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Optimal experimental designs for estimating 
genetic and non-genetic effects underlying 
infectious disease transmission
Christopher Pooley1,2*  , Glenn Marion1†, Stephen Bishop and Andrea Doeschl‑Wilson2† 

Abstract 

Background: The spread of infectious diseases in populations is controlled by the susceptibility (propensity to 
acquire infection), infectivity (propensity to transmit infection), and recoverability (propensity to recover/die) of indi‑
viduals. Estimating genetic risk factors for these three underlying host epidemiological traits can help reduce disease 
spread through genetic control strategies. Previous studies have identified important ‘disease resistance single nucleo‑
tide polymorphisms (SNPs)’, but how these affect the underlying traits is an unresolved question. Recent advances in 
computational statistics make it now possible to estimate the effects of SNPs on host traits from epidemic data (e.g. 
infection and/or recovery times of individuals or diagnostic test results). However, little is known about how to effec‑
tively design disease transmission experiments or field studies to maximise the precision with which these effects can 
be estimated.

Results: In this paper, we develop and validate analytical expressions for the precision of the estimates of SNP 
effects on the three above host traits for a disease transmission experiment with one or more non‑interacting contact 
groups. Maximising these expressions leads to three distinct ‘experimental’ designs, each specifying a different set of 
ideal SNP genotype compositions across groups: (a) appropriate for a single contact‑group, (b) a multi‑group design 
termed “pure”, and (c) a multi‑group design termed “mixed”, where ‘pure’ and ‘mixed’ refer to groupings that consist of 
individuals with uniformly the same or different SNP genotypes, respectively. Precision estimates for susceptibility and 
recoverability were found to be less sensitive to the experimental design than estimates for infectivity. Whereas the 
analytical expressions suggest that the multi‑group pure and mixed designs estimate SNP effects with similar preci‑
sion, the mixed design is preferred because it uses information from naturally‑occurring rather than artificial infec‑
tions. The same design principles apply to estimates of the epidemiological impact of other categorical fixed effects, 
such as breed, line, family, sex, or vaccination status. Estimation of SNP effect precisions from a given experimental 
setup is implemented in an online software tool SIRE-PC.

Conclusions: Methodology was developed to aid the design of disease transmission experiments for estimating the 
effect of individual SNPs and other categorical variables that underlie host susceptibility, infectivity and recoverability. 
Designs that maximize the precision of estimates were derived.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Infectious disease constitutes one of the biggest 
threats to sustainable livestock and aquaculture pro-
duction, global food security, and human health. Over 
the last decades, genome-wide association studies 
(GWAS), together with high-density sequencing and 
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other ‘omics’ technologies, have facilitated enormous 
breakthroughs in disease genetics, with the number of 
genetic loci that have been identified to be associated 
with disease resistance increasing at a rapid rate [1–6]. 
Accordingly, expectations for reducing infectious dis-
ease prevalence through genetic selection for disease 
resistance are increasing, and some real-world applica-
tions have demonstrated that these expectations can be 
met in practice [7].

The most effective way to reduce infectious disease 
prevalence in a population is to reduce the individu-
als’ susceptibility to infection or their ability to transmit 
infections, once infected. Yet, remarkably little is known 
about the role of previously identified ‘resistance’ loci in 
infectious disease transmission, because in most studies, 
disease resistance refers to the resistance of an infected 
animal to develop disease or other side-effects from 
infection (e.g. performance reduction or death), rather 
than to resistance to becoming infected or transmitting 
the infection [8–10]. Hence, it is not known whether 
selection for disease resistance actually reduces disease 
prevalence, since animals that carry the beneficial resist-
ance alleles may still become infected and transmit the 
infection. Furthermore, discovery of single nucleotide 
polymorphisms (SNPs) associated with disease resistance 
often originate from large-scale disease challenge experi-
ments, in which individuals are artificially infected or 
exposed to a specific pathogen strain and dose, and their 
response to infection is measured [11–13]. However, 
estimating the effect of genetic loci identified in these 
studies on traits associated with disease transmission 
would require field or experimental epidemic data from 
situations where the infection is transmitted naturally 
between individuals.

Epidemiological models are widely used to identify 
risk factors for disease transmission in populations and 
to assess the impact of control measures on these. Par-
ticularly relevant for genetically heterogeneous popula-
tions are compartmental models, in which individuals 
are classified as, for example, susceptible to infection (S), 
infected and infectious (I), or recovered/removed (dead) 
(R) [14]. These epidemiological SIR models point natu-
rally to three distinct host genetic traits that character-
ise the key processes of disease transmission dynamics 
within a population: individual susceptibility, infectivity, 
and recoverability [15–17]. In an epidemiological con-
text, susceptibility is defined as the relative risk of an 
uninfected individual becoming infected when exposed 
to a typical infectious individual or to infectious material 
excreted from such an individual, infectivity is the pro-
pensity of an infected individual to transmit infection to 
a typical (average) susceptible individual, and recoverabil-
ity is the propensity of an infected individual to recover 

or die [15, 18, 19]. For SIR models, recoverability is the 
inverse of the mean duration for the infectious period.

Conceptually, genetic improvement in any or all 
three of these underlying epidemiological host traits is 
expected to reduce disease spread within and across pop-
ulations. Indeed, recent advances in treating infection 
partly as an indirect genetic effect (IGE) have pointed 
to far greater responses to selection than had previously 
been expected [20, 21]. This has been demonstrated for 
infectious pancreatic necrosis (IPN), a viral disease that 
inflicts high mortality in Atlantic salmon populations. 
Previous GWAS had identified a single quantitative trait 
locus (QTL) that explains over 80% of the genetic varia-
tion in mortality caused by IPN [22, 23]. The correspond-
ing candidate gene that was identified in subsequent 
fine-mapping studies was found to primarily control 
IPN virus internalization, i.e. host susceptibility [24]. A 
small-scale IPN transmission experiment, in which fish 
were assigned into different epidemic groups accord-
ing to their QTL genotypes, provided evidence that the 
beneficial allele reduced the infectivity of IPN-infected 
fish, in addition to reducing their susceptibility, and may 
also have favourable effects on duration of the infectious 
period (i.e. their recoverability) [25]. This beneficial plei-
otropic effect on all three epidemiological host traits may 
explain why breeding schemes for IPN-resistance have 
led to a drastic reduction in IPN prevalence and associ-
ated mortalities within just a few generations of selec-
tion [26]. Incorporating host traits into epidemiological 
models can also inform management strategies on how 
to effectively prevent disease outbreaks in genetically 
heterogeneous populations [25]. In this case, the aim is to 
reduce the basic reproduction number to less to 1, which 
can be achieved in fewer generations if multiple traits are 
targeted, e.g. susceptibility and infectivity, rather than 
just susceptibility [27] or resistance.

Compared to conventional disease resistance traits 
used in most GWAS (e.g. infection, disease, or survival 
status, or measures of pathogen load, immune response, 
or performance after infection challenge), the three epi-
demiological host traits have the clear advantage that 
their role in disease spread is fully specified by epide-
miological models. However, until recently, estimation 
of genetic effects for these traits has proven challenging, 
as they need to be inferred from observable disease phe-
notypes. Fortunately, recent advances in computational 
statistics now enable genetic effects for host traits to 
be estimated from longitudinal disease records of indi-
viduals [15, 28–31]. However, how disease transmission 
experiments should be designed to obtain accurate esti-
mates has received little attention. For example, previous 
studies have indicated that accurate estimation of genetic 
infectivity effects requires genetically-related individuals 
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that are distributed across different contact groups [15, 
28, 29] and that relatedness among group members can 
substantially affect precision and bias of the effect esti-
mates [29, 32]. Hence, the effects of the number and size 
of contact groups, the genetic composition of individuals 
within groups, and of other parameters on precision of 
estimates need to be established.

In reality, there may be many SNPs that each have dif-
ferent effects on susceptibility, infectivity, and recovery, 
with possible epistatic interactions. However, in practice 
disentangling these interactions is usually not possible, 
both computationally and practically. Thus, this paper 
focuses on designs to determine the effect of a single SNP 
that, e.g. based on previous studies, is known to have a 
large effect on a resistance phenotype on the three epide-
miological host traits (with multiple analyses performed 
in the case of several such SNPs). Our objectives were: 
(1) to derive analytical expressions for the precision of 
estimates of the effects of a SNP on the three underlying 
epidemiological host traits; for tractability, these expres-
sions assume a best-case scenario (i.e. infection and 
recovery times are exactly known and other potentially 
confounding factors are ignored) and, therefore, repre-
sent upper bounds for precision of estimates from real 
data; (2) to use these insights to develop optimal designs 
of disease transmission experiments that aim at estimat-
ing the effects of a single SNP of interest on host suscep-
tibility, infectivity, and recoverability; (3) to validate the 
analytical expressions and designs for a range of realistic 
data scenarios, e.g. the inclusion of group effects, other 
fixed effects, and residual noise, and cases when only the 
deaths of individuals are recorded and infection times are 
unknown; and (4) to present an easy-to-use online soft-
ware tool to assist in the construction of a suitable design 
for a disease transmission experiment.

Although this study focuses on the estimation of SNP 
effects underlying disease transmission, the developed 
methodology and optimal design principles also apply 
to investigating the effects of other categorical variables 
(such as breed, line, family, sex, vaccination status,1 etc.) 
on host susceptibility, infectivity, and recoverability. 
Additional information on the application and extension 
of the developed methods and results presented here to 
identifying loci associated with disease transmission in a 
GWAS and application to field data are described in the 
“Discussion” section.

