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Abstract 

In this thesis we examine the question of model selection in systems which learn input-

output mappings from a data set of examples. The models we consider are inspired by 

feed-forward architectures used within the artificial neural networks community. The 

approach taken here is to elucidate the properties of various model selection criteria by 

calculation of relevant quantities derived in a Bayesian framework. These calculations 

make the assumption that examples are generated from some underlying rule or teacher 

by randomly sampling the input space and are performed using techniques borrowed 

from statistical mechanics. Such an approach allows for the comparison of different 

approaches on the basis of the resultant ability of the system to generalize to novel 

examples. Broadly stated, the model selection problem is the following. Given only 

a limited set of examples, which model, or student, should one choose from a set of 

candidates in order to achieve the highest level of generalization? We consider four 

model selection criteria. A penalty based method utilising a quantity derived from 

Bayesian statistics termed the evidence, and two methods based on estimates of the 

generalization performance namely, the test error and the cross validation error. The 

fourth method, less widely used, is based on the noise sensitivity of the models. 

In a simple scenario we demonstrate that model selection based on the evidence 

is susceptible to misspecification of the student. Our analysis is conducted in the 

thermodynamic limit where the system size is taken to be arbitrarily large. In particular 

we examine the evidence procedure assignments of the hyper-parameters which control 

the learning algorithm. We find that, where the student is not sufficiently powerful to 

fully model the teacher, despite being sub-optimal this procedure is remarkably robust 

towards such misspecifications. In a scenario in which the student is more than able to 

represent the teacher we find the evidence procedure is optimal. 

In the learnable linear setting we explore the relevance of the thermodynamic limit 

to real systems through the calculation of finite size corrections which reveal a rich 

behaviour. In particular, we focus on the hyper-parameter known as the weight decay 

showing that in finite sized systems the evidence assignment is inconsistent that is, it 
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is not optimal even in the limit of large data sets. Consideration of model selection 

based on the test and cross validated errors in finite sized systems shows that they too 

are inconsistent in terms of weight decay assignment. The performance resulting from 

the test error is shown to be an order of magnitude worse than that associated with 

the evidence. However, whilst of the same order the performance resulting from leave 

one out cross validation is shown to be generally superior to that associated with the 

evidence. 

Finally, returning to the thermodynamic limit we explore the problem of architec-

ture selection for a simple model. We find that the evidence, cross validation and the 

noise sensitivity can be used to select the number of segments of a piece-wise linear 

student learning a linear teacher at least when the models are appropriately regularized. 

lv 



Publications 

Some of the material in this thesis has been published, or is to be submitted for pub-

lication as follows. 

Marion G and Saad D 1995 A statistical mechanical analysis of a Bayesian inference 

scheme for an unrealisable rule. J. of Phys A: Math. Gem. 28:2159-2171. 

Marion G and Saad D 1996 Finite size effects in Bayesian model selection and 

generalization. J. of Phys A: Math. Gem. 29:5387-5404. 

Marion G and Saad D 1996 The statistical mechanics of cross-validation. In prepa-

ration. 

Marion G and Saad D 1995 Hyper-parameters, evidence and generalization for 

an unrealisable rule. In Advances in Neural Information Processing Systems 7:232-

Tesauro G, Touretzky D S and Leen T K (Eds.). Cambridge, Massachusetts: The MIT 

Press. 

Marion G and Saad D 1995 Data dependent hyper-parameter assignment. Annals 

of Mathematics and Artificial Intelligence. In press. 

V 



Contents 

1 Introduction 	 1 

	

1.1 	Background 	.................................1 

	

1.2 	General framework 	.............................8 

1.2.1 	Bayesian modelling 	.........................9 

1.2.2 	Review of existing work .......................15 

	

1.3 	Outline 	....................................17 

2 A Statistical Mechanical Analysis of a Bayesian Inference Scheme for 

an Unrealizable Rule 19 

2.1 Introduction .................................. 19 

2.2 Bayesian Formalism 	............................. 22 

2.2.1 	The evidence 	............................. 22 

2.2.2 	The performance measures 	..................... 24 

2.3 Learning scenario 	.............................. 26 

2.4 Thermodynamic averages 	.......................... 28 

2.5 Results and discussion 	............................ 30 

2.5.1 	The performance measures 	..................... 30 

2.5.2 	The evidence procedure 	....................... 34 

2.6 Robustness of evidence procedure ...................... 38 

2.7 Conclusion 	.................................. 40 

2.8 Appendix: response function for unrealisable rule 	............. 41 

3 Over-Realisable - the case of clever students 	 43 

	

3.1 	Introduction ..................................43 

	

3.2 	Piece-wise linear student 	..........................44 

	

3.3 	Hyper-parameters and priors ........................45 

3.4 Calculating average behaviour ........................46 

3.4.1 	Average response function 	.....................47 

vi 



3.5 	Generalization performance .........................48 

3.6 Optimality of evidence assignments 	....................50 

3.7 	Summary 	...................................51 

3.8 Appendix: Response function ........................52 

4 Finite Size Effects in Bayesian Model Selection and Generalization 53 

4.1 Introduction .................................. 53 

4.2 Objective functions 	.............................. 56 

4.2.1 	The evidence 	............................. 56 

4.2.2 	The performance measures 	..................... 57 

4.3 Finite system size 	.............................. 58 

4.3.1 	Consistency and unbiasedness 	................... 59 

4.3.2 	Self averaging 	............................. 61 

4.4 Data dependent hyper-parameter assignment 	............... 62 

4.4.1 	Simulation results 	.......................... 67 

4.5 Effects on performance 	........................... 72 

4.6 Comparison with cross-validation 	..................... 77 

4.7 Conclusion 	.................................. 79 

4.8 Appendices 	.................................. 79 

4.8.1 	Appendix A: calculation of the free energy 	............ 79 

4.8.2 	Appendix B: large p limit 	...................... 83 

4.8.3 	Appendix C: average case . . 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 84 

4.8.4 	Appendix D: self averaging . 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 84 

4.8.5 	Appendix E: calculation of covariances 	.............. 85 

5 	Model Selection by Estimating the Expected Error 87 

5.1 Introduction 	.................................. 88 

5.2 Model Selection from the test error ..................... 89 

5.2.1 	Separate testing and training sets 	................. 91 

5.2.2 	Partitioning the data base ...................... 98 

5.3 Leave-one-out cross-validation ........................ 106 

5.3.1 	Finite size effects 	.......................... 110 

5.3.2 	Cross-validatory performance 	.................... 117 

5.4 Comparison of model selection by cross-validation and evidence ..... 119 

5.5 Summary 	................................... 126 

5.6 Appendix: calculating (co)-variances of the cross-validation error. . . . . 	127 

vii 



6 	Discrete Model Selection 132 

6.1 Introduction .................................. 132 

6.2 Noise sensitivity signature 	.......................... 135 

6.2.1 	Average case 	............................. 137 

6.3 Cross-validation, CV(1) 	........................... 141 

6.4 Evidence 	................................... 142 

6.5 Comparison and summary .......................... 144 

6.6 Appendix: 	Bayes' factor 	........................... 144 

7 Summary and outlook 
	

146 

viii 



Chapter 1 

Introduction 

1.1 Background 

The history of science has witnessed the proposal, testing and rejection of compet-

ing models to account for various physical phenomena. In rare cases, for a time, the 

available data supports one of the suggested models and no alternatives are sought, un-

til new data reveal inadequacies in the chosen model. Models are sometimes based on 

deep theoretical insights, whilst others are based on observation; the so called empirical 

laws. Often, empirical models have proved a useful spring board to deeper theoretical 

understanding. For example, the empirical laws of Kepler were at least a vindication 

of the revolutionary ideas of Newton. In recent times, due to the increasing availabil-

ity of affordable computing power, remote sensing and data logging techniques, vast 

quantities of data have been produced and empirical models have come into their own. 

In this thesis we examine empirical modelling in a limited sense. In particular, 

the work presented here is grounded in the ideas, literature and ethos of the artificial 

neural networks community. Broadly speaking, the approach we take can be stated as 

follows. Through the examination of some simple cases we seek a clear understanding 

of some of the issues involved in the construction and comparison of empirical models 

inspired by the neural network paradigm. In particular we aim, where possible, to shed 

light on the issue of model selection through exact calculations of relevant quantities. 

In general these quantities are derived from Bayesian statistics and the calculations 

performed using tools from statistical mechanics. 

In the following pages we introduce the type of neural network models we will be 

concerned with, describing how they can learn from examples and introducing some 

terminology along the way. We briefly review the recent developments in the field of 

artificial neural networks mentioning some notable successes in the use of these networks 
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Introduction 	 2 

as applied to real problems. We then introduce the central concepts of generalization 

and model selection, the study of which will occupy us throughout this thesis. In section 

1.2 we will introduce the Bayesian formalism within which we conduct our study and 

review some of the existing approaches to the analysis of these problems, with particular 

reference to the statistical mechanical approach. Finally, in section 1.3 we will outline 

the remainder of the thesis. However, firstly we introduce some preliminary concepts 

surrounding the use of artificial neural networks as empirical models. 

