391 research outputs found

    Statistical mechanics of Bayesian model selection

    Get PDF

    Complex responses to movement-based disease control: when livestock trading helps

    Get PDF
    Livestock disease controls are often linked to movements between farms, for example, via quarantine and pre- or post-movement testing. Designing effective controls, therefore, benefits from accurate assessment of herd-to-herd transmission. Household models of human infections make use of R*, the number of groups infected by an initial infected group, which is a metapopulation level analogue of the basic reproduction number R0 that provides a better characterization of disease spread in a metapopulation. However, existing approaches to calculate R* do not account for individual movements between locations which means we lack suitable tools for livestock systems. We address this gap using next-generation matrix approaches to capture movements explicitly and introduce novel tools to calculate R* in any populations coupled by individual movements. We show that depletion of infectives in the source group, which hastens its recovery, is a phenomenon with important implications for design and efficacy of movement-based controls. Underpinning our results is the observation that R* peaks at intermediate livestock movement rates. Consequently, under movement-based controls, infection could be controlled at high movement rates but persist at intermediate rates. Thus, once control schemes are present in a livestock system, a reduction in movements can counterintuitively lead to increased disease prevalence. We illustrate our results using four important livestock diseases (bovine viral diarrhoea, bovine herpes virus, Johne's disease and Escherichia coli O157) that each persist across different movement rate ranges with the consequence that a change in livestock movements could help control one disease, but exacerbate another

    Estimation of age-stratified contact rates during the COVID-19 pandemic using a novel inference algorithm

    Get PDF
    Well parameterized epidemiological models including accurate representation of contacts are fundamental to controlling epidemics. However, age-stratified contacts are typically estimated from pre-pandemic/peace-time surveys, even though interventions and public response likely alter contacts. Here, we fit age-stratified models, including re-estimation of relative contact rates between age classes, to public data describing the 2020–2021 COVID-19 outbreak in England. This data includes age-stratified population size, cases, deaths, hospital admissions and results from the Coronavirus Infection Survey (almost 9000 observations in all). Fitting stochastic compartmental models to such detailed data is extremely challenging, especially considering the large number of model parameters being estimated (over 150). An efficient new inference algorithm ABC-MBP combining existing approximate Bayesian computation (ABC) methodology with model-based proposals (MBPs) is applied. Modified contact rates are inferred alongside time-varying reproduction numbers that quantify changes in overall transmission due to pandemic response, and age-stratified proportions of asymptomatic cases, hospitalization rates and deaths. These inferences are robust to a range of assumptions including the values of parameters that cannot be estimated from available data. ABC-MBP is shown to enable reliable joint analysis of complex epidemiological data yielding consistent parametrization of dynamic transmission models that can inform data-driven public health policy and interventions. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'

    Development of a Critical Appraisal Tool for Models Predicting the Impact of “Test, Trace, and Protect” Programmes on COVID-19 Transmission

    Get PDF
    OBJECTIVES: To develop a Critical Appraisal tool for non-computational-specialist public health professionals to assess the quality and relevance of modelling studies about Test and Trace (and Protect – TTP) programmes’ impact on COVID-19 transmission. STUDY DESIGN: Decision-making tool development. METHODS: Using Tugwell et al.’s Health Care Effectiveness equation as a conceptual framework, combined with a purposive search of the relevant early modeling literature, we developed six critical appraisal questions for the rapid assessment of modeling studies related to the evaluation of TTP programmes’ effectiveness. RESULTS: By applying the Critical Appraisal tool to selected recent COVID-19 modeling studies we demonstrate how models can be evaluated using the six questions to evaluate internal and external validity, and relevance. CONCLUSIONS: These six critical appraisal questions are able to discriminate between modeling studies of higher and lower quality and relevance to evaluating TTP programmes’ impact. However, these questions require independent validation in a larger and systematic sample of relevant modeling studies which have appeared in later stages of the pandemic

    Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations

    Get PDF
    Background The persistence of bovine TB (bTB) in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles). The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. Results The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6–8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. Conclusions External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to reduce bTB in badgers include efforts to minimise such external sources of infection

    Optimal experimental designs for estimating genetic and non-genetic effects underlying infectious disease transmission