Methods
Key concepts, assumptions, terminology and data
To introduce the terminology and assumptions made in 
this study, Fig. 1 illustrates the key features of a disease 
transmission experiment in farmed animals. The experi-
ment typically consists of one or more “contact groups”, 
where a “contact” is defined as being any interaction that 
allows for a disease to be transmitted from one individual 
to another (e.g. physical contact, via aerosol transmission, 
or contamination of the environment2). Importantly, con-
tacts are assumed to occur randomly within groups but 
no contacts (and hence no transmission) occurs between 
groups.

In this study, which focuses on estimation of the effects 
of a particular SNP, it is assumed that individuals are ran-
domly distributed across contact groups with regards to 
genetic effects on the epidemiological traits that are not 
captured by the SNP under consideration (see “Discus-
sion”). This implies, for example, that related individuals 
(e.g. full-sibs or half-sibs) are assumed to be equally dis-
tributed across contact groups. The overall population is 
assumed to be composed of diploid individuals with a bi-
allelic genetic structure, such that “A” and “B” represent 
different alleles at the SNP or genetic locus under investi-
gation, resulting in three potential genotypes {AA,AB,BB} 
(Fig. 1).

The transmission experiment starts with two types of 
individuals (Fig. 1a): “seeders”, which are infected (either 
artificially or from prior exposure to other infected indi-
viduals3) at the beginning of the experiment, and “con-
tacts”, which are susceptible to the disease. After some 
time (Fig. 1b) the infection has passed from the seeders 
to some of the contacts, and possibly also between con-
tacts, while some infected individuals may have recov-
ered from disease. Note, “recovered” can also refer to 
an individual which has died, and the two are used here 
synonymously.4 Eventually (Fig. 1c), all infected individu-
als have recovered and typically some susceptible indi-
viduals remain that did not become infected. In reality, 
the experiment may be terminated before all epidemics 
have finished, in which case censoring of the data will 
need to be accounted for in the analysis. In this study, it 
is assumed that transmission dynamics are the same for 
seeder-to-contact individuals as for contact-to-contact 
individuals (in reality this may not be the case, and this 
has important implications for optimal experimental 
design, as highlighted in the “Discussion” section later).

1 It should be mentioned that the methodology and design principles outlined 
in this paper assume that R0 is higher than 1 for each contact group, so allow-
ing for sustained disease propagation. This may not be the case, e.g., for effec-
tive vaccines that confer a drastically reduced transmission rate.

2 Providing degradation of the pathogen in the environment is relatively fast, 
i.e. accumulation is not accounted for.
3 In the case of field data these would be index cases.
4 From an epidemiological standpoint these are equivalent because they 
both remove the infected individual from the system.
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Fig. 1 Schematic diagram of a disease transmission experiment. a The experiment consists of several contact groups in which some individuals 
are initially infected “seeders” and some are initially susceptible “contacts”. Each symbol represents an individual, and the annotations AA, AB and BB 
refer to the genotype of that individual at a given bi‑allelic SNP under investigation. b As the experiment progresses some susceptible individuals 
become infected and some infected individuals recover. c If the experiment continues until the epidemics die out, only susceptible and recovered 
individuals are observed in the final state (for practical reasons, experiments are often terminated before this point). Note that the spatial separation 
of seeders (left) and contacts (right) in this diagram is for illustrative purposes only (random mixing between individuals is assumed)
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For each group the genotypic makeup for the target 
SNP is characterised by the following key quantities: 
Hseed and Hcont represent the proportion of homozygotes 
(i.e. AA or BB) in the seeders and contacts, respectively, 
and χseed and χcont represent the so-called “homozy-
gote balance”, defined as the proportion of AA minus 

the proportion of BB individuals.5 Together, Hseed , χseed , 
Hcont and χcont define the three genotype frequencies in 
the seeder and contact populations that are controlled by 
the researcher (such that deviations from Hardy–Wein-
berg equilibrium may be created on purpose). These 

Table 1 List of key parameters and quantities

Type Parameter Description

Experimental design Ngroup Number of contact groups

Nseed Number of seeders (initially infected individuals) in each contact group

Ncont Number of contacts (initially susceptible individuals) in each contact group

Gsize Total number of individuals per group Gsize = Nseed + Ncont

Ntotal Total number of individuals Ntotal = Ngroup × Gsize

Hseed,z , Hcont,z Proportion of homozygotes (i.e. AA or BB) in the seeders and contacts, respec‑
tively, for group z

〈Hseed〉 , 〈Hcont〉 Average proportion of homozygotes across groups

χseed,z , χcont,z Homozygote balance (i.e. the proportion of AA individuals minus the propor‑
tion of BB individuals) in the seeders and contacts, respectively. E.g. χseed =1 
(− 1) if the seeder population consists of AA (BB) individuals only, and χseed = 0 
if the seeder population consists of an equal number of AA and BB individuals

〈χseed〉 , 〈χcont〉 Average homozygote balance across groups

Population‑wide epidemiological parameters β Population average transmission rate

γ Population average recovery rate

k Shape parameter that characterises the dispersion in infection durations of 
different individuals

Individual‑based epidemiological traits for individual j �j Force of infection (probability per unit time to become infected)

wj Mean of gamma distributed recovery time

gj , fj,rj Fractional deviation in susceptibility, infectivity and recoverability

SNP gSNPj  , f SNPj ,rSNPj
SNP‑based contribution to gj , fj,rj

ag , af ,ar SNP effects, i.e. half the change in gj , fj , rj comparing the AA and BB genotypes

�g , �f ,�r Scaled dominance factors (1 = A is completely dominant over B, -1 = B is domi‑
nant over A, 0 = no dominance)

Fixed effects bg , bf ,br Vectors of fixed effects for the three traits

X Design matrix for fixed effects

Residuals εg , εf ,εr Residual contributions to g , f  , r (coming from sources other than the SNP, fixed 
or group effects)

� Covariance matrix of residual contributions

Group effects Gz Group effects (accounts for differences in transmission rates in different contact 
groups)

σG Standard deviation in group effects

Bayesian model θ Set of all model parameters

ξ Set of all events (infection and recovery / death times) which may be unknown, 
i.e. latent variables in the model

Other parameters used in the analyses NI Total number of infections during experiment

φ Fraction of contacts that become infected

h Proportion of the total number of infections accounted for by seeders, 
i.e.h = Nseed/(Nseed + φNcont)

M Fisher information matrix

〈. . . 〉 Average over contact groups

. . . Average over entire infected population (included seeders as well as those 
individuals infected during epidemics)

5 E.g. χseed = 1 if seeders are only AA individuals, χseed = −1 if only BB indi-
viduals, and somewhere in between in the general case.
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quantities are used in later analysis and are summarised 
in Table  1, along with other key parameters (described 
below).

Previous studies have shown that the effects of SNPs 
and other genetic effects for the epidemiological param-
eters can be inferred from a wide range of available data 
that can be routinely collected from disease transmis-
sion experiments [15, 25, 30, 31]. These may consist of 
the times at which individuals become infected and/or 
recover/die, or of results from disease diagnostics tests 
that provide information on the disease status of individu-
als at particular points in time. Note that estimates can be 
inferred even for censored data and it is not required that 
transmission routes (i.e. who infects who) are known [15].

Based on these concepts, for a given disease and epi-
demiological data from a fixed number of genotyped 
animals, the optimal experimental design is determined 
by finding how the numbers of seeders ( Nseed ), contacts 
( Ncont) , the proportion of homozygotes (H seed and Hcont ), 
and the homozygote balance (χ seed and χcont) should be 
chosen for each contact group in order to maximise the 
precision with which SNP effects on susceptibility, infec-
tivity, and recoverability can be estimated. In particular, 
we identify designs for basic “blocks”, where each “block” 
consists of one or a number of contact groups with each 
group having Hseed , Hcont , χseed and χcont specified in an 
optimal way. These blocks can be replicated one or several 
times to make up the total contact group number Ngroup.

The genetic‑epidemiological model
The infection dynamics within each contact group 
described above (and illustrated in Fig. 1) can be repre-
sented by an epidemiological SIR model, with individuals 
that are classified as being either susceptible to infection 
(S), infected and infectious (I), or recovered/removed/
dead (R) [14]. The incorporation of individual-based trait 
variation into this model is taken from [15], which we 
briefly reiterate here for completeness. The force of infec-
tion �j (i.e. the probability per unit time that individual j 
becomes infected) and the mean infection duration wj are 
given by:

where β is a transmission rate parameter, γ is the popu-
lation average recovery rate, gj and rj represent frac-
tional deviations6 in the susceptibility and recoverability, 

�j = βeGz egj
∑

i

efi ,

(1)wj = (γ erj )−1,

respectively, of individual j , and fi represents the fractional 
deviation in infectivity of individual i (the sum goes over 
all currently infected individuals within the same contact 
group as j ). Finally, Gz is a random effect for group z , with 
mean zero and standard deviation σz , which accounts for 
group-specific factors that influence the overall speed of 
an epidemic in one contact group relative to another (e.g. 
animals kept in different management conditions or envi-
ronmental differences). The time for individual j to recover 
after being infected is taken to be gamma distributed, 
with mean wj and shape parameter k [15]. The individual-
based fractional deviations in susceptibility, infectivity, and 
recoverability are parameterised as follows:

where g , f  , and r are vectors (with an element for each 
individual) that are decomposed into gSNP , fSNP , and 
rSNP , which include the effects from the SNP under 
investigation, and fixed effects bg , bf , and br , where X is 
a design matrix (e.g. to account for sex differences in the 
traits or vaccination status).