When constructing empirical models of a given system or process one has essentially 

two choices. Firstly, one can attempt to utilise the limited, problem specific, mecha-

nistic (theoretical) understanding available. The resulting model is then completed 

through incorporation of the experimental (empirical) data to hand. Such models are 

also referred to as parametric. This, semi-mechanistic, approach can be regarded as 

a half way house between theoretical models and the fully empirical ones which are 

the focus of this thesis. In this latter approach the original model can be regarded 

as essentially unstructured or non-parametric. On presentation of the data we must 

then, to some extent, mould the model to fit the data. Nonetheless, as we shall see 

the incorporation of some information of a general nature, into the models prior struc-

ture is crucial to the success of this endeavour. Thus, the semi-mechanistic and the 

unstructured modelling approaches are subtly linked. 

One of the principal motivations behind the scientific endeavour, and thus the 

modelling enterprise, is the desire to make predictions. When constructing empirical 

models we accept that our understanding of the process being modelled is limited but, 

nevertheless hope to make the best possible predictions or inferences in light of the 

available data. In the neural networks community this process is known as learning 

from examples. As the name suggests work in this field is based on the notion that 

human beings, and indeed other animals are able to learn from experience. A child 

learns to speak through experimenting and listening to others, a lion cub learns to 

hunt through trial and error. Neither is born with either ability but learns through 

experience. Despite great efforts, humanity has not yet been able to mimic these 

natural learning systems using conventional computational approaches and hence the 

idea behind artificial neural networks is to borrow from nature's elegant solutions. 

Thus, we construct models based on a network of simple neuron-like elements connected 

by synaptic-like weights and adapt these connections in the light of experience, that 

is mould the model to the data. Indeed, in the attempt to recreate some rudimentary 

features of natural learning systems, this approach has proved useful and, as we shall 

see, its novelty has lead to many developments in recent years. However, it should be 

stressed that the models examined in this thesis bear only passing resemblance to real 
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neural systems. 

Learning from examples 

The problem of learning from examples is and has been studied in many disciplines. 

For example, in statistics where it is variously known as statistical inference, or non-

parametric inference (in the case of neural network type models), regression, interpo-

lation and classification (see, for example, Ripely (92) on the relation between neural 

networks and statistics). In the field of artificial intelligence, one refers to machine 

learning (e.g. Valiant (84)), whilst the problem has also been studied in the areas of 

speech recognition and image restoration (e.g. Geman and Geman (84)). Indeed, in 

comparison to these techniques, neural networks are relative new corners and should be 

considered as one of many possible approaches to the problem at hand. In general, the 

concept of learning from examples can be applied to many diverse problems but, in this 

thesis we focus on the problem of learning a rule which is an input-output mapping. In 

this problem we are supplied with a set of data by a friendly experimentalist who has 

gathered the data in one, or a series of experiments. In general, we note that the data 

will not be wholly reliable and we must take this into account in the modelling process. 

The observations are in the form of data pairs consisting of a set of attributes (inputs) 

and a set of properties (outputs) of the particular system under scrutiny. Our task is to 

construct an empirical model using this data which allows us to predict future values 

of the system properties from the attributes. That is, we wish to infer the rule relating 

the two; the mapping from the attributes to the properties, the inputs to the outputs. 

If no such rule exists, then we are wasting our time, but experience and indeed the 

history of science, shows that very often it does. If we are successful, in future when 

we measure the system attributes we will be able to predict the associated properties. 

This assumes that the relationship between attributes and properties does not change 

with time, or at least varies slowly, an assumption we will make throughout this thesis. 

The more general case of prediction in, so-called, non-autonomous systems is how-

ever, a growing field tackled in the artificial neural networks community by recurrent 

nets (see e.g. Williams and Zipser (89)). Nonetheless, the case studied here does not 

preclude application to dynamical systems where the attributes could represent the sys-

tem at some time, t, and the properties represent the system after some fixed interval, 

öt; only the mapping between states at time t and t + öt must remain constant. In this 

latter case the time interval, 8t, will clearly affect the mapping of the attributes to the 

properties but could also be included as an attribute. To summarise then, in this the-

sis we will be concerned with the problem of learning an input-output mapping which 
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does not vary with time. Furthermore, here we focus on the narrow definition where 

the system attributes and properties take on, or can be coded in terms of, numerical 

values. 

Mappings such as these can be realised by feed forward neural networks known as 

Multi-Layer Perceptrons, MLPs for short. Figure 1.1 shows a schematic diagram of 

an MLP, in which the information feeds-forward (up the page), from the input layer, 

through the hidden layers (only one being shown) to the output. A simple perceptron 

has no hidden layer. The hidden layers themselves consist of a number of hidden units 

which sum the inputs received from the preceding layer. This sum, known as the 

activation and denoted h in figure 1.1, is then passed through a transfer function, f, 

before being passed on to the next layer. Thus, each layer feeds forward its output to 

the next layer. The connections between each node are known as weights, the larger 

the weight the more influence a given input will have, with a weight of zero equivalent 

to disconnection. It is through adapting these weights that we alter the mapping 

represented by a given perceptron. In the context studied here a learning rule, or 

training algorithm, is a process by which, given a set of examples, one can modify the 

weights in the student network so as to better model the data supplied by a teacher 

(i.e. the underlying process generating the data). That is we mould or fit the model to 

the data. This is also referred to as supervised learning and, broadly speaking, training 

algorithms within this paradigm fall into two categories. In batch learning the student 

trains on all the available examples concurrently whilst in on-line learning one example 

is presented at a time. The potential of multi-layer perceptrons was demonstrated by, 

Cybenko (89) and Hornik et al. (89) who showed that MLPs using sigmoidal transfer 

functions were Universal Approximators. That is, given only one hidden layer, with 

sufficient hidden units and appropriate weights, they can represent any mapping of the 

inputs (attributes) to the outputs (properties) from very wide class of functions. Thus, 

MLPs have found a very broad range of applications. For example, we may wish to 

predict the possibility of a patient developing a particular malady given the outcome 

of certain tests, the price of oil in six months given key economic indicators, or the 

temperature in a blast furnace based on the running parameters. 

History 

Interest in artificial neural networks as an alternative computational paradigm dates 

back to the mid-forties (McCulloch and Pitts (43)). However, the current resurgence 

resulted from two developments in the early to mid 1980s. A thorough account of this 

history is to be found in the excellent introductory text by Hertz et al.(91) and we 
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Output 

Hidden 

Input 

Figure 1.1. Schematic of a two layer Multi-layer Perceptron (MLP): The flow of 
information passes up the page, from the input layer through the hidden layer. The 
inset shows a close up of nodes in the hidden and output layer, the output of each being 
a function, f, known as the transfer function, of the activations, h. The activations are 
weighted sums of the inputs to each node. It is adaptation of these weights that allows 
us to modify the network during training. 

will only briefly discuss these developments here. The first of these breakthroughs did 

not relate directly to feed forward networks but to symmetric networks in which, for 

each connection, from one node to another, there exists a connection in the opposite 

direction. In relating the behaviour of such networks to an energy function Hopfield 

(82) stirred the interest of statistical physicists leading to a substantial body of work in 

which this thesis is grounded. We will discuss some of the more relevant contributions 

later. The second important development was, in fact, the (re)-discovery of a learning 

rule, known as back-propagation, for general feed forward networks by Rumeihart et 

al.(86). This was perhaps the more significant discovery for it led to the successful 

application of such networks to a number of real problems. 

One of the most most famous of these applications was the NETtalk project (Sen-

jowski and Rosenberg (87)). This project trained an MLP, from a data base of ex-

amples, to recode written text into the appropriate phonemes which could then be 

'spoken' by a speech synthesiser. In fact, this network learned the task to a reasonable 

degree but does not perform as well as the commercially available package, DECtalk, 

which is based on linguistic rules painstakingly elucidated over many years. However, 

in comparison, NETtalk achieves remarkable performance for the relatively small effort 

it required. We can perhaps begin to see why neural networks have been termed the 

second best way to do anything; the best way involving a detailed and perhaps elusive 
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understanding of the system being studied. Amongst, other applications of feed for-

ward neural networks are the recognition of hand written ZIP codes (US numerical 

postal codes) (Le Cun et al.(89)), voice recognition (Lippmann (89)) and steering a 

car (Pomerleau (89)). A common feature to all these applications is that no principled 

method exists to solve the problem. That is, we can not write down a set of mathemat-

ically rigorous rules which would solve them (i.e. drive a car), at least not in generality. 

Thus, a useful approach has been to attempt to infer or learn underlying rules from 

examples. 

We briefly note here that this is not the only area in which artificial neural net-

works can be useful. Bishop et al. (95) successfully used an MLP to implement a well 

understood rule. In this case there was a need to control the magnetic flux inside 

an experimental fusion chamber. The physics of this problem is well understood but 

conventional computational approaches could not provide answers on the small time 

scales required by the experiment. In Bishop et al.(95) an MLP was able to learn the 

rule required to control the flux from examples generated by conventional simulation. 

Then, by implementing this network in hardware it was used to control the experiment 

in real time. This application demonstrates that the parallel architecture of artificial 

neural networks can lead to significant increases in speed as compared to conventional 

serial approaches. Other advantages often claimed for the neural network paradigm 

include robustness to noise and a graceful degradation in performance as individual 

components fail (see e.g. Hertz et al.(91)). This latter quality contrasts strongly with 

the catastrophic failure of conventional computers in such circumstances. However, 

here we do not consider these issues further. 

