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Abstract

In this study, we apply the log-normal mixture and
beta-binomial. - mixture approximations to the
stochastic version of the Levins metapopulation
model. Mixture approximations are able to capture
the behaviour of the model around the threshold
between persistence and extinction of occupied
patches. Comparison with simulation results show
that mixture approximations are able to predict
exiinction behaviour but on a shorter time scale
than the simulations, describe mela-stable
persistence  of occupied patches but slightly
underestimate the mean and describe quasi-
equilibrium probabilities.

Introduction

We extend the application of closure
approximations to the stochastic version of Levins
metapopulation model widely used in ecology. A
metapopulation  refers to an aggregation of
populations or species that inhabit small patches of
an area. Each of the populations is called a “local
population’ and have a substantial probability of
becoming extinct (Hanski, 1999). In order for the
species to persist, they may migrate or colonise
emply patches so that long-term persistence can
only occur at metapopulation level (Hanski, 1999).
Thus, at any given time a non-zero proportion of
patches is occupied. However, the metapopulation
will eventually go extinct if each occupied patch is
desolated. This 1s an Interesting property and
important  phenomenon in  ccology. Stochastic
techniques have been used in ecological studies
previously (Isham, 1995; Levin and Durret, 1996;
Keeling, 1997; Bolker and Pacala, 1997; Keeling,
2000a,b, 2002; Ovwvaskamen and Hanski, 2004).
Particularly in the application of moment-closure
techniques to metapopulation ecology, Keeling
(2000b) developed the concept of multiplicative
moments for the third-order cumulant and this
technique was used to consider the behaviour and

persistence of a finite sized metapopulation. This
multiplicative concept is equivalent to assuming a
log-normal distribution for the population size.
However, it is difficult to describe extinction
behaviour by any existing closure schemes. It is
natural to consider the log-normal mixture and
beta-binomial mixture approximations
(Krishnarajah et al., 2005) for this purpose.

Levins metapopulation model is described in
section 2 and analysed by mo ment closure
schemes in section 3. The conclusion is presented

in section 4 with a discussion of the results.
Levins metapopulation model

We consider the concept of metapopulations
(Levins, 1969) which has been important to
ecologists in describing the patch occupancy
dynamics. “In 1970, Richard Levins coined the
term metapopulation to describe a ’population’
consisting of many local populations, in the same
sense in which a local population is a population
consisting of individuals™ (Hanski, 1999). When
the local population moves or local extinction
occurs, then an occupied patch becomes
unoccupied. Colonisation by individuals from an
occupied patch in the system makes an unoccupied
patch occupied. Levins (1969) illustrated the fact
that in order to control the persistence or extinction
of any species, populations at the metapopulation
level need to be considered. In particular local
extinctions must be balanced by immigration from
other patches. The Levins model gives the rate of
change in the number of occupied local
populations, n (t), as
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where 7. 1s the colonisation or migration rate

parameter and re contributes to the extinction rate
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for a local population. N denotes the total number
of potential patches or habitats that can support
local  populations.  When rlr.>1,  the
metapopulation goes extinct rapidly. The essential
condition for the metapopulation to persist is
r,/r.< 1 (Hanski, 1999). This model is
deterministic and assumes that extinction occurs
independently in different patches. Migration and
recolonisation of empty patches is important to
ensure dynamic equilibrium of occupied patches
and the persistence of a species at metapopulation
level.

Using the deterministic Levins model in equation
(1), we formulate the stochastic model (Keeling,
2002) in which extinction and colonisation of a
patch is described by the following transition
probabilities

5 1= .}
Prob[ 8, (r+A1)=1]=rn {1 = }Ar @)

Prob [Jn (r + A!) = —l:l = r,nAi (3)

We create the equilibrium distribution as shown in
Keeling (2002) and apply the log-normal mixture
and  beta-binomial mixture  approximations
(Krishnarajah et al., 2005) to the two different
cases, namely N = 10 and N = 100 fixing the
parameters r, = 0.17 and 7, = 0.5 with an initial
condition of five occupied patches (m,= 5). The
stochastic process is simulated with the inter-event
time  exponentially  distributed ~ with  rate
R:r[.n(]fn/N)+rcn and a patch is colonised

with probability 7n(l—n/N)/R or an occupied
patch becomes extinct with probability rn/R
(Renshaw, 1991; Krishnarajah, 2005).

Research Bulletin of Instifute for Mathematical Rggew

Mo, ey

Graphs (a) and (b) of Figure 1 show the simulation
results of single realisations of the stochastic
Levins metapopulation model. When N = 10 (10
potential patches or habitats) with 5 populated
patches initially, the simulation results show that
the population is unable to persist for a long period
of time as seen in graph (a). The extinction of each
local population leads to global extinction or
extinction at metapopulation level rather quickly.
Whereas, the process reaches equilibrium quickly
when there are 100 patches that can support local
populations, with the number of occupied patches
fluctuating around 60 (graph (b). In this case local
extinction seems rare thus making global extinction
impossible for the finite time considered.

The histograms, graphs (¢) and (d), of Figure 1
were obtained from 105 simulations for + = 100 in
which the system is allowed to reach equilibrium.
From the histogram representing the distribution of
occupied patches, we can see that when N is small
(10 potential habitats) the distribution is bimodal
with a mode at n = 0. Thus, when there are just a
few potential habitats, global extinction is frequent.
When N is large (N = 100), global extinction of
occupied patches are rare and the histogram
approaches normality as it moves away from 0
(Keeling, 2002). Thus, as the number of potential
habitats increase, there is more chance for
migration and new colonisation. This reduces the
chance of a species becoming extinct as there is
always a large proportion of occupied habitats in
the metapopulation.