The residuals ε = (εg , εf , εr) in Eq. (2) account for 
contributions from all SNPs, excluding the one being 
investigated, from other sources of polygenic variation, 
individual permanent non-genetic effects, and environ-
mental effects. These residuals are taken to be multivar-
iate-normal distributed with zero mean and covariance 
matrix I⊗� , where I is the identity matrix, reflecting no 
correlation between individuals, and � is a 3 × 3 covari-
ance matrix that characterises potential correlations 
between the three epidemiological traits.7 The residual 
structure does not explicitly distinguish between ran-
dom genetic and environmental effects, and relies on the 
assumption that individuals are distributed randomly 
with regards to the genetic effects on the epidemiological 
traits that are not captured by the SNP under considera-
tion (see “Discussion” for relaxing this assumption).

The SNP contribution to the traits for individual j is 
dependent on j ’s genotype in the following way:

where ag , af  , and ar are half the difference in trait values 
between the AA and BB homozygote genotypes and �g , 

g = gSNP + Xbg + εg ,

f = fSNP + Xbf + εf ,

(2)r = rSNP + Xbr + εr ,

(3)

ag af ar
gSNP
j = ag�g f SNP

j = af�f rSNP
j = ar�r

−ag −af −ar







if j is AA
if j is AB
if j is BB

,

6 “Fractional deviation” is defined by the exponential dependency in Eq.  (1), 
e.g. gj = 0.1 corresponds to individual j  being a fraction ≈ 10% more suscepti-
ble than a population-wide reference. 7 Over and above those coming from the SNP and fixed effects, themselves.
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�f  and �r represent the degree of dominance (a value of 
1 (− 1) corresponds to complete dominance of the A (B) 
allele over the B (A) allele, whereas absence of dominance 
is represented by a value of 0) [33].

The model in Eqs. (1–3) contains numerous parame-
ters, but from the point of view of establishing SNP-based 
associations, the key quantities are ag , af  , and ar , which 
are subsequently referred to as the “SNP effects” and 
characterise the changes in susceptibility, infectivity, and 
recoverability associated with different SNP genotypes 
(note, �g , �f  and �r are also important if dominance is of 
particular interest, as discussed later).

Results
Given data from a disease transmission experiment, 
inference can be used to estimate model parameters. 
Assuming an uninformative flat prior, posterior estimates 
and associated uncertainties can be captured by a mul-
tivariate probability distribution called the likelihood. 
The precision for each parameter is characterised by the 
posterior standard deviation (SD) in the corresponding 
marginalised likelihood.8 We begin by deriving analytical 
expressions for the SD of SNP effects for the three epi-
demiological traits under some simplifying assumptions 
(the infection and recovery times of infected individuals 

are known, effect sizes are relatively small, and fixed 
effects, group effects, and residuals are all ignored) which 
provides first insights for how precisions are affected 
by the experimental design. We then investigate how to 
maximise these precisions by optimizing this design.

For validation, analytically derived SDs were com-
pared against inferred values from simulated epidemic 
and genetic data for different experimental designs (for 
details on the simulation methodology and protocols 
used for the generation of graphs see Additional file  1). 
Inference was performed using the software SIRE [15], 
which incorporates a Bayesian methodology that is flex-
ible to different data types, can account for uncertainty in 
a statistically consistent way, and has been found to pro-
duce unbiased estimates for model parameters. Behav-
iour when the various assumptions outlined above are 
violated is also investigated (see Table 2 for a summary of 
all model and data scenarios considered).

Analytical expressions
SNP effects for susceptibility and infectivity
Based on the model presented in the previous section 
and known infection and recovery times, it is possible 
to analytically approximate the marginalised likelihood 
for the two variables ag and af  as a two dimensional 
multivariate-normal distribution with the inverse covari-
ance matrix given by the following 2 × 2 Fisher informa-
tion matrix (see Additional file 2 for a derivation of this 
expression):

Table 2 Data/model scenarios

This table summarises all the data/model scenarios used in this paper. The columns are as follows: Data (“Inf. + Rec.” means that infection and recovery times of 
all individuals are assumed to be known exactly, “Rec.” means only recovery times are known, and “Periodic DS checks” means the disease status of individuals is 
periodically checked); Design (this includes the five optimal designed illustrated in Fig. 2 as well as “HWE”, in which individuals are randomly allocated genotypes 
assuming Hardy–Weinberg equilibrium); Residual (a tick (✓) is indicated if the model incorporates the residuals ε =(εg , εf  , εr ) in Eq. (2)); Group effect (a tick (✓) is 
indicated if the model incorporates the random group effect Gz in Eq. (1)); Fixed effect (a tick (✓) is indicated if the model incorporates a fixed effect b = ( bg , bf  , br ) in 
Eq. (2)); and Information source (indicates the figure in the main text and in Additional files that relates to the corresponding scenario)

Data Design Residual Group effect Fixed effect Information source

Inf. + Rec Single group (no dominance estimate) ✕ ✕ ✕ Figure 3

Inf. + Rec Pure (no dominance estimate) ✕ ✕ ✕ Figure 4

Inf. + Rec Mixed (no dominance estimate) ✕ ✕ ✕ Figure 5

Inf. + Rec Pure/mixed (no dominance estimate) ✓ ✓ ✓ Figure 6

Inf. + Rec Pure (dominance estimate) ✕ ✕ ✕ Additional file 9: Fig. S3

Inf. + Rec Mixed (dominance estimate) ✕ ✕ ✕ Additional file 10: Fig. S4

Inf. + Rec Pure/mixed (no dominance estimate) ✓ ✕ ✕ Additional file 11: Figs. S5–S8

Inf. + Rec Pure/mixed (no dominance estimate) ✕ ✓ ✕ Additional file 11: Figs. S5–S7

Inf. + Rec Pure/mixed (no dominance estimate) ✕ ✕ ✓ Additional file 11: Figs. S5–S7

Rec. (no Inf.) Pure/mixed (no dominance estimate) ✕ ✕ ✕ Additional file 11: Figs. S5–S7

Periodic DS checks Pure/mixed (no dominance estimate) ✕ ✕ ✕ Additional file 11: Figs. S5–S7

Inf. + Rec Pure/mixed (no dominance estimate) ✓ ✓ ✓ Additional file 11: Figs. S5–S7

Inf. + Rec Pure/mixed (dominance estimate) ✓ ✓ ✓ Additional file 12: Fig. S9

Inf. + Rec HWE ✕ ✕ ✕ Additional file 15: Fig. S12

8 Marginalised means that all parameters other than the one being considered 
are integrated out of the likelihood, so leaving a probability distribution for 
that parameter. The mean of this distribution can be used as a parameter esti-
mate and the standard deviation characterises the precision of that estimate.
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where
(4)

M =NgroupφNcont

[

�Hcont� − �χcont�2 Var(χcont)
Var(χcont) Var(χcont)

]

+ NgroupNseed

[

0 W

W (2W + Y )

]

,

W = −log(h)�(χcont − �χcont�)(χseed − χcont)�,

10 E.g., if infections happen quickly in groups with seeders that have a high 
proportion of A alleles (irrespective of the genotype of the contacts), this pro-
vides direct evidence that A alleles confer greater infectivity.
11 This scaling is familiar in many statistical models where estimated con-
trasts typically scale with 1/

√
N , where N is the number of observations, 

simply because variances of averages scale with 1/N.
9 In the limit of large basic reproductive ratio R0, φ is 1, but for R0 close to 1, φ 
may be substantially smaller (see Additional file 8 for details).

The parameters are defined as follows: Ngroup 
is the number of groups, φ represents the frac-
tion of contacts that ultimately become infected,9 
h = Nseed/(Nseed + φN cont) is the proportion of infected 
individuals that are seeders at the end of the experiment, 
Hcont gives the proportion of homozygous contacts (i.e. 
proportion of AA plus BB), and χseed and χcont give the 
homozygote balance (i.e. proportion of AA minus BB) in 
the seeders and contacts, respectively. Note that Hcont , 
χseed , and χcont have (potentially) different values for each 
group. The angle brackets in Eqs. (4) and (5) denote aver-
aging of these quantities across groups, and Var(χcont) 
gives the variance of the homozygote balance for the con-
tacts between groups.

An important point to take from Eq. (4) is that M is 
actually the sum of two matrices. The first corresponds 
to information provided by infections that occur during 
the course of the observed epidemics (note this contri-
bution contains a factor NgroupφNcont , which is the total 
expected number of infected contacts) and the sec-
ond comes from information gained from the pattern 
of infections early on in the epidemics (since we know 

(5)
Y =(1− h)�(χseed − χcont)

2�

−
Nseed

φN cont

log2(h)�χseed − χcont�2.

these are mainly caused by seeders) as a result of differ-
ences in genetic makeup between seeders and contacts 
in the initial conditions10 (note this contains a factor 
giving the total number of initially infected individuals 
NgroupNseed).

Inversion of the Fisher information matrix defined in Eq. 
(4) leads to an estimate for the posterior covariance matrix 
(see Additional file 3 for further details). The square root of 
the diagonals of this matrix provide posterior SDs for the 
parameters ag and af :

These rather unwieldy expressions reflect a complex 
confounding between estimating susceptibility and infec-
tivity SNP effects. They show that precisions of param-
eter estimates depend not only on the number of seeders 
and contacts, but also on the genetic composition of each 
group for the SNP.