Generalization 

The preceding discussion glossed over many of the complications involved in the imple-

mentation of neural networks. These include the learning rule, or training algorithm 

and the architecture of our student, that is, the number of hidden layers and hidden 

units, to be used. Linked to these issues is the crucial question of generalization. That 

is, given a data base of examples we want to train our student such that it will be able 

to generalize to situations not included in these examples, since it is of little benefit 

to simply reproduce the training examples themselves. Indeed, as Wolpert (92) has 

pointed out a simple look up table would suffice. We formally define measures of gen-

eralization performance later. In fact, in the examples discussed above the training 

algorithms and architectures used do critically affect the generalization ability. An 

intuitive understanding of why this is so can be gained from considering the common 
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problem of fitting a curve to a set of data points. 

This is illustrated in figure 1.2 where the data points are shown by crosses. When 

these data points are unreliable, as in any real experiment they will be, we all know 

that drawing a curve passing through all the points is not the best thing to do in 

terms of predicting the true curve, the structure of which is generally supposed to 

be somewhat simpler. However, Wolpert (92) has noted there are no apriori reasons 

to reject the curve actually drawn, indeed, in some circumstances it might be the 

true curve. Nonetheless, experience shows that in the universe in which we live all 

possibilities are not equally likely. In fact, if they were it would not be possible to learn 

or generalize at all. Thus, in figure 1.2 we would choose a simpler curve because our 

prior conviction and experience point towards smoother curves. However, eventually, 

as we gathered more data points which supported the curve drawn, we would revise 

our opinion. 

Thus, given that we want our trained model to generalize, the training process 

must involve a careful balance between fitting the model to the examples in our data 

base whilst remaining true to our prior beliefs. In other words, during training we 

seek to avoid over-fitting the data. In general, complex models with many adjustable 

parameters (our example curve may have been generated by such a model) will be able 

to fit the data points more closely than simpler models. In fact, the principle, known 

as Occam 's Razor, that a simpler model is preferable to a more complex one, subject to 

the data, is widespread in science. The question of what constitutes an overly complex 

model is a difficult one and ultimately will depend on the underlying teacher one is 

trying to learn. Thus, problem specific knowledge (mechanistic understanding) should 

be employed where available. However, in this thesis we will be concerned with methods 

which attempt avoid over-fitting of the data in a more general sense and as we shall 

see the role of the training algorithm, in addition to the model architecture, plays a 

crucial role in this. 

Model selection 

In general, we will have a number of competing model architectures and training al-

gorithms and could, thus, generate a number of students all of which would generalize 

in different ways, some poorly, others better. In practice we only have access to our 

data base of examples and we must decide how best to use this data, we can not cheat 

by looking at the answer! The key question we seek to answer in this thesis is which 

models should be chosen in order to obtain the best generalization performance (i.e. 

the best predictions). In other words how do we select the best model from amongst a 
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Figure 1.2. Fitting a curve: The diagram shows a set of noisy data points marked by 
the crosses. The curve drawn is a rather unlikely fit and demonstrates the danger of 
allowing ones model (student) too much flexibility 

set of candidates. A number of different model selection methods have been proposed 

in the literature and here we will compare and contrast some of them, in particular 

with expressed regard towards the generalization performance we can expect from each 

of them. In the next section we will introduce the Bayesian formalism in which we will 

conduct our study, describe the model selection criteria we will examine and formally 

define the notion of generalization. 

1.2 General framework 

In this section we outline the general framework which we will use throughout this 

thesis, introducing some of the notation we will later use. This, section is thus, some-

what more formal than the preceding pages but hopefully, still of general interest. 

We high-light the areas on which we will focus, in later chapters, and briefly describe 

the connection between various approaches to the analysis of learning from examples, 

high-lighting work relevant to our study. 

Data generation 

Throughout this thesis we consider the case of modelling a mapping from an input 

space x, of N dimensions to an output space y. In fact, in all the examples we consider 

in subsequent chapters the output space is simply one dimensional and both inputs and 

outputs are real. Nonetheless, until otherwise stated, the formalism can be applied in 

the more general case. 

In order to perform our analyses we must make some assumptions about the way the 
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data is generated. Here we assume that the outputs, for a given input, are generated 

by an unknown teacher mapping described by the distribution P(yt  I x). We shall 

continue to use this notation, where the arguments denote the distribution of Yt  given 

x. This assumption accommodates, for example, deterministic teachers whose output 

is corrupted by noise. Implicit in this assumption is that the unreliability of the data 

can be modelled as a random process. Furthermore, we assume that during the data 

collection the input space is sampled with probability P(x). We describe this as our 

sampling assumption. Following its collection we have a data set, D, available consisting 

of p input-output pairs (yt(x), x), drawn independently from (P(yt  I x)P(x), P(x)). 

The data pairs are said to be independently but identically distributed ( i. i. d). Thus, 

the data set or data base, which is also referred to as the training or learning set, is 

denoted, V = {(yt(x), x') = l..p}. Moreover, we also assume that after training, 

when we measure the resulting generalization ability, the test data will be drawn from 

this same distribution as the training data. Thus, the sampling assumption remains 

constant, in addition to the constancy of the mapping, P(yt  I x), discussed earlier. 

Finally, we remark that the methods of experimental design, query learning or 

active data selection offer alternatives to this randomised data collection procedure. For 

reviews of this approach see Plutowski (94) and Sollich (95b). Indeed, it is intuitively 

clear that random examples contain redundant information as the possibility exists of 

selecting the same example twice. In general, the methods of experimental design listed 

above involve an active collection of data in an attempt optimise the useful information 

contained in the data set. That, is we design our experiment to provide us with the 

maximum information possible. Such an approach can be incorporated within the 

framework adopted here by adjustment of the sampling distribution, P(x) ( see e.g. 

Sollich (94b) and (95)) 

1.2.1 Bayesian modelling 

A key feature of the Bayesian scheme for model construction and comparison, outlined 

below, is the assumption that the model under consideration is actually capable of 

generating the data. In other words that the model, or student, is powerful enough to 

mimic the data generation process, P(yt I x), i.e. the teacher. Nevertheless, in general 

the models being entertained will not coincide with the teacher. In the framework, 

adopted here we are free to consider scenarios in which this is, indeed, the case. We will 

speak of an unrealizable scenario when the student is unable to model the teacher fully, 

over realizable when it is more than capable of doing so and realisable or learnable when 

the student architecture matches that of the teacher. This will enable us to examine the 
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effect of a violation of the assumptions implicit in the Bayesian approach. In this sense, 

perhaps we should talk of a pseudo-Bayesian framework (Meir and Merhav (94)). We 

also note that this goes some way towards the extended Bayesian formalism of Wolpert 

(92). However, here we do not consider a distribution of teachers but, rather, a fixed 

teacher which the student may or may not be able to model. 

Model selection using the evidence 

As discussed earlier, when considering modelling the data, V, provided to us we will 

often have a number of candidate models, M 2 , in mind. The notation, M, is short hand 

for the complete specification of the model which will include the model architecture 

Ai and the learning algorithm L i  used for the i th model. In general, the models or 

students we consider have a vector of adjustable parameters w 2 , these determine the 

output of the student, given the input, in a way dependent on the architecture, A. 
Accordingly, when the architecture is linear, the model output, in one dimension, for 

an input x, is y s (x) = w 1 x + wo. For an MLP the architecture is more complex as 

we must specify the number of hidden units and layers and the transfer function. As 

we have seen it is by tuning the parameters, w 2 , that we adapt the model to the data. 

The learning algorithm, 4, determines how this adjustment takes place, in other words 

how the student learns from the examples. The complete specification of model i is, 

then, denoted by M 2  = {A2 , £}. As we shall see below, in Bayesian terminology the 

learning algorithm Li  is defined by the the noise model and the prior distribution of 

model parameters. 

Since in general the data will be corrupted by noise the Bayesian scheme incorpo-

rates a noise model which we write as the density, 

P(y8  I x,w,M 2 ). 	 (1.1) 

In isolation this gives the probability of the model M, with parameters w 2 , generating 

any given output Ys,  given an input x. When we have an observed data set, D, available 

then we can write the probability of the model having generated the data as, 

P(V I Wi, Jvt) 	 (1.2) 

where, as we will continue to do, we have dropped the explicit dependence on the 

inputs x when we have more than one predicted value. Standard maximum likelihood 

estimation would have us infer the value of the adjustable parameters w 2  by maximising 

the expression in equation (1.2) which is then referred to as a likelihood function. 
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However, as we shall see in section 2.2.1 this method of parameter estimation can lead 

to the problem of over-fitting discussed earlier. 

It is for this reason that the Bayesian approach to model specification augments 

the noise model with a prior distribution (see e.g. Box (80), Mackay (92a), Gelfand 

and Dey (94)), 

P(w I -M). 	 (1.3) 

This is, then, the a priori belief in a particular assignment of the model parameters w 2 . 

However, as we shall see this can often be interpreted as some kind of regularization 

procedure (Mackay 92a). Often, the latter interpretation is easier to comprehend than 

the somewhat abstract notion of a prior distribution over student parameters. In 

fact, the framework outlined here encompasses a rather broad range of approaches to 

the problems of avoiding the over fitting of data. This includes both the weight decay 

approach to training which we examine throughout this thesis and Rissanen's minimum 

description length principle ( Rissanen (86) ). 

Combining the noise model and the prior gives us the full Bayesian specification 

of the model parameters, the, so called, posterior distribution of w conditioned on the 

data V, 

P(w2  I V, M) oc P(V I w,M)P(w  I M 2 ). 	 (1.4) 

Thus, we see that, in the Bayesian framework, the noise model and the prior specifi-

cation determine how the model parameters depend on the data, V. Thus, they depend 

on the learning algorithm as is implied by their dependence on the model specification 

Mi = {A, 4}. We will see this relationship demonstrated in a more concrete fashion 

in chapter 2. Since the specification of the noise model and prior can often be difficult, 

and to an extent arbitrary, an important question which we also discus in chapter 2 is 

the sensitivity of the posterior with respect to variations in these prior specifications. 

