions. Consistent with results at the population levels, the individual lesion model outperformed a model relying only on SLD, especially at early landmark times and in patients having liver or bladder target lesions. Our results show that the use of SLD leads to a loss of information and our model can be used to characterize tumor dynamics and survival of advanced cancer patients
    corecore