In spite of their apparent complexity, a number of 
important design lessons can be drawn from Eqs. (6) 
and (7): (1) they both scale as N−1/2

group (which means that 
increasing the number of groups by a factor of four halves 
the SDs)11; (2) a higher proportion of infections φ implies 
greater precision (the more contacts that become infected, 
the greater the available information on which inferences 
can be based, although uninfected individuals do provide 
some information about their susceptibility); (3) for large 
Ncont and fixed Nseed , we observe that both SDs scale as 
N

−1/2
cont  , meaning that greater precision results from a 

larger contact population (a notable exception to this is 
the case of a single contact group, for which the variance 
Var(χcont) in Eq. (7) becomes exactly zero, and so this 
term vanishes); (4) the SDs do not depend on the effect 

(6)SD in ag ∼=
1

√

NgroupφNcont

(

�Hcont� − �χcont�2
)

− Ngroup
(φNcontVar(χcont)+NseedW )2

φNcontVar(χcont)+Nseed(2W+Y)

,

(7)
SD in af ∼=

1
√

√

√

√NgroupNseed

(

Y +
2
(

�Hcont�−�χ2
cont�

)

W− Nseed
φNcont

W 2

�Hcont�−�χcont�2

)

− NgroupφNcont
�Hcont�−�χ2

cont�
�Hcont�−�χcont�2

Var(χcont)
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sizes (i.e. ag and af  do not appear in Eqs. (6) and (7)); and 
(5) precision is maximised when the homozygosity in the 
contacts is 1, i.e. �Hcont� = 1 , referring to experiments that 
only contains AA and BB contact individuals (as AB het-
erozygotes provide less information because they dilute 
the relative effects of the A and B alleles in the case of zero 
dominance).

12 E.g. in the case of livestock, pens are usually designed to house a certain 
number of animals.
13 Importantly, optimisation was not found to detrimentally affect the 
precision of susceptibility and recoverability effects, which are themselves 
found to be relatively insensitive to experimental design.

SNP effects for recoverability
Equivalent analytical expressions for recoverability can 
be derived (see Additional file  4 for further details). 
Assuming no dominance, this leads to:

where

represent, respectively, the average homozygosity and 
homozygote balance for the entire infected population 
(i.e. including the seeders and the contacts that become 
infected during the experiment). Note that inclusion of 
the shape parameter k in Eq. (8) incorporates the fact 
that recovery dynamics are governed by a peaked gamma 
distribution.

Dominance
So far, we made the assumption of no dominance between 
A and B alleles. However, it is worth noting that the ana-
lytical results obtained also apply for the case of complete 
dominance by means of a simple change in parameter defi-
nitions. When allele A has complete dominance over B, the 
genotypes AA and AB become indistinguishable, and so the 
homozygote balance parameters χseed and χcont can be rede-
fined as the proportion of AA and AB individuals minus the 
proportion of BB individuals in the seeders and contacts, 
respectively, and the homozygosity Hcont becomes 1.

In the general case, expressions for the SDs in the posterior 
distributions for �g , �f  and �r are as follows (see Additional 
file 5 for details):

(8)SD in ar =
1

√

kNgroup(Nseed + φNcont)(H − χ2)

,

(9)
H =

Nseed�Hseed� + φNcont�Hcont�)
Nseed + φNcont

and

χ =
Nseed�χseed� + φNcont�χcont�

Nseed + φNcont

(10)

SD in�g
∼=

1
∣

∣ag
∣

∣

√

NgroupφNcont

(

�Hcont� − �Hcont�2
)

,

where 〈Hcont〉 is the average homozygosity of all contact 
individuals. Interestingly, this expression is optimised 
when �Hcont� = 1/2 , irrespective of exactly how the 
homozygous individuals are distributed across groups. 
Note that the expression in Eq. (10) diverges to infinity 
in the limit of no homozygosity ( �Hcont� = 0 ) or complete 
homozygosity ( �Hcont� = 1 ), as expected.

For infectivity:

where,

and for recoverability:

where H  is the average homozygosity over the entire 
infected population (regardless of their distribution 
across groups), as defined in Eq. (9).

Experimental designs
From the outset, it should be emphasised that there is no 
single optimal experimental design because (1) the opti-
mal design depends on a trade-off in precision between 
different parameter estimates (a given design that esti-
mates one parameter as precisely as possible may be 
less precise for other parameters in the model); and (2) 
practical considerations often restrict what can be imple-
mented (e.g. physical or budget constraints may restrict 
the number of groups or group sizes12).

As will be demonstrated later, the infectivity param-
eter af  is the most difficult of the SNP effects to esti-
mate. It is natural, therefore, to focus on experimental 
designs that reduce the posterior SD in this parameter as 
much as possible.13 In the case of a single contact group, 

(11)SD in�f
∼=

1
∣

∣af
∣

∣

√

NgroupφNcontVar(Hcont)+ NgroupNseed(2WH + YH )
,

WH = −log(h)�(Hcont − �Hcont�)(Hseed −Hcont)�,

(12)
YH =(1− h)�(Hseed −Hcont)

2�

−
Nseed

φNcont
log2(h)�Hseed −Hcont�2,

(13)

SD in�r
∼=

1

|ar |
√

kNgroup(Nseed + φNcont)

(

H −H
2
)

,
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mathematical minimisation of Eq. (7) can explicitly be 
performed, leading to a unique optimal solution (see 
below). However, in the case of multiple groups (with the 
same overall number of individuals), such minimisation 
is challenging due to the complexity of the expression. 
Nevertheless, it was found that individually maximis-
ing each of the two terms in the denominator in Eq. (7) 
led to two contrasting approaches.14 As a result, three 
basic designs for disease transmission experiments 
emerge, as illustrated in Fig.  2 and discussed in detail 
below (along with design-specific analytical expressions 
for the SD in af  ): (1) a design for a single contact group, 
(2) designs referred to as “pure”, and (3) designs that will 
be referred to as the “mixed”. For simplicity, in the fol-
lowing we assume that the basic reproduction number 

Fig. 2 Optimal experimental designs. This figure shows the optimal 
composition of the seeder and contact populations for different 
experimental designs: a Single contact group design: ~ 15% of 
individuals are seeders, where seeders have genotype BB (or AA) and 
contacts predominately have genotype AA (or BB), with ~ 10% BB, to 
allow for estimation of the susceptibility SNP effect ag . Estimation 
of dominance was found to be challenging using only a single 
contact group (not shown). b Multiple groups “pure” design: ~ 47% 
of individuals are seeders. Seeders and contacts consist of different 
combinations of AA and BB across groups (and AB when dominance 
is investigated). c Multiple groups “mixed” design: a small number of 
individuals are seeders (typically two or three, sufficient to initiate 
epidemics). When dominance is not investigated, there is a 83%/17% 
split in AA/BB individuals in the contact population in group 1 and 
vice‑versa in group 2. When dominance is investigated, there is a 
80%/10%/10% split in AA/AB/BB individuals in the contact population 
in group 1, and these proportions are permuted to define the two 
other groups. Optimisation of these designs was (for the most part) 
based on maximising the precision with which the infectivity SNP 
effect af  can be estimated (since this was generally the most difficult 
trait to estimate). However in cases where maximal precision for af  
corresponds to minimal precision for ag , values are chosen to give 
equal precision to the two (e.g. ~ 10% BB in a, as discussed in the 
paper). The percentages above are, to a large extent, independent 
of R0 (see Additional file 8) or other factors in the model/data 
(see Additional file 11). For reference the optimal homozygote 
balance χseed and χcont (i.e. proportion of AA minus BB individuals) 
and homozygosity Hseed and Hcont (i.e. proportion of AA plus BB 
individuals) are shown for each design (the ‘ ≈ ’ symbols indicate that 
these are optimal values to be aimed for, accounting for the fact 
that the number of individuals is discrete). The same basic designs 
can be replicated multiple times within an experiment. Note that 
the results equally apply to the estimation of non‑genetic factors, 
e.g. vaccination effects (AA replaced with “Vac.” and BB replaced 
with “Unvac.” and dominance not applicable). The spatial separation 
between seeders and contacts in this diagram is for illustrative 
purposes only

14 Although not proven, numerical investigations suggest that experimental 
designs that have significant contributions from both terms in the denomina-
tor of Eq. (7) are no better than those shown in Fig. 2.

▸
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R0 is reasonably high such that most contacts become 
infected,15 i.e. φ ≈ 1 (even when this is not the case, the 
conclusions related to optimal design remain largely 
unchanged16).

Typically to increase experimental power, it is routine 
to perform multiple replicates of a given experimental 
design. This possibility is incorporated into the analytical 

expressions below by virtue of the fact that Ngroup refers 
to the total number of contact groups across all replicates.

Single contact group
Here, we consider the case in which the disease transmis-
sion experiment consists of just a single contact group, as 
illustrated in Fig. 2a. We investigate how the proportion of 
individuals that are seeders (i.e. Nseed/Gsize ), along with the 
genetic makeup in the seeders and contacts should be cho-
sen to infer the values for the SNP effects as precisely as pos-
sible. This is undertaken by varying each of these quantities 

Fig. 3 Single contact group design. Precision estimates for the single contact group design (no dominance estimate) in Fig. 2a. The left, middle 
and right columns show graphs for standard deviations (SDs) in the posterior distributions for SNP effects for susceptibility ag , infectivity af , and 
recoverability ar under different scenarios. a The fraction of seeder individuals is varied (arbitrarily fixing χseed = −1 , χcont = 0.4 ). b The composition 
of SNP genotypes in the seeder population is changed by varying χseed (fixing Nseed/Gsize = 0.15 and χcont = 0.4 ). Here the left‑hand edge of the 
graph corresponds to the case when all seeders are BB and the right edge is when they are all AA (points in between represent a mixture of the 
two). c The composition of SNP genotypes in the contact population is changed by varying χcont (fixing Nseed/Gsize = 0.15 and χseed = −1 ). Note 
that a low SD implies high precision. Dashed lines represent analytical results and crosses refer to posterior estimates from simulated data (see 
Additional file 1). Ntotal refers to the total number of individuals

15 In the continuum limit, the fraction of individuals that become infected φ is 
given by the solution of the transcendental equation φ = 1− e−R0φ , e.g. φ = 
0.94 for R0 = 3 and φ rapidly approaches 1 for higher R0 . See Additional file 8: 
Fig. S1 for a numerical solution to this equation.
16 Reduction of φ below 1 means that the analytical expressions in Eqs. (14) 
to (16) marginally overestimate precision.
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in turn while keeping the other two fixed. The results are 
shown in Fig. 3.