Such questions are considered under the title Bayesian robustness ( Berger (84)). 

It is clear that whilst the posterior may be useful in determining the model pa-

rameters it can not be directly used to compare different models. This is because the 

parameters of two models with different architectures have no common interpretation. 

Thus, Box (80) advocates the use of the posterior to determine the model parame-

ters whilst he argues that models themselves must be compared on the basis of the 
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predictions they make. Indeed, the predictive distribution of model M i  is given by, 

P(y5 I  x, M) = J dwP(y 8  I x, wi, M j) P (wi I M) 	 (1.5) 

The predictive density associated with a particular data set, D, is then the missing 

normalisation constant in equation (1.4) namely, 

P(V I M) = f dwiP(V I,wj,Mj)P(wj I Mi). 	 (1.6) 

This has been dubbed the evidence by Gull (88) and Skilling (93), a practice adopted 

by Mackay (see e.g. Mackay (92a)) and continued here. In fact, this term refers to 

the evidence for a given model provided by the data, V and derives from the common 

practice ( see e.g. Gelfand and Dey (94)) of assigning equal prior probabilities P(M) 

to the competing models M, in which case P(V I M) cx P(M Z  I V). Indeed, then in 

pairwise comparison of models i = 1, 2 the celebrated Bayes' factor is the ratio of the 

evidence of model 1 to model 2. That is, 

P(VIM1) 
B = P(V I M) 	

(1.7) 

The Bayes' factor, By, thus provides us with our first model selection criterion; model 

M1 being preferred if B> 1 and model M2 otherwise. That is, the model with the 

larger evidence is preferred. Mackay (92a) demonstrated that if the data was, in fact, 

generated by one of the models under scrutiny then the Bayes factor, or to be precise 

ln BF, would on average not favour any other model over this true model. However, 

we note that in general this average over all possible data sets can be misleading and 

this issue is explored in some detail in chapter 4. Furthermore, it is very often the case 

that none of the entertained models coincides with the true teacher. In this latter case 

the model with the largest evidence need not be the best generalizer, a fact shown for 

an explicit example in chapter 2. 

Once we have chosen a model we then wish to make predictions from it. One ap-

proach might be to take the maximum a posteriori, MAP, estimate, that is take the 

parameters that maximise the posterior and base our predictions on this. One advan-

tage of such an approach is the reduction in computational cost gained by only having 

to deal with one student from the posterior. However, it has been noted that averaging 

over the posterior can actually improve performance (see e.g. Pryce and Bruce (95)). 

Indeed, intuitively, by taking only the maxima we are discarding potentially valuable 

information contained in the remainder of the distribution. In addition the MAP es-

timate is not invariate under non-linear re-parameterisation of the parameters w (see 
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Bishop (95)). Furthermore, as argued above, one can not make meaningful compar-

isons between models using the posterior, thus we focus on the predictive distribution 

as a means to make such comparisons. 

The predictive distribution of equation (1.5) is, however, independent of the training 

data, V. Clearly we seek to make predictions conditioned on the data set since this 

reflects the effect of the incorporation of the data into our model; the effect of learning 

from the examples in our data set. The predictive density for an output, Ys,  at x 

conditioned on the training data is then dependent on the noise model and the posterior, 

P(y5  I x,V,M) = f dwP(y8 I x, wi, M j) P (wi I D,M). 	(1.8) 

In fact, following the argument above we will make predictions based on the average 

over this distribution. In other words, the output predicted by model M 2  for an input, 

x, when trained on the data, D, will be 

Yp = < Y s (X) >P(y8Ix,V,M) . 	 ( 1.9) 

Here we have introduced the notation (f (z))pI, 1  to denote the average of the quantity 

f(z) over the distribution P(z I h). We now turn to the questions regarding the quality 

of this prediction. 

Generalization 

In order to quantify the quality of predictions made by our model we must choose 

an error measure and throughout this thesis we will concentrate on the squared error 

measure. However, this is not the only possible form of error measure (Levin et al. (89)). 

Indeed, Wahba (85) makes this comment but notes that often proximity in a squared 

error sense implies closeness in alternate error measures. Furthermore, there is more 

than one choice of definition of squared error measure (See e.g. Hansen (93) and Krogh 

and Hertz (92)). For example, for a student output y, of one-dimension an example 

of such a measure is 

€(x,yp) = (YpYt(X)) 2 , 	 ( 1.10) 

which is the square difference between the prediction, y, of some model and a sample 

of the output of the true teacher, drawn from P(yt  I x). If the model prediction y was 

simply a sample from the predictive distribution P(y3  I x, V, M 2 ), namely y5 (x), then 

the error measure (1.10) would be equivalent to that defined by Hansen (93). However, 

in this thesis we will take the model output y p  to be defined by equation (1.9). An 
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alternative measure which we also consider is 

€(x,yp) = (Yp —  <Yt(x) >P(yt Ix)),  

that is the squared difference between a prediction y and the expected teacher output 

at x. This corresponds to the error measure used by Krogh and Hertz (92). The 

difference between these error measures (equations 1.10 and 1.11) is, on average, the 

variance over the conditional teacher distribution, P(yt I x). In chapter 2, where the 

teacher is a mixture model we will use the former error measure. Whilst, in chapter 

3 onwards where the teacher is a deterministic function corrupted by noise, we will 

employ the second measure, equation (1.11). As stated above, we will employ the 

average of the model output, over the conditional predictive density (equation 1.8), as 

the model prediction, y (see equation 1.9). 

Given a particular error measure, e(x, y r ), defined with respect to the underlying 

data generating process, the data dependent generalization error is defined as the ex-

pectation of e(x, y) with respect to the data generating process, P(yt I x)P(x). That 

is, 

eg (V) =< c(X,yp) >P(ytlx)P(x) . 	 ( 1.12) 

This data dependent generalization error, based on squared error measures, is our 

principal measure of performance and we will use it to compare the various model 

selection criteria we investigate in the subsequent chapters. The data dependency 

enters through the student output yp  which is conditioned on the data (see equation 

1.9). 

Other model selection criteria 

To date we have introduced only one model selection method based on ranking models 

according to the evidence afforded to each by the data. However, as Mackay himself 

notes there is no apriori reason why the evidence optimal model should coincide with 

the model of optimal generalization ability (Mackay (92a)). In fact, we shall see an 

example in chapter 2 where this is, indeed the case. Given this, one might naturally 

seek alternatives which are closer in spirit to the ultimate goal of optimising the gener-

alization error. We examine two such methods in this thesis, both are based on the idea 

of minimising some estimate of the generalization error over all the candidate models. 

We define these formally in chapter 5 where we examine model selection based on the 

test error and on the cross-validation error. Furthermore, we compare both of these 
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methods with that of the evidence. Finally, in chapter 6 we explore a model selection 

method based on the noise sensitivity signature of the model. 

1.2.2 Review of existing work 

In a real experiment one can never fully answer the question of which model is the 

optimal, rather one can only make statements in light of the available data. However, 

throughout this thesis we adopt a rather privileged position. That is we set up learning 

scenarios in which we know the true rule (the teacher), in the words of Brieman (94) 

we have a 'crystal ball'. We are then free to calculate the behaviour of various models 

(students) when presented with data sampled from this underlying rule. For example, 

we can calculate the model with the largest evidence. However, we can also calculate 

the generalization error for each model. As stated our ultimate goal is to achieve the 

best generalization performance. Thus, using this approach we can examine different 

model selection criteria in terms of their expected generalization performance and thus 

make some objective statements on the relative merits of each. 

Much theoretical work has been carried out concerning the problem of learning 

from examples. Broadly speaking, we can classify this work into three areas. That 

with the longest lineage comes from statistics, where much work has been conducted 

in the asymptotic regime, where the number of examples is arbitrarily large, p -+ 00. 

In particular, a number of results from this approach are relevant to us here, some 

relate to the performance of the cross-validation error (see e.g. Stone (77a) and (77b), 

Shao (93), Plutowski (94) and Wahba (85)) whilst Gelfand and Dey (94) hive unified 

a number of asymptotic analyses relating to the Bayes' factor and its variants. In 

addition, Meir and Merhav (94) studied Rissanen's stochastic complexity ( Rissanen 

(86) ) in the asymptotic regime. Clearly, the asymptotic approach is hardly relevant 

to the situation, more usual in practical applications, where the number of examples 

is of the order of the number of model parameters N8 . Indeed, this is recognised in 

the statistics community where increasing use is being made Monte Carlo techniques 

to evaluate quantities like the Bayes' factor for more realistic sample sizes, p (see e.g. 

Gelfand and Dey (94), Gelfand et al.(94), Neal (92) and Neal (93)). 