    Get PDF
    BACKGROUND: The spread of infectious diseases in populations is controlled by the susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection), and recoverability (propensity to recover/die) of individuals. Estimating genetic risk factors for these three underlying host epidemiological traits can help reduce disease spread through genetic control strategies. Previous studies have identified important ‘disease resistance single nucleotide polymorphisms (SNPs)’, but how these affect the underlying traits is an unresolved question. Recent advances in computational statistics make it now possible to estimate the effects of SNPs on host traits from epidemic data (e.g. infection and/or recovery times of individuals or diagnostic test results). However, little is known about how to effectively design disease transmission experiments or field studies to maximise the precision with which these effects can be estimated. RESULTS: In this paper, we develop and validate analytical expressions for the precision of the estimates of SNP effects on the three above host traits for a disease transmission experiment with one or more non-interacting contact groups. Maximising these expressions leads to three distinct ‘experimental’ designs, each specifying a different set of ideal SNP genotype compositions across groups: (a) appropriate for a single contact-group, (b) a multi-group design termed “pure”, and (c) a multi-group design termed “mixed”, where ‘pure’ and ‘mixed’ refer to groupings that consist of individuals with uniformly the same or different SNP genotypes, respectively. Precision estimates for susceptibility and recoverability were found to be less sensitive to the experimental design than estimates for infectivity. Whereas the analytical expressions suggest that the multi-group pure and mixed designs estimate SNP effects with similar precision, the mixed design is preferred because it uses information from naturally-occurring rather than artificial infections. The same design principles apply to estimates of the epidemiological impact of other categorical fixed effects, such as breed, line, family, sex, or vaccination status. Estimation of SNP effect precisions from a given experimental setup is implemented in an online software tool SIRE-PC. CONCLUSIONS: Methodology was developed to aid the design of disease transmission experiments for estimating the effect of individual SNPs and other categorical variables that underlie host susceptibility, infectivity and recoverability. Designs that maximize the precision of estimates were derived. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12711-022-00747-1

    An explicit immunogenetic model of gastrointestinal nematode infection in sheep

    Get PDF
    Gastrointestinal nematodes are a global cause of disease and death in humans, wildlife and livestock. Livestock infection has historically been controlled with anthelmintic drugs, but the development of resistance means that alternative controls are needed. The most promising alternatives are vaccination, nutritional supplementation and selective breeding, all of which act by enhancing the immune response. Currently, control planning is hampered by reliance on the faecal egg count (FEC), which suffers from low accuracy and a nonlinear and indirect relationship with infection intensity and host immune responses. We address this gap by using extensive parasitological, immunological and genetic data on the sheep–Teladorsagia circumcincta interaction to create an immunologically explicit model of infection dynamics in a sheep flock that links host genetic variation with variation in the two key immune responses to predict the observed parasitological measures. Using our model, we show that the immune responses are highly heritable and by comparing selective breeding based on low FECs versus high plasma IgA responses, we show that the immune markers are a much improved measure of host resistance. In summary, we have created a model of host–parasite infections that explicitly captures the development of the adaptive immune response and show that by integrating genetic, immunological and parasitological understanding we can identify new immune-based markers for diagnosis and control

    New model diagnostics for spatio-temporal systems in epidemiology and ecology

    Get PDF
    A cardinal challenge in epidemiological and ecological modelling is to develop effective and easily deployed tools for model assessment. The availability of such methods would greatly improve understanding, prediction and management of disease and ecosystems. Conventional Bayesian model assessment tools such as Bayes factors and the deviance information criterion (DIC) are natural candidates but suffer from important limitations because of their sensitivity and complexity. Posterior predictive checks, which use summary statistics of the observed process simulated from competing models, can provide a measure of model fit but appropriate statistics can be difficult to identify. Here, we develop a novel approach for diagnosing mis-specifications of a general spatio-temporal transmission model by embedding classical ideas within a Bayesian analysis. Specifically, by proposing suitably designed non-centred parametrization schemes, we construct latent residuals whose sampling properties are known given the model specification and which can be used to measure overall fit and to elicit evidence of the nature of mis-specifications of spatial and temporal processes included in the model. This model assessment approach can readily be implemented as an addendum to standard estimation algorithms for sampling from the posterior distributions, for example Markov chain Monte Carlo. The proposed methodology is first tested using simulated data and subsequently applied to data describing the spread of Heracleum mantegazzianum (giant hogweed) across Great Britain over a 30-year period. The proposed methods are compared with alternative techniques including posterior predictive checking and the DIC. Results show that the proposed diagnostic tools are effective in assessing competing stochastic spatio-temporal transmission models and may offer improvements in power to detect model mis-specifications. Moreover, the latent-residual framework introduced here extends readily to a broad range of ecological and epidemiological models

    Moment-closure Approximations to Levins Metapopulation Model

    Get PDF
    In this study, we apply the log-normal mixture and beta-binomial) mixture approximations to the stochastic version of the Levins metapopulation model. Mixture approximations arc able to capture the behaviour of the model around the threshold between persistence and extinction of occupied patches. Comparison with simulation results show that mixture approximations are able to predict extinction behaviour but on a shorter time seale than the simulations, describe meta-stable persistence of occupied patches but slightly underestimate the mean and describe quasiequilibrium probabilities
    corecore