Before describing these graphs in detail, some general 
points can be made (irrespective of the experimental design). 
First, agreement between the analytical curves (dashed lines) 
and the simulation-based results (crosses), (for details see 
Additional file 1) is generally very good. A notable exception 
is when the analytic expressions predict very large SD (which 
manifests itself mostly for af  because of the large SD asso-
ciated with this parameter). This discrepancy arises because 
the assumption of small SNP effects used in the analysis 
becomes invalid. In the regime in which SNP effect sizes are 
not small, analytic expressions tend to be conservative in that 
they suggest that designs are poorer than they actually are. 
This shortcoming, however, is not very restrictive because it 
occurs in experimental designs in which very little informa-
tion is available anyway (which is not how an experimenter 
would aim to design their experiment; in addition the ana-
lytical results would warn against such designs).

Second, the SD of the recoverability estimates, ar (right-
hand column of the graphs in Fig. 3), are generally lower than 
those of the susceptibility estimates ag (left-hand column), 
which are themselves lower than the infectivity estimates 
(middle column). This was already noted in [15] and implies 
that the SNP-based differences in recoverability are the easi-
est to identify, followed by those in susceptibility, with SNP-
based differences in infectivity the hardest to estimate.

In the case of recoverability, the reason that estimates for 
ar are significantly more precise than for the other two traits 
is because recovery times are usually less dispersed (they 
typically follow a peaked gamma distribution) than infection 
times (which follow a wide exponential distribution). Esti-
mates of ar also do not suffer from confounding between 
ag and af  which can make them much less certain in many 
circumstances.

Lastly, since precision is expected to scale as the square 
root of the total number of individuals, the SDs for an 
experiment with 1000 individuals are expected to be a fac-
tor √10 = 3.2 times smaller than those for an experiment 
containing 100 individuals. This can be seen in Fig. 3 by an 
approximately constant distance between the black and grey 
dashed curves (note the log scale on the y-axis).

We now consider optimising the proportions of seeder 
and contact individuals in the single contact group 
design for maximum precision. Figure 3a shows the case 
of varying the proportion of seeder individuals for a 
given17 genetic makeup of the seeder and contact popu-
lations. Looking at the results for the SD in ag (left-hand 
graph in Fig. 3a) we see, generally speaking, that the SD 

reduces for fewer seeders, which is not surprising given 
that information regarding susceptibility comes from 
the infection times of the contact individuals. For a very 
small number of seeders, there is also the possibility of 
epidemic extinction, which leads to an increase in the 
SD (see Additional file 6: Fig. S10). Consequently, careful 
consideration must be given as to how many seeders are 
necessary to successfully instigate an epidemic within a 
group (this will depend on R0).

In contrast, the SD in the SNP effect for infectivity, af  
(as shown by the middle graph in Fig.  3a), has a differ-
ent optimum. For a single contact group, the analytical 
expression in Eq. (7) simplifies to:

where, due to the approximation φ ≈ 1 , h = Nseed/Gsize is 
the proportion of seeder individuals in the group (corre-
sponding expressions for the other two traits are in Addi-
tional file  7). The functional dependence on h gives the 
profile in the graph, which reaches its minimum when 
h = 0.15 (hence the choice of 15% of seeders mentioned 
in Fig.  2a). In fact, numerical analysis shows that, to a 
good approximation, this result remains true irrespective 
of the value of R0 (on which φ depends), as demonstrated 
in Additional file 8: Fig. S2.

Figure 3b shows how the SDs changes with the genetic 
makeup of the seeder population, as characterised by χseed 
(arbitrarily fixing χcont = 0.4 and using the optimum pro-
portion of seeders, h = 0.15 ). We find, however, that this 
genetic makeup has very little effect on the precision of 
estimates of ag and ar , but a large effect on the SD in af  . 
This is because information regarding infectivity actually 
relies on differences in the genetic makeup (i.e. the propor-
tions of AA, BB, and AB individuals) between the seeders 
and contacts,18 which results in variation in the genetic 
composition of the group of infected individuals over time. 
This is driven by the term (χseed − χcont)

2 in Eq. (14), with 
the analytical curves diverging in the limit χseed → χcont.

The reason that differences in the genetic makeup 
between the seeders and contacts provide information 
about the relative infectivity of A and B alleles can be 
explained intuitively as follows. Suppose χseed = −1 , such 
that the seeders are only BB individuals and χcont = 1 , 
such that the contacts are only AA individuals. Because 
susceptible individuals become infected as the epidemic 
progresses, the infected population becomes more 
and more a mixture of AA and BB individuals. Thus, a 

(14)

SD in af ∼=
1

√

Ntotal

(

h(1− h)− h2

1−h
log2(h)

)

(χseed − χcont)
2

,

18 If they are identical, the genetic makeup of infected individuals remains 
approximately unchanged as the epidemic progresses and infectivity and sus-
ceptibility effects become confounded.

17 Here seeders are set to be BB individuals, corresponding to a homozygote 
balance of χseed = − 1, and contacts are set to be 70% AA and 30% BB, corre-
sponding to χcont = 0.7 − 0.3 = 0.4. Note, the trend for fewer seeders leading 
to higher precision in Fig. 3a is true for any χcont.
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comparison of how quickly19 the epidemic develops early 
on as compared to later gives direct evidence for the rela-
tive infectivity of AA compared to BB individuals, and 
hence of the A compared to the B allele20 (so the preci-
sion at different χseed depends on the value of χcont , and 
vice versa).

Figure  3c shows a contrasting design space, in which 
the genetic makeup of the contact population varies 
between designs; thus we vary χcont (fixing χseed = −1 
and h = 0.15 ). Here we find that the SD in af  is mini-
mised when χcont = 1 , because this makes the contact 
population as genetically different from the seeder popu-
lation as possible. However, unfortunately here the SD in 
the susceptibility SNP effect, ag diverges because there 
are no BB contacts and so no information regarding their 
susceptibility. Therefore, to attain a reasonable preci-
sion for ag , χcont must be less than 1. A sensible choice 
is χcont ≈ 0.8 , which, as can be seen from the right-hand 
side of Fig. 3c, leads to only a modest increase in the SD 
in af  , with the SD in ag smaller than that for af  . This cor-
responds to around 10% BB individuals in the contact 
population, as quoted in Fig. 2a.

The single contact group design contains only AA and 
BB individuals and, therefore, no information regarding 
the dominance relationship between the A and B alleles is 
provided. Introduction of AB individuals into the seeders 
and contacts can inform �g and �r , but it turns out that 
almost nothing can be inferred regarding the infectivity 
dominance factor �f  (results not shown). Consequently, 
here this possibility is not investigated further.

Multiple contact groups: “pure” design
Perhaps the most intuitive experimental design, which 
we term the “pure” design, is illustrated in Fig. 2b. When 
dominance is not being investigated, this consists of run-
ning replicates that consist of four groups in which the 
seeders and contacts are each genetically homogeneous 
(i.e. “pure”) but have different combinations of geno-
types AA and BB across those groups. Such an approach 
is appealing because it allows conclusions to be easily 
drawn directly from the data. For example, if epidemics 
progress significantly faster in groups that contain AA 
seeders (i.e. groups 1 and 2 in Fig. 2b) compared to those 
that contain BB seeders (i.e. groups 3 and 4), this provides 
direct evidence that allele A confers greater infectivity 
than allele B (largely regardless of their relative suscep-
tibility). Similarly, the relative susceptibility of allele A 
compared to B can be found by comparing the relative 

epidemic speeds of groups where the infection was ini-
tiated by the same seeder genotypes, but the genotypes 
of the contact individuals differ (i.e. comparing groups 
1,3, and 2,4 in Fig. 2b). This design was implemented in 
[25] to estimate genotypic effects for a specific resistance 
marker on susceptibility, infectivity, and recoverability.

Figure 4a shows how the SDs in the SNP effects change 
as the fraction of seeder individuals varies. For the pure 
design, Eq. (7) simplifies to:

which is optimised when h = 0.47 , i.e. 47% of individu-
als should be seeders (expressions for the other two traits 
are in Additional file  9). Again, this conclusion largely 
holds regardless of R0 , as demonstrated in Additional 
file 8, even when the proportion of contacts that become 
infected substantially reduces as R0 → 1 . Comparing 
optimum solutions for the same number of individuals, 
we find that the SD in the SNP effect for infectivity, af , is 
around 1.6 times smaller for the pure design in Eq. (15) 
than for the single contact group design in Eq. (14). This 
means that disease transmission experiments using the 
pure design require 2.5 times fewer individuals to gen-
erate equivalent precision. This highlights the point that 
multiple groups substantially improve parameter esti-
mates for infectivity.

The design with no dominance estimate in Fig. 2b con-
sists of four groups. Suppose that, instead, we design an 
experiment with eight groups by copying the same basic 
design over two replicates (each containing half the num-
ber of individuals). Such an approach is investigated in 
Fig.  4b, where the number of replicates is changed for 
an (approximately) fixed total number of individuals. We 
find almost no variation in inference precision, which 
suggests that the experimenter is free to choose the 
number of individuals per group (as usually dictated by 
practical considerations), with the number of replicates 
driven by the total number of individuals available for 
the experiment. It should be noted, however, that design 
replication does play an important role in moderating 
the potential reduction in precision caused by group 
effects (as well as other systematic effects) that should 
be accounted for. This is discussed later in the “Realistic 
model and data scenarios” section.