The second approach, known as Probably Almost Correct, PAC for short, derives 

from the computer science and artificial intelligence communities ( see Engel (94) and 

Anthony (95) for reviews). The PAC approach allows one to bound the generalization 

error of a particular model in terms of the sample complexity, p, and a model dependent 

quantity known as the Vapnik-Chervonenkis (V-C) dimension ( see e.g. Valiant (84), 

Baum and Haussler (89), Vapnik and Chervonenkis (71)). In particular, results in this 
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framework are said to be distribution free, that is no assumption is made concerning 

the input distribution, P(x). As a consequence the bounds on the generalization error 

take into account the worst case scenario and can thus be rather weak. Finally, PAC 

deals, in the main, with mappings between discrete spaces and thus has little direct 

relevance to the real valued inputs and outputs we consider. Nonetheless, within this 

approach Kearns et al. (95) investigated a broad class of learning algorithms, which 

they termed penalty based, comparing them to cross-validatory schemes. We will see in 

chapter 2 that the prior and noise model we consider fall into this class. 

The third approach, and one to which we alluded earlier, is rooted in the statistical 

physics community. This applies to the regime in which the input dimension, or system 

size, N of the mappings to be learned is very large. In fact, we must also allow the 

number of examples to grow with N and we define this thermodynamic limit more 

rigorously in the next chapter. The principal advantage of this statistical mechanics 

approach as compared to the asymptotic regime is that it allows one to consider cases 

where the ratio of sample size, p to model parameters is finite. In this approach 

one can analyse specific learning scenarios in which the sampling assumption, P(x), 

along with the student and teacher is defined. In contrast with the PAC approach 

more representative, typical case, generalization curves are calculated. Within the 

statistical mechanics approach generalization curves have been calculated for networks 

of varying complexity, an excellent review by Watkin et al. (93) covers much of this 

work. Note worthy are the contributions of Györgyi and Tishby (90), Sueng et al.(92), 

Krogh and Hertz (92) and Bös et al.(93). The majority of these calculations relate 

to the batch learning process where, as we shall see in chapter 2, training results 

in a Gibbs form for the posterior distribution. In the batch learning framework the 

most complicated network for which generalization curves have been calculated is the 

committee machine ( see e.g. Schwarze (93)). The committee machine is a special case 

of an MLP, but similar calculations for the general case seem somewhat intractable at 

present. However, recently some advances have been made in the case of on-line learning 

where generalization curves can be calculated for general MLPs (see e.g. Saad and 

Solla (95a)(95b)) Although, it should be noted that this has not yet been achieved for 

arbitrary numbers of hidden units so that the universal approximation theorems, we 

mentioned in section 1.1, do not apply. Unfortunately, these online algorithms do not 

conveniently generate a posterior distribution and thus these exciting results are not 

relevant to our study. 

The calculations presented in this thesis are performed within this statistical me-

chanics framework and in particular develop the work of Hertz et al.(89), Bruce and 

Saad (94) and Sollich (94a). Of particular relevance to model selection problems are 
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the works of Bruce and Saad (94) who examined the use of evidence in a learnable 

linear scenario and Meir and Fontanari's (93) study, within a binary system, of model 

selection based on the stochastic complexity (Rissanen (86)). We note here that the 

algorithms examined by both publications can be classed as penalty based approaches. 

Finally, we comment that the thermodynamic limit does compromise the applicability 

of the statistical mechanical approach to real world problems. However, recent work 

on finite size corrections has sought to rectify this problem. In particular, the work of 

Sollich (94a) demonstrates that thermodynamic results can be remarkably accurate for 

surprisingly small systems and recently, Barber (95) has studied finite size effects in 

cross-validatory errors. Furthermore, we calculate finite size effects in model selection 

problems in chapters 4 and 5. 

1.3 Outline 

We now, briefly, outline the remainder of this thesis. In chapter 2 we introduce a 

particular form for the noise model and the prior distribution. In particular, we make 

the assumption of Gaussian noise and a prior based on a complexity cost. We show 

how this Bayesian interpretation relates to the training process which can be described 

as a penalty based algorithm. We introduce two performance measures relating to 

generalization ability and consider a simple model selection problem namely that of 

selecting appropriate regularization parameters using the evidence criterion. The data 

generating process (teacher) we introduce allows us to interpolate between the learnable 

linear case and an unlearnable one in which the linear student is unable to model the 

teacher. The calculations presented are valid in the thermodynamic limit and are 

thus average case analyses. We briefly examine the robustness of the procedure with 

respect to the prior. In addition, we examine the evidence procedure in terms of the 

performance measures introduced. 

Chapter 3 picks up where the previous chapter left off asking what would happen 

if the student was more than able to represent the teacher. We consider the case of a 

piece-wise linear student learning a linear teacher. The scenario considered is a case of 

nested models where the reduced model is a subset of the full (student) model. The 

true model, in other words the teacher, is the reduced model. Again, the calculations 

are performed in the thermodynamic limit. 

In chapter 4 we explore finite size effects relating to the evidence procedure and 

selection of regularization parameters. We thus emphasise problems associated with 

average case analyses, showing that for finite sized systems such an approach can be 

highly misleading. We explore evidence assignments of the regularization parameters 
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and using simulations we corroborate these results showing that some of the quali-

tative features found in our first order finite size corrections are present in very low 

dimensional systems. Returning to the thermodynamic region we quantify the degra-

dation in performance of these evidence assignments and find that in the noiseless case 

a phase transition exists, mirroring that found by Bruce and Saad (94). Finally, mak-

ing use of numerical simulation we compare the evidence assignments with those of a 

cross-validatory assignment in a 1-dimensional system finding that the cross-validatory 

assignments are generally superior in terms of performance. 

We pursue this result in chapter 5 analysing not only the leave-one-out cross-

validation error ( CV(1)) but, also the test error, in terms of their efficacy in model 

selection. In particular, once again, we focus on the simple problem of choosing reg-

ularization parameters. We adopt the noise model and priors used in the previous 

chapters. In so doing we find that both CV(1) and the test error are optimal in 

the thermodynamic limit and, indeed, in an average case sense. Thus, the focus of 

this chapter is, once again, finite sized systems. In the case of the test error we focus 

on the question of optimal partitioning of the data base into test and training sets 

examining two criterion on which to base this partition. We compare the performance 

obtained for these partitions with that found for the evidence in chapter 4. Turning to 

the cross-validatory method CV (1) we examine its assignment of the regularization 

parameters and the effect of these on performance. We then compare performance of 

all three approaches, evidence, test error and CV(1). 

Finally, in chapter 6 we consider the problem of selecting a model architecture rather 

than the hyper-parameter assignment examined in the earlier chapters. We introduce 

model selection based on the noise sensitivity signature of Grossman and Lapedes (95) 

and compare it with cross-validation and the evidence in a simple architecture selection 

problem. We conclude by summarising our main results and considering open questions 

and topics for future research. 



Chapter 2 

A Statistical Mechanical Analysis 

of a Bayesian Inference Scheme 

for an Unrealizable Rule 

Abstract 

Within the Bayesian framework outlined in the previous chapter we consider a sys-

tem that learns from examples. In particular, using statistical mechanical methods in 

the thermodynamic limit, we calculate the evidence and two performance measures, 

namely the generalization error and the consistency measure, for a linear percep-

tron trained and tested on a set of examples generated by a non-linear teacher. The 

learning task is said to be unrealizable because the student can never model the 

teacher without error even for noiseless examples. In fact, our model allows us to 

interpolate between the known linear case and an unrealizable, non-linear, case. A 

comparison of the hyper-parameters which maximize the evidence with those that 

optimize the performance measures reveals that, when the student and teacher are 

fundamentally mismatched, the evidence procedure is a misleading guide to optimiz-

ing the performance measures considered. However, consideration of the degradation 

in performance invoked by the evidence assignments, as compared with the optimal, 

demonstrates that the procedure is nonetheless remarkably robust. 

2.1 Introduction 

In this chapter we seek to explore the effect of a misspecification of our model, with 

respect to the teacher, in terms of the reliability of the evidence as a criterion for 

model selection. In particular, we examine the case where the student is not sufficiently 

19 
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powerful to model the teacher. As discussed in chapter 1 we will use techniques from 

statistical physics to explore this issue in a simple learning scenario. Firstly, however, 

we consider training from a different perspective to the Bayesian view discussed in the 

previous chapter. In the next section we relate the two approaches. 

In general, one has a model mapping (a student) parameterized by some N3 -

dimensional vector w and some possibly noisy examples, V, generated by the true 

mapping (the teacher). During the training process one attempts to optimize the 

student parameters with respect to the underlying teacher. This task is said to be 

unrealizable when the optimal student does not model the teacher without error. The 

training error E (V) is some measure of the difference between the student and the 

teacher outputs over the set V. Here this will be based on a squared error measure 

as will the generalization error (see section 1.2.1). Clearly, E(V) is an unsatisfactory 

measure of performance since it is limited to the training examples and very often we 

are interested in the students performance on a random example potentially, but not 

necessarily, in the training data; one measure of this performance is the generalization 

error itself (see e.g. Krogh and Hertz (92)). 

The problem of over-fitting, discussed in section 1.1, occurs when we train our 

student so as to reproduce the noisy training data too closely. Thus, it can be seen 

that minimization of the training energy, with respect to the weights w, can lead 

to over fitting. In fact, this observation has lead to the procedure known as early 

stopping where one stops training the student when it has reached some finite residual 

training error which is above the minimum possible. In fact, in can be shown that 

early stopping is equivalent to the regularization procedure known as weight decay 

when using a quadratic training error (see Bishop (95)). In this chapter we do not 

examine early stopping explicitly but do consider regularization by weight decay. 