In the following sections we perform the moment
closure analysis to see if this sort of bimodality and
persistence behaviour of an ecological system is
predicted by the moment equations derived using
the mixture approximations.
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Figure 1: Single realizations (a-b) show the number of occupied patches, n, over time, ¢,
and histograms (c-d) show the proportion of occupied patches, /N

Moment evolution equations

We study the stochastic version of Levins
metapopulation model in terms of a system of
moment equations with the first moment £[n(1)],
describing the expected number of occupied
patches. The three differential equations describing
how the first moment, E[n(¢)], second moment,

E[n*(¢)] and third moment E£[»*(r)] equations of
the stochastic process evolve over time, are
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These equations are open, meaning that the
differential equation for the lower moments depend
on higher order terms. Thus closure scheme is
needed, so that they can be solved numerically.
Hence, we apply the log-normal mixture and beta-
binomial mixture approximations to close the
system of equations. A detailed description of the
derivation of these mixture approximations is given
in Krishnarajah et al. (2005). The probability

E|n'0)] ©

density function of the log-normal mixture
distribution is
—(logn—kl)l
()= pri(n) +{(1—p) | ———e ()
w2k, 2%,
where 7 (n)=0,, and p is the probability of
extinction, k is the
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mean and £, is the variance of the log-normal

(Kendall, 1994). The log-normal is defined on
0<n<co where » is the number of occupied
patches and N denotes the number of potential
patches. The symbol &, , is the Kronecker delta

(Arfken, [985) defined by

. I if n=0
é’n.ﬂ = (8)

0 otherwise

The probability mass function of the beta-binomial
mixture distribution (Krishnarajah, 2005) is

NB(n+a,N+b—n)

B(n)= pm(m)+(1- 9
=PRI ) el | &
where
1 if n=0
(1) = , i (10)
0 for n=1,2,....N.
B(a, b) s the beta function given by
L gl b1
B(a,b) = Ln”* (1=n)""Ldn (1)

The beta-binomial is defined on n =0, 1, 2,..., N
where » and N are as defined previously in the text.
a and b are the shape parameters of the beta-
binomial distribution.

Results and discussion

The results of both mixture approximations for the
stochastic model described by equations (2) and
(3), are compared with the simulation results and
shown in Figure 2.

Graph (a) shows the expected number of occupied
patches over time and (c) shows the estimated
variances over time for N = 10 potential patches.
These results match with the description of
bimodality as shown .in Figure 1 (a) and (c¢) in
which some of the patches are colonised and
remain occupied for a considerable period of time
although ultimate global extinction is assured over
time. Both the log-normal mixture and beta-
binomial mixture approximations are able to

Research Bulletin of Institute for Mathematical Research

estimate new colonisation and the rise in number of
occupied patches as shown by the stochastic model.
They are also able to show that after a period of
time local extinctions (extinction of local
populations) occur leading to global extinction of
the metapopulation. Unfortunately, extinction of
the metapopulation is predicted on a shorter time
scale compared to the simulations. The mixture
approximations are able to mimic the behaviour
shown by the stochastic model but predict
extinction to occur too quickly. The variance of the
system is slightly overestimated in the beginning of
the process but eventually underestimated over
time (graph (c)) due to overestimation of
extinction.

When the number of potential patches are increased
to ¥ = 100, global extinction becomes rare. Meta-
stable equilibrium is reached meaning that there is
a balance between patch extinction and patch
colonisation that remains constant over a long
period of time. The mixture approximations are
able to predict this persistence of the
metapopulation as shown by simulations (graph (b)
of Figure 2) but slightly underestimate the expected
number of occupied patches. The variance of the
process is overestimated by both the log-normal
and beta-binomial mixture approximations. The
mixture approximations are able to predict the
qualitative behaviour of this ecological system but
the overall temporal evolution of the process does
not agree well with the simulation results in both
cases.

Figure 3 shows the theoretical, beta-binomial
mixture and log-normal mixture probabilities for
the stochastic Levins model conditioned on
extinction not having occurred. The equilibrium
probabilities computed from the beta-binomial
mixture distribution agree well with the computed
theoretical probabilities m both cases. The log-
normal mixture form gives a fair description of the
equilibrium probabilities when & = 100. The beta-
binomial mixture is more flexible in approximating
the probabilities of the model conditional on non-
extinction. It is able to capture the dynamics of the
theoretical probability mass function of the
stochastic model better than the log-normal mixture
distribution.
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Figure 2: Mixture approximation and simulation results for N = 10 (a and ¢) and N = 100 (b and d).
Expectednumber of occupied patches (a and b) and variance (¢ and d) obtained from the mixture
approximations and stochastics simulation over time.
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Figure 3: Comparison of theoretical, beta-binomial mixture and log-normal mixture quasi-equilibrium
probabilities in the cases of 10 and 100 potential patches.
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Conclusion

In this study we applied the mixture
approximations in an ecological context. In case of
the stochastic Levins metapopulation model, we
applied the log-normal and beta-binomial mixture
approximations. The mixture approximations are
able to predict extinction bechaviours of the
occupied patches and global extinction of the
population seen for small N, but do so on a shorter
time scale than that predicted by the simulations.
The mixture approximations are also able to mimic
the persistence of the colonised patches as seen in
the simulations (for large N=100) but slightly
underestimates the mean. The behaviour shown by
the mixture approximations are qualitatively
correct, However, the beta-binomial mixture
approximation is able to predict the quasi-
equilibrium probabilities conditioned on non-
extinction very well.

Both log-normal mixture and beta-binomial
mixture approximations overes timate the rate of
extinction in case of the Levins metapopulation
model. However, the beta-binomial mixture
distribution gives a better description of quasi-
equilibrium probabilities of the Levins model than
the log-normal mixture.
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