The pure design above proved effective at precisely 
estimating ag , af  , and ar . However, because it does not 
contain AB individuals, it cannot provide information 
about the dominance relationship between the A and B 
alleles. To address this, here we introduce the pure design 
with dominance estimation, as illustrated by the second 

(15)
SDof af ∼=

1
√

Ntotal

(

2h(1− h)− h2

1−h
log2(h)

)

,

19 Note here that relative “speed” has to explicitly take the number of infected 
individuals into account, as defined by the model.
20 Importantly, the genetic composition in the contact population does not 
change (in the example it remains solely AA), and so there is no confound-
ing between susceptibility and infectivity.
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design in Fig.  2b. This consists of running replicates of 
nine groups, in which seeder and contact populations 
are each genetically homogeneous or “pure” within each 
group (i.e. the individuals within these groupings have 
the same genotype21) but take different seeder/contact 
combinations of AA, AB, and BB (for further details see 
Additional file 9). The corresponding analytical equation 
for the SD in af  is given by Eq. (15) multiplied by a con-
stant factor √(3/2) ≈ 1.2. Hence, this design leads to only 
a modest reduction in precision of SNP effect size esti-
mates, while having the benefit of also providing domi-
nance parameter estimates.

Multiple contact groups: “mixed” design
The so-called “mixed design” uses replicates of the design 
illustrated in Fig. 2c. Here, the contacts in group 1 con-
tain a mixture of genotypes and the contacts in group 2 
contain the complementary mixture (with AA and BB 
interchanged). Unlike the pure design, the mixed design 
does not rely on a large number of seeders (in fact the 
smaller the better).

Results for the mixed design are shown in Fig.  5. The 
middle graph in Fig.  5a shows how the SD in af  varies 
as the composition of SNP genotypes in the two contact 
populations is changed. Assuming the first term in the 
denominator of Eq. (7) is negligible, which is valid in the 
limit of few seeders, Eq. (7) simplifies to:

where χcont,2 = 1− χcont,1 . This is minimised when 
χcont,1 = 1/

√
2 (or χcont,1 = −1/

√
2 ), corresponding to 

15% BB and 85% AA in the contact population of group 1 
and ≈ 15% AA and ≈ 85% BB in the contact population of 
group 2.22 Expressions for the SDs in the SNP effects for 
susceptibility and recoverability are in Additional file 10.

An intuitive explanation of how this experimental 
design works is as follows. As with most disease trans-
mission experiments, when an infection occurs it is not 
known from which individual that infection originates. 

(16)SD in af ∼=
1

√

Ntotal

(

1− χ2
cont,1

)

χ2
cont,1

,

Fig. 4 The “pure” design. Precision estimates for the pure design (no dominance estimate) consisting of four contact groups per replicate with 
homogeneous seeder/contact SNP genotypes illustrated in Fig. 2b. The left, middle and right columns show graphs for standard deviations (SDs) 
in the posterior distributions for the SNP effects for susceptibility ag , infectivity af  and recoverability ar under different scenarios. a The fraction of 
seeder individuals in each contact group is varied. b The number of experimental replicates, each consisting of four contact groups, is varied (with 
smaller groups sizes keeping the total number of individuals approximately fixed). Dashed lines represent analytical results and crosses refer to 
posterior estimates from simulated data (see Additional file 1). Ntotal refers to the total number of individuals

22 Consideration of the small first term in the denominator of Eq. (7) shows 
that the seeder population is actually optimised when there are solely AA 
seeders in group 1 and solely BB seeders in group 2.

21 Seeders all have the same genotype and contacts all have the same geno-
type, but seeders and contacts may have different genotypes.
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However, a key feature of the mixed design is that there 
is a greater probability that infections are initiated by AA 
individuals in group 1, simply because there are more of 
them. Likewise, in group 2, BB individuals cause most of 
the infections. Consequently, if the epidemic in group 
1 proceeds more quickly than in group 2, it is tempting 
to conclude that the A allele confers greater infectivity 
than B. However, caution is required due to potential 
confounding between infectivity and susceptibility (as 
a similar argument could be made to suggest that the 

A allele confers greater susceptibility). Fortunately, this 
confounding is broken because for each group the rela-
tive rate at which AA and BB individuals become infected 
gives direct evidence for differences in susceptibility 
(irrespective of infectivity), so allowing precise estima-
tion of both ag and af  . The right-hand graph in Fig.  5a 
shows that estimation of the SNP effect on recoverability, 
ar , remains the most precise of the three traits.

Figure 5b shows that precision is greatest when the frac-
tion of seeders is small (subject to the extinction problem 

Fig. 5 The “mixed” design. Precision estimates for the mixed design (no dominance estimate) consisting of two contact groups per replicate 
with homogeneous seeder SNP genotypes and heterogeneous contact SNP genotypes illustrated in Fig. 2c. The left, middle and right columns 
show graphs for standard deviations (SDs) in the posterior distributions for SNP effects for susceptibility ag , infectivity af , and recoverability ar 
under different scenarios. a The composition of SNP genotypes in the contact population in group 1 is changed by varying χcont,1 while using the 
opposite value χcont,2 = −χcont,1 in group 2 and Nseed = 3 . b The fraction of seeders is varied (fixing χcont,2 = −χcont,1 = 1/

√
2). Dashed lines 

represent analytical results and crosses come from posterior estimates from simulated data (see Additional file 1). Ntotal refers to the total number of 
individuals.

Table 3 Parameter precision estimates

This table provides analytically derived estimates for parameter precisions (as measured by the posterior standard deviations (SDs) in the SNP effects ag , af  , and ar and 
dominance parameters �g , �f  , and �r ) for the optimum designs outlined in Fig. 2

Design SD in ag SD in af SD in ar SD in �g SD in �f SD in �r

Single group (no dominance estimate) 1.08√
Ntotal

3.09√
Ntotal

1√
kNtotal

∞ ∞ ∞

Pure design (no dominance estimate) 1.52√
Ntotal

1.96√
Ntotal

1√
kNtotal

∞ ∞ ∞

Pure design (dominance estimate) 1.86√
Ntotal

2.40√
Ntotal

1.22√
kNtotal

2.91

|ag|
√
Ntotal

3.76
|af |

√
Ntotal

2.60

|ar |
√

kNtotal

Mixed design (no dominance estimate) 1.41√
Ntotal

2√
Ntotal

1√
kNtotal

∞ ∞ ∞

Mixed design (dominance estimate) 1.73√
Ntotal

2.45√
Ntotal

1.22√
kNtotal

2.60

|ag|
√
Ntotal

3.67
|af |

√
Ntotal

2.60

|ar |
√

kNtotal
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mentioned earlier). This highlights that the mixed design 
predominantly gains information from infections within 
groups, whereas the pure design relies heavily of informa-
tion gained from the seeders (Fig. 4a).

Again, if no AB individuals are present in the mixed 
design, it cannot be used to provide information regarding 
dominance. Therefore, for completeness, we also include a 
mixed design with dominance estimation, as illustrated in 
Fig. 2c (for further details see Additional file 10).

For comparison, the precision of SNP effects from the 
five optimal designs in Fig. 2 are given in Table 3.

Other fixed effects
Note that our focus here is on estimating SNP effects, but 
it is important to point out that the analytical results and 
experimental designs outlined above are equally applicable 
to quantifying differences in susceptibility, infectivity, and 
recoverability due to other systematic effects. For example, 
if the influence of vaccination status is being studied, the 
AA and BB genotypes can simply be replaced by “vacci-
nated” and “unvaccinated” classifications (note that in this 
case there is no clear analogue of the AB genotype, so the 
dominance designs in Fig. 2b, c become redundant).

Realistic model and data scenarios
Derivation of the analytical results above made use of 
some key simplifying assumptions, including infection and 
recovery times of individuals being precisely known and 
that the epidemiological traits depend only on the SNP 
itself (i.e. the residuals and fixed and group effects in Eq. 
(2) were ignored). Here, we assess the impact of relaxing 
these assumptions and investigate what implications this 
has on experimental designs. In particular, five sources of 
additional variation in the model or data were investigated 
separately: (1) introducing residual variation in traits, i.e. ε in 
Eq. (2), (2) adding random group effects Gz in Eq. (1) (with 
standard deviation σG ), (3) adding a fixed effect (e.g. Xbg ,f ,r, ) 
in Eq. (2),23 (4) analysing data with unknown infection 
times, and (5) assuming only periodic disease status checks 
on individuals. Results of this investigation (for details see 
Additional file 11) showed that, while statistical power was 
reduced (by varying amounts), the optimal design features 
illustrated in Fig. 2 remained (approximately) unchanged.24

In the following, we sequentially add residual ( ε in Eq. 
(2)), group ( Gz in Eq. (1)), and fixed effect contributions 
( Xbg ,f ,r, in Eq. (1)) to the basic SNP-only model (i.e. the 

model without any of these other effects) to evaluate 
how this impacts the precision of SNP effect estimates. 
Focusing on the optimal pure and mixed designs (with no 
dominance estimate), results are shown in Fig.  6. These 
analyses assume a fixed total number of individuals Ntotal 

Fig. 6 Partitioning contributions to standard deviations for 
estimates of SNP effects. Residuals, group effects and a fixed effect 
are sequentially added to the basic SNP‑only model (infection and 
recovery times assumed known). The corresponding increase in the 
SDs in the posterior distributions for SNP effects is investigated for 
(a) the susceptibility ag , b the infectivity af  , and c the recoverability 
ar . For comparison, four different scenarios are investigated: a pure 
design (no dominance estimate) with respectively Ngroup = 4 (i.e. 
a single replicate of the basic design) and Ngroup = 12 (i.e. three 
replicates of the basic design) and a mixed design (no dominance 
estimate) with Ngroup = 4 (i.e. two replicates) and Ngroup = 4 (i.e. six 
replicates). In each case, ~ 1000 individuals were partitioned equally 
among the contact groups. The residuals were chosen to have the 
covariance matrix �gg = �ff = �rr = 1 , �gf = 0.3 , �gr = −0.4 , and 
�fr = −0.2 , the group effects had a SD of σG = 0.2 , and the fixed 
effect (assumed to represent sex with gender randomly allocated) 
had a size bg0 = bf 0 = br0 = 0.2 . Results were found to be largely 
insensitive to these essentially arbitrary choices