As noted earlier, in order to make successful predictions out with the set V (i.e. 

generalize) it is essential to have some prior preference for particular rules (Wolpert 

(92)). Occam's razor is an expression of our preference for the simplest rules which 

account for the data. Thus, in the learning process one can attempt to minimize 

/3E(V) + 'yC(w), combining a measure of the performance on the data set and some 

complexity cost C(w) of the model. The inclusion of the complexity cost penalizes 

complex models which, in general, will be able to over-fit the data to a greater degree 

than simpler ones. Kearns et al.(95) refer to such algorithms as penalty based for 

this reason. In discrete systems this is also known as the minimum description length 

principle (Rissanen (78)), where one minimizes the length of the code needed to describe 

the model itself and the errors it makes on the training set. In other words, as in the 

present case, one is trading off fidelity to the data set with model complexity. Rissanen's 
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stochastic complexity is one approach to this problem in discrete systems (Rissanen 

(86)). We also note, that in statistics minimization of a penalised cost function is 

known as regularization with the complexity cost termed the regularizer and 'y and 

/3 regularization parameters (see e.g. Craven and Wahba (79) and Wahba (85) for 

examples applied to splines). In the neural networks community when C(w) =w.w 

this regularization procedure is known as weight decay. The setting of the regularization 

parameters, /3 and y, also known as hyper-parameters, controls the learning algorithm. 

In this chapter we will concern ourselves with the question of how to set these hyper-

parameters. 

As we saw earlier, one can also consider the supervised learning paradigm within 

the context of Bayesian inference (see section 1.2.1). We describe how the above view 

of training, based on a penalized cost function, relates to this Bayesian framework 

in the next section. For now, however, we note that in this situation MacKay (92a) 

advocates a method based on the evidence (a quantity introduced in section 1.2.1) as 

a 'principled' method of setting hyper-parameters. Moreover, this evidence procedure 

is also a practical method since the evidence can be calculated from the data alone. 

Recently, there has been some debate as to the validity of this procedure (see e.g. 

Wolpert (93), MacKay (93) and Wolpert and Strauss (94)). However, most of this 

debate has focused on the validity of the evidence procedure as an approximation to 

a 'hierarchical' Bayesian calculation as opposed to its effects on student performance. 

We briefly comment on this debate later but focus on performance. In fact, in some 

situations the evidence procedure does seem to improve performance (Thodberg (93)) 

whilst in others, as MacKay points out, it can be misleading (MacKay (92 b)). We 

seek to explore these issues in a limited sense. 

In particular we ask two questions; which performance measures do we seek to 

optimize and under what conditions will the evidence procedure optimize them? Per-

formance measures, like the generalization error, are in some sense objective in that they 

indicate the extent to which the student has learned the underlying teacher. In order 

to investigate performance we consider particular classes of teacher and student. To 

date theoretical results have been obtained for a linear perceptron trained and tested 

on data produced by a linear perceptron (Bruce and Saad (94)). They suggest that the 

evidence procedure is a useful guide to optimizing the learning algorithms performance 

in this learnable case. In addition, also in an average case setting, Meir and Merhav 

(94) have investigated hyper-parameter assignment via minimization of the stochastic 

complexity of Rissanen (86). 

In the remainder of this chapter we examine the evidence procedure hyper-parameter 

assignments, in relation to performance, for the case of a linear perceptron learning a 
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non-linear teacher. In the next section we review the Bayesian scheme, as it applies to 

the current problem, introducing the evidence and the relevant performance measures. 

In sections 2.3 and 2.4 we calculate these quantities in the case where the data is gen-

erated by a nonlinear mapping and the student is linear. We then proceed, in section 

2.5, to examine the effects of the resultant unrealizability on the hyper-parameters 

derived from the evidence procedure. Finally, in section 2.6, we consider the effects 

of these assignments on performance, asking how robust is the evidence procedure to 

misspecification of the underlying problem? 

2.2 Bayesian Formalism 

2.2.1 The evidence 

In this section we introduce the specific forms for the noise model and prior distribu-

tion relevant to us here. In particular, we note that since we are concerned with the 

setting of the hyper-parameters we consider the model architecture, A to be held fixed. 

Furthermore, we adopt the training algorithm outlined earlier which is defined through 

the setting of 3 and 'y. We thus, have continuous spectrum of models to choose from 

(i.e. choice of 'y  and )3). Therefore, we drop the subscript in M i  and simply write 

the model specification as M = {'y, /3}, with the dependence on the architecture and 

penalty based algorithm implicit. 

As noted in section 1.2.1 we will concentrate on the squared error measure and 

thus, the training error, E(D), is the commonly used sum squared error. If our noise 

model assumes that the data is corrupted by Gaussian noise with variance 1/2/3 then 

the probability, or likelihood of the data(V) being produced given the parameters w 

and 13 is, 

P(D I w,/3) cx 	 (2.1) 

which is analogous to equation (1.2). However, in this case the dependence of the 

likelihood on the model, M is expressed solely in terms of the hyper-parameter, 3. We 

note here that maximum likelihood specification of the model parameters is tantamount 

to minimization of the training error, E(D), and can thus lead to over-fitting. 

In order to incorporate Occam's razor we also assume a prior distribution on our 

models parameters. That is, we believe a priori in some parameter assignments more 

strongly than others. Specifically we believe that, 

P(w I ) cx 	 ( 2.2) 
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Similarly, this is analogous to equation (1.3) and is dependent only on 'y, although the 

full model specification, as noted above, is M = {/3,'y}. 

Multiplying these together, as before, we obtain the posterior distribution, also 

known as the post training or student distribution, 

P(w I D, M) oc e (VC(%). 	 (2.3) 

It is clear that the most probable model parameter vector, w, is given by mini-

mizing the composite cost function 3E(V) + 7C(w) with respect to w. In this sense 

the Bayesian viewpoint coincides with minimization of this composite cost function by 

gradient descent (e.g. backpropagation). In fact, it should be noted that a stochastic 

learning algorithm based on a Langevin dynamics on the composite cost function can 

also give rise to the post training distribution, equation (2.3) (Seung et al (92)). Indeed, 

Buntine and Weigend (91) refer to this process as Bayesian Backpropagation. 

The evidence itself is the missing normalisation constant in (2.3), 

P(D I 'y,13) = f fJdw 3 P(v /3,w)P(w I 'y). 	 (2.4) 

This is, the probability of (or evidence for) the data set (D) given the hyper-parameters 

3 and -y. The evidence procedure fixes the hyper-parameters to the values that simulta-

neously maximize this probability for a given data set (MacKay (92a)). It is, therefore, 

analogous to use of the Bayes' factor discussed in section 1.2.1. 

ML II and Hierarchical Bayes 

We now comment briefly, on the specific approach taken here in relation to more general 

issues in Bayesian analysis. In the current context the evidence is used to determine 

the hyper-parameters. In particular, y parameterises the prior distribution of equation 

(2.2) and 3 can also be regarded as a prior assumption on the noise model. In using 

the evidence procedure, therefore we are selecting a prior belief, from a class of priors, 

using the data. Broadly, speaking such an approach has come to be known as empirical 

Bayes. Furthermore, in the approach used here, namely maximization of the evidence, 

the resultant prior is referred to as a type II maximum likelihood, or ML II, prior 

(Berger and Berliner (83)). In this case the evidence can be regarded as a likelihood 

function (see equation 1.2) for the hyper-parameters. As noted in section 1.2.1 a further 

issue, to be considered when one has a number of possible priors, is the question of 

robustness, or sensitivity with respect to changes in prior (Berger (85)). We discuss, 

these issues within the current context in section 2.5.2 and 2.6 
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In cases, such as that considered here, where one has a parameterised prior Hier-

archical Bayesian analysis offers an alternative to identification of a single most likely 

prior. In this case a prior is introduced on the hyper-parameter (e.g. P(-y)), a so called 

hyper-prior. One then proceeds by integrating out the hyper-parameter over this prior. 

Very often the choice of hyper-prior is difficult and uniform, sometimes improper (un-

normalisable), distributions are chosen. In the case considered here if we denote the 

hyper-prior on both our hyper-parameters by P(/3, y), then the posterior resulting from 

the hierarchical approach would be, 

P(w ID) cx f P(w I D,13,y)P(D I ,P([3,y)d0dy 	 (2.5) 

At the heart of the debate, mentioned earlier, concerning the validity of the ev-

idence procedure is Mackay's claim that often the evidence, P(D I , 'y), is rather 

peaked around the evidence procedure assignments, /3, and Yev ( see Mackay (92a) 

and (93)). In such cases Mackay, goes on to argue that P(w I D, 0, 'y,) is then a 

good approximation to the hierarchical posterior P(w I D). Wolpert (93) and Wolpert 

and Strauss (94) have pointed out that in many cases this is indeed not true, and the 

posterior resulting from evidence procedure assignments is a poor approximation to 

the hierarchical posterior. In section 2.4 we comment on this debate in relation to the 

learning scenario considered in this chapter. 

2.2.2 The performance measures 

Before defining our performance measures let us clarify our notation (introduced in 

section 1.2). In general we consider a teacher with real one dimensional output, yt(x), 

described by the conditional density P(yt I x). This accommodates, for example, 

deterministic teachers whose output is corrupted by noise. Furthermore, the inputs 

x are N dimensional vectors sampled with probability P(x). Thus a data set V= 

{(yt(x'), xP) : p = l..p} is generated with probability P(D) = P(yt  I xI)P(x /L). 

Also we will, in general continue to use the notation (f(z))p(zIh)  to denote the average 

of the quantity f(z) over the distribution P(z I h). However, we will use the short 

hand (.) to mean the average over the posterior distribution P(w I D,  'y,  /3). 