23 Specifically X is  a vector with elements randomly selected to be + 0.5 and 
− 0.5 representing male/female and bg0 , bf 0 , br0 are fixed effects that charac-
terise how sex affects the three traits.
24 The only exception to this was that under the pure design the optimal 
fraction of seeders reduced to around 20% when group effects were intro-
duced, but this increased back towards the optimal 47% with repeated 
experimental replicates.
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= 1000 and considers cases with 4 and 12 (through repli-
cation) contact groups (for results with only 100 individ-
uals see Additional file 12). The following conclusions can 
be drawn: (1) the SD for ar are smallest (and least affected 
by additional sources of variation), followed by the SD 
for ag , then the SD for af  ; (2) the SD for the basic SNP-
only model (i.e. without group, fixed or residual effects 
in Eqs. (1) and (2)) and for the model when residual 
effects are added is largely independent of the choice of 
design (pure or mixed) or of the number of replicates; (3) 
the increase in SDs when a group effect is added to the 
model is substantially smaller when the number of con-
tact groups is  increased from 4 to 12, and falls towards 
zero as the number of contact groups becomes larger (see 
Additional file 13: Fig. S10); (4) as shown in Fig. 6a, the 
group effect causes a big increase in the SD in ag for the 
pure model but had almost no effect for the mixed model 
(this is because in the pure model the contacts are geneti-
cally homogenous, so estimation of their susceptibility 
becomes confounded with the group effect, whereas in 
the mixed design, the relative infection times of individu-
als of different genotypes provides direct information 
for their relative susceptibility, irrespective of the group 
effect); (5) as shown in Fig. 6b, the group effect provides 
a slightly larger increase in the SD in af  for the mixed 
design compared to the pure design; and (6) adding fixed 
effects to the model leads to very little change in the SNP 
effect SDs, provided they are not substantially correlated 
with the genotype of individuals (see Additional file  14: 
Fig. S11).

Design tool software
The analytical expressions derived in this study, together 
with the diverse experimental designs, were implemented 
in the user-friendly online software tool SIRE-PC (sus-
ceptibility infectivity recoverability estimation precision 
calculator) (Fig.  7). This calculator takes details of the 
experimental design as user inputs, specifically the number 
and genetic composition of seeders and contacts in each 
group, the number of replicates, an estimate for the frac-
tion of contacts expected to become infected ( φ) , and the 
shape parameter that characterizes dispersion in recovery 
times ( k ). The outputs generated are the total number of 
individuals used in the experiment and analytical esti-
mates for the SD in SNP effects ag , af  , and ar in Eqs. (6) to 
(8), and for �g , �f  and �r in Eqs. (10), (11), and (13). Note 
that these expressions only consider the complete and no 
dominance cases, but the software actually allows interme-
diate dominance to be investigated as well.

Determining the appropriate experimental design is 
achieved by adjusting the input values, subject to any prac-
tical/logistic limitations (e.g. the number individuals per 
contact group may be fixed), with the aim of minimising 
the SD in the SNP effects. To facilitate this process, the 
tool includes the optimal experimental designs in Fig.  2 
and also provides the option for arbitrary user-defined 
designs to be investigated. Moreover, the software allows 
for precision estimates when studying vaccination effects 
on the three host epidemiological traits, as well as applica-
tions to GWAS and field data, as explained in the “Discus-
sion” section.

Fig. 7 Precision Calculator tool. SIRE‑PC (susceptibility infectivity recoverability estimation precision calculator) is an easy‑to‑use online software 
that calculates the analytical expressions provided in the "Results" section to help aid experimental design
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Discussion
There has been increasing acknowledgment within the 
livestock genetics community that the spread of infec-
tious disease in populations may not only depend on the 
genetic susceptibility of individuals to infection but also 
on their genetic infectivity and recoverability [25, 29, 31, 
32]. Indeed, Tsairidou et  al. [27] showed the importance 
of selecting for reduced infectivity in genetic disease con-
trol due to the large expected variation in this trait. While 
methods for estimating effects of SNPs and other genetic 
effects for these novel host traits from epidemiological 
data are emerging [15, 28–30], to date, limited considera-
tion has been given to the optimal design of transmission 
experiments. This study demonstrates that considerable 
improvements in the precision of estimates of SNP effects 
associated with all three host epidemiological traits can be 
achieved by choosing the appropriate experimental design. 
Here, this is explicitly illustrated by means of considering 
a single SNP with potential effects on all three host epide-
miological traits, but the same basic design features apply 
to any other categorical fixed effect (e.g. sex, family, line, 
vaccination status of individuals).

This study provides analytical expressions for the precision 
of estimated SNP substitution and dominance effects asso-
ciated with host susceptibility, infectivity, and recoverability, 
which have been implemented in an online software tool to 
assist with the design of transmission experiments and for 
statistical power analyses in experimental studies. To make 
the derivations tractable, the calculations were shown for a 
best-case scenario, in which non-SNP contributions were 
ignored and infection and recovery times were  assumed 
known. Nonetheless, the derived expressions were found to 
be in strong agreement with numerical results obtained by 
performing inference on data from simulated epidemics that 
account for a range of complications and confounding that 
are likely to be present in real data. The parameter that was 
found to be most difficult to precisely estimate was af  , which 
characterises differences in infectivity (as a result of it being 
an indirect effect). In contrast, estimates for susceptibility 
and recoverability effects were found to be relatively insen-
sitive to the experimental design. Consequently, optimizing 
experimental designs largely focused on improving the pre-
cision of af  estimates.

From these analyses, three types of optimal designs 
emerged. The first of these considered just a single contact 
group. It was found that, in principle at least, it is possible 
to infer af  if the group contains enough individuals. How-
ever, this would not be a recommended option because 
multiple groups provide a way of significantly increasing 
statistical power (as they allow for a direct comparison of 
epidemic behaviour between groups with substantially dif-
ferent genetic makeup). When implementing designs with 
multiple groups, two fundamentally different strategies were 

found: the “pure” and the “mixed” designs. The pure design 
uses seeders and contacts which, within themselves, have 
the same SNP genotype, but with seeder and contact geno-
types permutede across different contact groups, as shown 
in Fig. 2b (in cases in which dominance is not being investi-
gated this consists of replicates of four groups, and when it is, 
replicates of nine groups). Choosing an approximately equal 
number of seeders and contacts led to similar precisions for 
estimates of SNP effects on susceptibility and infectivity. In 
contrast, the mixed design relies on different frequencies of 
genotypes in the contact population across groups, as shown 
in Fig. 2c, with just a few seeders25 (here replicates of two or 
three groups are needed, depending on whether dominance 
is being investigated or not).

For a fixed total number of individuals, both the pure and 
mixed designs were found to be similar in terms of their 
precision for estimating SNP effects (see Table 3). However 
two features of the mixed design make it advantageous over 
the pure design: (1) when group effects are included, it was 
found to be significantly better at estimating SNP effects 
on susceptibility26 (because differences in infection times of 
individuals of different genotypes provide direct evidence 
for differences in susceptibility, irrespective of group effect), 
and (2) it requires far fewer seeders. The latter is particularly 
important for disease transmission experiments in which 
seeders are artificially infected and, therefore, may behave 
differently than contacts, who naturally acquire infection 
during the experiment.27 Consequently, we advocate the 
mixed design as the best approach to take because it largely 
relies on information from contacts, sidestepping the dif-
ficult issue of whether artificially infected individuals are 
epidemiologically representative of natural infections. Inter-
estingly, this design is much less intuitive28 than the pure 
design, illustrating the importance of the analytical expres-
sions derived in this work.

When implementing optimal multiple group designs, 
the analytical expressions in Table 3 suggest that the pre-
cision of parameter estimates is largely independent of 
the number of individuals within a group, given a fixed 
total (for example, using four groups in the pure design in 

26 Although there is a corresponding small reduction in the precision for 
infectivity SNP effects.
27 This can be mitigated by the so-called extended experimental design 
(in which artificially infected individuals are used to infect seeders prior 
to the start of the experiment), however, this not only increases the cost of 
the experiment, but also introduces additional uncertainty in the infection 
times of seeders which needs to be accounted for.
28 Intuitive in the sense that the pure design can be argued based on the 
fact that seeders and contacts provide information about infectivity and sus-
ceptibility, respectively, so they should each consist of a similar number of 
individuals and different groups should go through the genotypic combina-
tions for each. On the other hand, deriving the optimal genotype fractions 
for the mixed design is not intuitively obvious.