As mentioned earlier, we will base our predictions, for a given input x, on the 

average over the conditional predictive distribution, equation (1.8). That is, for the 

input x our student will output, (ys(x))p(y31x,V,M).  The notation implies that the 

output is conditioned on the input, x, for which a response is required, the data, D, 

on which the student has been trained, and on the form of the model, M, from which 

the student has been generated (see section 1.2.1). However, given our noise model 
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the average student output is equivalent to the average over the posterior, namely, 

(ys(X))w. 

Many performance measures have been introduced in the literature (See e.g. Hansen 

(93), Levin et al.(89) and Krogh and Hertz (92)). Throughout this thesis we consider 

squared error measures and here we adopt the definition of equation (1.10). The data 

dependent generalization error (equation 1.12) averaged over all possible data sets of 

size p is then, 

= (cg (D))p(v) = ((yt(x) - (Ys(x))w)2)P(yIx)P(x)P(v). 	 (2.6) 

This average generalization error is equivalent to that given by Krogh and Hertz (92) up 

to an additive teacher dependent constant, namely the variance in the teacher output 

over P(yt I x). 

Another feature we can consider is the variance of the student output, y 3 (x), over 

the posterior and input distributions, ({y3(x) - (ys(X))w}2)w,p(x). This gives us a 

measure of the confidence we should have in our post training distribution and could be 

estimated if we could estimate the input distribution P(x). Bruce and Saad define the 

consistency measure as the difference between this variance and the generalization error 

(Bruce and Saad (94)). Here we extend this definition to include the case of unlearnable 

rules, by adding the asymptotic value of the generalization error (i.e. adding = 

lim"e9 , where a =p/N.). Thus, e° is the minimum possible error achieved by the 

student considered. The consistency measure ö is now defined by, 

Jr 	 = {Y(X) - (ys(X))}2)w,p(x),p() - ( g - °). 	
(2.7)= (äc )p(v)  

In the case considered here we will see that the variance of the student output tends to 

zero in the limit of large data sets. Thus, ö also tends to zero as a —+ oo, even though 

the generalization error may not be zero. We regard 6, , = 0 as optimal since then we 

can estimate the decaying part of the expected error, c 9  - from the variance of our 

student output. 

The fact that the quantities (2.6) and (2.7) are averages over the data is just analyt-

ical artifice. For example, in an experiment we would wish to make predictions based 

on a single data set. In other words we would be interested in the data dependent gen-

eralization error eg (V) and consistency measure 5(D). In this chapter we conduct an 

average case analysis and thus, concentrate on the average generalization and consis-

tency, however, in chapters 4 and 5 we will focus on the data dependent measures. For 

now though when we refer to the generalization error or the consistency measure the 

data average is implied. Unfortunately these performance measures (averaged or not) 
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can only be calculated if we assume we know more about the teacher than simply the 

training examples. However, the evidence can in principal be calculated exactly from 

the data alone, although it does embody our assumptions about the noise process and 

prior distribution. Arguably, minimization of g  (D) is the ultimate goal of supervised 

learning. It is, therefore, desirable to know when the evidence procedure minimizes 

this quantity. We now set up a specific learning scenario in which we can examine this 

questions analytically. 

2.3 Learning scenario 

In the scenario considered here the student is simply a linear perceptron and the input 

dimension N equals the model dimension N8 . The output for an input vector x is 

given by 

	

y=iWjX 	 (2.8) 

In contrast, our teacher is a non-linear mapping which we refer to as an n-teacher 

because it is a mixture of n linear component teachers. The 1th component teacher is 

is corrupted by Gaussian noise of mean zero and variance o. The resulting conditional 

output distribution for the n-teacher is, 

	

P(y I x) = 	P(yt I x,)P(Q Ix). 	 (2.9) 

where P(y I x, Il) o exp([yt  - w.x/v"7] 2 /2a) accounts for the corrupting output 

noise, and using Bayes' theorem one can write 

Q)Pnt  (2.10) P(Ix)— 	P(x) 

	

 En Here the input distribution P(x) = 	pnt 	I Il) with P(x I Il) -'N(ã0,a) 1 

and P, which denotes the weight given to each component 1, is chosen such that 

P=1. Mixture models, of which equation (2.9) is an example, have recently 

received attention in the neural network community where one refers to a mixture of 

experts (see, for example Jacobs (95) and Jordan and Jacobs (94)). 

One way of visualising the n-teacher mapping is as the average over the conditional 

distribution P(ytlx).  Figure 2.1 displays some examples of a 2-teacher with one dimen-

sional input vector. Figure 2.1(i) shows the linear case whilst (ii) shows the average 

'Here we are using N(, a2 ) to denote a normal distribution with mean ic and variance a2. 
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of two linear teachers when the distributions P(x I Il) are the same, again the average 

output is a linear function of the input. Finally in Figure 2.1(iii) the distributions 

P(x I Q = 1) and P(x I Q = 2) are both centred on the origin but have different 

variances; the average output is a non-linear function of the input. In fact, for the 

general case, where the distributions, P(x I Il), have different means and variances, 

in the large N limit the input space is divided between the component teachers with 

each one representing a linear section of the mapping. In this way a non-linear teacher 

is constructed, in a piece-wise linear fashion, with n segments. As ri. grows we can 

steadily improve our approximation of arbitrary piece-wise linear functions. 

0.5 
	

f\(uuj) 
I' 

-- to.o 

V 

—0.5 

-1.0 	—0.5 	0.0 	0.5 	1.0 
x 

Figure 2.1. A 2-teacher in 1D : The average output (yt)p(ylx)  (i) when the component 
teacher vectors are aligned , (ii) when they are misaligned but a,11 = a 2  and (iii) with 

a 2  and with the teachers misaligned. 

Given this model a data set, of p examples, is given by D= fl 1 {(w° .x/v'+ 
tin An 

77 	x) : tLp = 1. .pç }. The variables ij are drawn independently from a Gaussian 

distribution with zero mean and variance 4 whilst the x are drawn independently 

from P(x I ). The range of the index pn is from 1 to pc where on average pci = 

P x P 1 . 

Adopting weight decay as our regularization scheme, that is C(w) = w.w, we can 

now explicitly write the evidence in terms of these random variables and then perform 

the integration over the student parameters (over weights). Taking the logarithm of 

the resulting expression leads to lnP(V I .X,3) = —Nf(V), where we have introduced 

the weight decay parameter, ). = y//3. The quantity f(V) is analogous to a free energy 

density in statistical physics. This analogy has been noted by others, for example Neal 
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(92). The expression for the free energy is of the form, 

f(V) = n + In + 1 
A a 	3 	

In 2-7r + 	lndetg + pjgjkpk - 	(2.11) - 	 — — — 

	

ir 2 ir 2 	2N 	N 

where, 

1 	fl 	 ) 
= 23 {(A)kw + 	

(L (x ) j  

Lfl (Lfl) 

	

K j (An)jkW nWk + 	 + ?)ç ?)c 

1  An 	An 
gk = 	+ A8k (A)k = 	

)j  (X 
	a = 

c=1 

Here we are using the convention that summations are implied where repeated indices 

occur. 

The performance measures can be calculated from data averages of appropriate quan-

tities derived from the evidence. Thus we find 

= 	{ww - 2w(w) + (w),})p(v) + 	 (2.12)

aLff= 	g)p(v) - 	- c°), 	
(2.13) 

2N)3 

where (w3 ) = Pk9kj and ox e
ff = 	The calculation of the free energy and these 

performance measures is outlined in the appendix 4.8.1. 

Due to the sampling assumptions in our learning scenario all these quantities are 

functions of random variables, that is of random data sets. To proceed analytically we 

must perform an average over these data sets (i.e. over the distribution P(V)). 

2.4 Thermodynamic averages 

In order to perform these averages we are forced to consider a particular n-teacher. 

We choose the 2-teacher (n = 2) with an input distribution with zero mean, an = 0. 

The method used to calculate the average is an extension to that used by Hertz and 

his co-workers (Hertz et al.(89)). Using this we can calculate the data average of the 

free energy, f, in the thermodynamic limit. That is, as N,p -+ 00 with a = p/N = 

constant. 
As we discussed earlier, considering the average over all possible sets of data is 

somewhat artificial in that we could calculate I (V) and would be interested in the 
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generalization error for our learning algorithm given a particular instance of the data. 

However, in the thermodynamic limit, due to our sampling assumptions these quan-

tities, as functions of a particular set of data D, coincide with their averages over all 

data sets. We will discuss the effects, on the evidence procedure, of the thermody-

namic approximation in more detail in chapter 4. However, the essential point is that 

the variances, over data sets, of quantities like the free energy or the generalization 

error are of the order 0(1/N). Thus, in the thermodynamic limit, the fluctuations, 

from one data set to the next, vanish and the behaviour associated with any particular 

data set corresponds to the average case. 

The fact that the free energy is self averaging has consequences for the validity of the 

evidence procedure as an approximation to the full hierarchical Bayesian calculation 

discussed in section 2.2.1. Sollich (95c) has noted that, since the evidence itself is 

given by P(D I ,.B) = exp(—Nf(D,'y,d)), then in the thermodynamic limit this is 

dominated by the saddle point of the left hand expression, namely by minimum of 

the free energy, f(V, 'y,  0). In other words, for large N the distribution, P(V I -Y, ,3) 

concentrates its mass around ('y, I3ev), which minimise the free energy. Thus, in the 

case considered here the posterior resulting from the evidence procedure is a good 

approximation to that derived from the hierarchical calculation (see equation 2.5). 