25 Typically two or three, sufficiently large to avoid the problem of epidemic 
extinction.
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Fig. 2b gave a very similar level of precision to using two 
replicates of four groups, each containing half the num-
ber of individuals). However in the more realistic scenario 
of significant random differences in disease transmission 
between groups (necessitating incorporation of the group 
effect term Gz in Eq. (1)), more replicates with smaller 
groups was found to be beneficial (especially true for the 
estimate of the SNP effect on infectivity).29

To the best of our knowledge, to date relatively few 
animal disease transmission experiments have been con-
ducted to specifically estimate host genetic effects on 
epidemiological traits [25, 34, 35]. Due to logistic restric-
tions on the number of contact groups, a multi-group 
pure design was used in a recent experiment involving 
infectious salmon anemia virus transmission in Atlantic 
salmon [34]. Although the experiment lacked statistical 
power to provide precise estimates for genetic effects, it 
revealed that high genetic resistance may not necessar-
ily confer beneficial effects on the epidemiological traits, 
as previously indicated for resistance of Atlantic salmon 
to the IPN virus [25]. Similar findings were reported in 
a recent small-scale porcine reproductive and respiratory 
syndrome (PRRS) virus transmission experiment in pigs 
to assess the effects of the previously identified GBP5 
PRRS resistance gene on pigs’ susceptibility and infec-
tivity under natural conditions [34, 36]. That experiment 
adopted a multi-group mixed design, but also used bar-
coding of the virus to track pig genotype-specific trans-
mission routes in order to increase statistical power. A 
multi-group mixed design was also adopted in a larger 
transmission experiment that aimed at estimating family 
effects on all three host epidemiological traits for para-
site (Philasterides dicentrarchi) infections in turbot fish 
[35]. The design of this experiment was guided by earlier 
studies on optimising estimates of indirect genetic effects 
(such as infectivity), which advocated designs with two or 
more families per contact group [37, 38].

Many previous studies have investigated the effects of 
vaccines on disease transmission in farmed animals (see e.g. 
[8] for a review), and corresponding optimal experimen-
tal designs [39, 40]. However, only relatively few transmis-
sion experiments explicitly distinguish between the direct 
effects of vaccines on host susceptibility and their indirect 
effects on host infectivity. Van der Goot et  al. [41] used 
multi-group pure designs with an equal number of seeders 
and contact individuals (identified as the optimal ratio in 

our study) to estimate vaccine effects on the epidemiologi-
cal host traits for avian influenza in chicken. However, in 
line with our results, a previous simulation study also iden-
tified a multi-group mixed design with a varying fraction 
of vaccinated susceptible individuals across contact groups 
as optimal for simultaneously estimating vaccine effects on 
host susceptibility and infectiousness parameters [40]. In 
that study, the optimal fraction of vaccinated individuals in 
each contact group depended on the effect size of the vac-
cine, on the epidemiological traits under consideration, and 
on the basic reproductive ratio for estimating infectivity 
effects. Based on our analytical expressions, the effect size 
only affected the precision of dominance effects, while the 
basic reproductive ratio had little effect on precision.

Implications for genome‑wide association studies
This study investigated experimental designs for which the 
composition of the seeder and contact populations were 
tailored to estimate the effects of a specific SNP of interest 
on all three host epidemiological traits. However, suppose 
that we are interested in performing a genome-wide asso-
ciation study (GWAS). In this case, allocation of seeders and 
contacts according to their SNP genotype is not possible 
(because the genotype composition will be different for each 
SNP). So how should experiments be optimally designed 
in this case? An analysis based on considering an arbitrary 
SNP that is in Hardy–Weinberg equilibrium [33], with fre-
quency p of allele A in a population consisting of unrelated 
individuals is in Additional file 15. The results showed that, 
as with the mixed design, precisions of estimates of SNP 
effects are maximised when epidemics are instigated with 
few seeders, and the following results can be derived:

Note here that these SDs crucially depend on p , which 
makes sense in the limits p → 0 and p → 1 , as the popu-
lation becomes uniformly homozygous with no informa-
tion regarding SNP effects. Most important, compared to 
the results in Table 3, the SD in af  now contains Ngroup 
in the denominator instead of Ntotal . This means that 
increasing the number of individuals in each contact 
group no longer substantially increases the precision 
with which af  can be estimated (a feature noted in [15]). 

SD in ag ∼=
1

√
2p(1− p)Ntotal

,

SD in af ∼=
1

√

2p(1− p)
(

2− 1
Gsize−1

)

Ngroup

,

(17)SD in ar ∼=
1

√

2p(1− p)kN total

.

29 In the case of a single replicate there is often confounding as to whether the 
overall speed of an epidemic within a group is due to its genetic makeup or 
the group effect which acts on the transmission rate. However, if several rep-
licates exhibit a similar behaviour (i.e. they are all slow) this directly points to 
the genetic effect (group effects average to zero because they are uncorrelated 
across groups).
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Consequently, when performing GWAS, many contact 
groups with fewer individuals lead to greater precision in 
estimating the SNP effect for infectivity (which, interest-
ingly, is not the case for the susceptibility or recoverabil-
ity effects). This hinges on the fact that infectivity acts on 
other individuals in the group, so smaller groups allow 
for more information regarding who is infecting whom. 
Although the derivations were based on genetically unre-
lated individuals, these observations are expected to 
remain valid for genetically structured populations.

Field data
We now consider the possibilities and additional com-
plications that arise when considering field data (that is 
data obtained from real-world disease outbreaks). As 
with the GWAS discussion above, here we do not have 
the luxury of being able to choose the composition of 
groups in terms of SNP genotypes. Nevertheless, the 
analytical expression in Eq. (17) provide power calcu-
lations that can estimate what could, in principle, be 
inferred (and again point to the fact that smaller groups 
sizes are more likely to yield good estimates for infec-
tivity SNP effects). In the case of field data, the “seed-
ers” are “index” cases which instigate the epidemics. 
Fortunately, the fact that there is usually just one index 
case coincides with the optimum for the precision of 
estimates of SNP effects, as discussed above.

When investigating vaccination effects, presence 
of some groups with a high vaccination rate and oth-
ers with a low (or no) vaccination rate, would natu-
rally lend itself to something akin to the optimal mixed 
design proposed in this paper. Hence, we would expect 
such experimental vaccination designs to be highly 
informative not only about susceptibility and recover-
ability effects, but also about infectivity.

It should be mentioned that analysis of real-world data 
comes with additional complications: (1) proper account-
ing for related individuals; (2) the fact that groups are 
not entirely closed (e.g. cows in different fields may share 
milking facilities); and (3) not all individuals start in the 
susceptible state, especially for endemic diseases. Tack-
ling these problems will require further development of 
the approaches outlined in this paper.

Further considerations
In this paper, epidemics were modelled using SIR dynamics, 
but it is important to point out that the results are equally 
applicable to diseases for which individuals do not recover 
(i.e. the SI model). In these cases, estimates of SNP effects on 
susceptibility and infectivity can be used in selective breed-
ing programs to reduce disease prevalence. Although more 
complicated compartmental models were not investigated, 

e.g. the inclusion of an exposed (infected but not infectious) 
state, the basic idea of accentuating differences between 
contact groups for the factor under study (e.g. by ensuring 
large differences in the SNP genotypic composition in the 
mixed and pure designs) to increase variation in epidemic 
speed (which in turn provides evidence for variation in 
infectivity), is expected to remain valid.

Table 3 provides a useful guide as to the size of the SNP 
effects that can be detected from a given experiment. It 
suggests that for datasets comprising 1000 individuals or 
fewer, only SNPs with large effects (typically explaining 
more than 15% of the total phenotypic variation) on the 
epidemiological host traits can be accurately estimated. 
Detection of the effects of SNPs with small to moderate 
effects would require significantly more data, in particu-
lar for infectivity. Although potentially challenging for 
livestock species due to the cost, such large-scale experi-
ments may be feasible for aquaculture and for smaller 
laboratory species (e.g. insects).

Although SNPs with large effects on disease resist-
ance have been identified [11, 22, 42], there is evidence 
to suggest that disease resistance is mostly polygenic 
[43]. So far, little is known about the genetic architec-
ture underlying host infectivity and recoverability, but it 
seems reasonable to expect that these may also be mostly 
under polygenic regulation. This study has ignored any 
polygenic contributions to Eq. (2) [28] by assuming that 
members from different families are distributed ran-
domly across groups. Incorporation of such effects may 
lead to new insights into optimal disease transmission 
design, and will be the subject of future research.

Conclusions
The aim of this paper was to identify optimal designs for 
disease transmission experiments to estimate the effects 
of a particular SNP of interest (or other factors) on the 
susceptibility, infectivity, and recoverability of individu-
als. It was found that while the precision of estimates 
of susceptibility and recoverability effect were rela-
tively insensitive to the design for a given total number 
of contact individuals (both being clearly related to the 
infection and recovery times of individuals themselves), 
infectivity was not (because its effects are evident from 
epidemiological data of other individuals). In particular, 
to precisely estimate genetic effects on infectivity, a so-
called “mixed” design was identified, which specifies the 
optimal proportions of different genotypes in the contact 
populations of different groups. Replication of this basic 
design was found to be effective at reducing confound-
ing that can arise from group effects. An easy-to-use 
software tool accompanying this paper was developed 
to aid experimental design by providing estimates for 
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the precision of parameter estimates. The results shown 
here illustrate that such estimates are reliable and robust 
to noise and to a range of potential confounding factors 
that are likely present in real-world disease systems.
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adding residuals, group effects and a fixed effect to the basic SNP‑only 
model. Here, we present the corresponding results assuming only 100 
individuals. 

Additional file 13: Fig. S10. Design replication. Description: Investigates 
how the reduction in precision when incorporating group effects can be 
moderated by means of design replication (that is repeating the same 
basic designs in Fig. 2 several times). 

Additional file 14: Fig. S11. Figure S11 investigates the addition of a 
single large fixed effect with elements in the design matrix X set in such a 
way as to give a certain degree of correlation with the SNP. 

Additional file 15: Rather than defining the proportions of genotypes in 
the seeder and contact populations, we consider the case in which indi‑
vidual genotypes are randomly allocated with A allele having frequency 
p, assuming Hardy‑Weinberg equilibrium. Fig. S12. Precision estimates for 
the SNP parameters with random genotype allocation.
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