We now calculate these thermodynamic averages. Following the average over the 

noise variables we are left with the average over the input distribution. In particular, 

we need to calculate << g >>, <<Aç g >> and << A2 gA1 >>, where the double brackets 

refer to averages, in the thermodynamic limit, over the input distribution. The details 

are relegated to appendix 2.8, where equation (2.32) defines NC = tr << g >> and 

<<Aç g >> and <<A2 gA1 >> are defined by equations (2.29) and (2.30) respectively. 

The averaged free energy f can now be written 

	

1 	A 	a /3 	1 

	

------ 	g>>+f3o(Pa r — WiG) in - - - in - 
it - 

In 27r 	<<in det 

	

2 	2 	2 	2N 
+/3o(Pa - I'2G) + /3G(a, 1 AWi + a 2 AW2 + 'I'iW2D), 	(2.14) 

where Wç =<< En >> and En is defined in the appendix (see equation 2.26). Similarly, 

the generalization error is re-expressed in the form, 

	

69 = 	Orwi + PU,2 7 2  + Pa + Pa 

—2Pa 1 ('ia 1  + W2O)G - 2Pa 2 (W 2a 2  + 'I' 1 9)G 

+U 	[G {w 1 w2D + Wi(Ao a?)+2(A 	- )} J, (2.15)xff8 	 1 - 	 2 a2  
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whilst the consistency measure becomes, 

aC = ic— (€_€o), 	 (2.16) 
2/3 

and we have defined, 

	

D = 1w01_w02 1 2 	= w°  W 00 and O = w 01 .w 2  

The variable D is a measure of the Euclidean distance in weight space between the 

two components of the teacher whilst, a measures the magnitude of component Il and 

0w is the overlap between the two linear components of which the teacher is comprised. 

We also note that in two limits we recover the learnable, linear teacher, case. Firstly, 

if the probability, P, of picking one of the components of the teacher is zero then the 

additional terms in the free energy, equation (2.14), vanish and the response function, 

appendix 2.8, collapses to the quadratic linear solution. Similarly, if we assume that 

D and a1 - °X2 are small then response function and the free energy (and hence the 

generalization error and consistency) can be expressed as a Taylor expansion around 

the linear case. We now examine the evidence and the performance measures for the 

unlearnable problem. 

2.5 Results and discussion 

2.5.1 The performance measures 

Firstly let us consider the performance measures. The asymptotic value of Eg  for large 

ais 
t 2 	 + 0 

/ 1 \ 

	

a2 	
+ Pç aç1  + 	

a6 	a 	(\)' 	
(2.17) 

xff 	 xeff 

where repeated indices imply summation. Similarly, also for large a, 

(PPaaDw)30'4,a

1 \ 
a 	a6 

X2 

	
+ 	

) +
o(-). 	(2.18) 

In the limit of infinite a, öc tends to zero and = PPa 1  a 2 D/a + Thisff  
is the minimum generalization error attainable and reflects the effective noise level with 

a component due to the mismatch between student and teacher which vanishes when the 

two component teacher vectors are aligned (D = 0). This minimum error corresponds 

to a student weight vector with components wk = (Pa 1 w) + Pcr2w)/a ., which is 

simply an appropriate mixing of the component teacher weights. 
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Figure 2.2. The performance measures: Graph a shows the generalization error v's a 
for zero 'y.  a(i) and (ii) are the realizable case without noise and with noise respectively. 
Curve a(iii) is an unlearnable case where we can see that the unlearnability qualitatively 
acts in the same manner as noise (i.e. causes a divergence). Graph b shows €g  for finite 
'y. b(i) and (ii) are learnable scenarios in the latter case with noise. b(iii) shows that 
the effect of adding unlearnability is qualitatively the same as adding noise. Graph c 
shows JJ, j for 'y —* 0, note that for a < 1 the consistency measure diverges. Graph c(i) 
shows the learnable linear case. c(ii) shows the unlearnable but linear case and c(iii) is 
the non-linear case. Curve c(iv) shows the effect of setting the learning temperature to 

1//3ev ; the evidence optimal temperature. In this latter case the optimal value 
of the consistency measure is 6 1= 0, for a > 1, and thus, the evidence assignment is 
sub-optimal in the non-linear regime. Graph d shows the modulus of the consistency 
error v's a for finite y.  Curves d(i) and (ii) are the learnable case without and with 
noise respectively. Curve d(iii) is an unlearnable case with the same noise level. 
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Another limit which we can examine is the case of an unregularized student distri-

bution ('y -* 0). In this case we must be careful as the response function G is ill defined 
for a < 1. In fact, the consistency measure diverges in this region. However, in this 

limit for a < 1 the generalization error is, 

    
(Pi 	'2 	tPtDw), 	(2.19)l = (a, PQ' , 	, , 
	

+ aPig a 	+
1-aa2 

 
a2  Xj 	 52 

which clearly shows a divergence, as a approaches unity from below, if we have noise 

on the examples and/or the component teacher vectors are not aligned (D > 0). The 
function r represents the remaining, non-diverging, component. This divergence is also 

seen as a approaches 1 from above. If we expand € about a = 1 the first term is 

(Or2or2
2Pi + aa 1 P + Pi

t Pt  cr2ci1D ) (
a - 1) - '. 	(2.20) 19 	

0Xeff0 012 Xj X2 

In accord with standard results (e.g. Krogh and Hertz (92) and Dunmur and 

Wallace (93)), if there is no noise and D = 0 (i.e. noiseless learnable linear case), 

the generalization error is proportional to 1 - a for a < 1 and zero for a > 1. Figure 

2.2(a) shows the generalization error in the zero -y  limit. The case of noiseless linear 

teacher is included for reference. In this case, the addition of noise causes e to diverge 

at a = 1. We also observe the same effect when we have a nonlinear teacher. As the 

scalar product between the component teachers reduces (D increases) the divergence 

becomes more rapid. Thus, the unlearnability of the teacher acts as an effective noise 

on the examples. 

We also see this effect in Figure 2.2(b) which shows the generalization error for 

finite -y plotted against a. In this case also, the addition of unlearnability has a similar 

effect to the addition of noise on the examples. The peak in the generalization error, for 

small but finite -y, can be regarded as the precursor to the divergence at a = 1 as 'y -* 0 

discussed above. The appearance of this maximum can be easily understood; If there 

is no noise or 'y  is large enough then there is a steady reduction in i (2.2(b), curve (i)), 

however, if this is not so then for small a the student learns the effective noise and the 

generalization error increases with a. As the student gets more examples the effects 

of the noise begin to average out and the student starts to learn the rule. The point 

at which the generalization error starts to decrease is influenced by the effective noise 

level and the prior constraint. We note here that the idea that unlearnability acts as 

an effective noise is not new (see for example Sollich (95a)). 

Figure 2.2(c) shows the consistency measure for y — 4 0, for a < 1 this diverges even 



Evidence and Generalization 	 33 

in the learnable noiseless limit. Again unlearnability acts as an effective noise. As we 

shall see in section 2.5.2, in this limit, the consistency is optimized by the evidence 

procedure for the linear case only. A non-linear case is shown in figure 2.2(c), curve 

(iv), where the temperature, defined by T 1//3, is set by the evidence procedure. 

Since, the optimal consistency measure is actually zero the evidence assignment is seen 

to be suboptimal in this case. 

Finally Figure 2.2(d) shows the absolute value of the consistency measure versus 

a for finite 'y. Again we see that unlearnability acts as an effective noise. The post 

training distribution variance reduces as a increases. For a few examples with 'y  small or 

with large effective noise the student distribution narrows until 5 is zero. However, the 

generalization error is non-optimal since the students have simply learned the effective 

noise. The position of the zero of the consistency measure is a reflection of the trade-off 

between the effective noise and the weight decay described above (curves (ii) and (iii) in 

figure 2.2(d) show the result of varying the effective noise). As a increases further kI 
begins to increases to a local maximum, it then asymptotically tends to zero. If there 

is no noise or 'y  is large enough then 1J,j steadily reduces as the number of examples 

increases (as shown in curve (i) of 2.2(d)), since then both € - and the variance of 

the posterior distribution decay monotonically with a. 
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Figure 2.3. Optimal temperatures in the 'y -+ 0 model: (i) The evidence procedure 
estimate Tev  and that which optimizes the consistency measure T5  coincide in the 
linear regime. In the non-linear regime (ii) shows the dependence of Tev  on a and (iii) 
shows that of 
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2.5.2 The evidence procedure 

We now turn to the evidence and, in particular, to the assignments of the hyper-

parameters we can make from it. We define 3ev(7)  and yev(/3)  to be the hyper-

parameters which maximise the evidence with respect to fixed y and /3 respectively. The 

evidence procedure picks the point in hyper-parameter space where these curves coin- 

cide. Furthermore, we define /3 and -yT to be the solutions to 1im 	7= t.=  0 

and lim 	I=const.= 0 respectively. In what follows we shall refer to the linear 

regime as the case when a1 = ° X2 or when D 	0 and a 1  = 0'2. This is because the 

average teacher output is then linear. In contrast, when D > 0 and a 	a 2  and 

the average teacher output is an N dimensional analogue of curve (iii) in figure 2. 1, we 

shall speak of the non-linear regime. We also note that if a a 2  and al a2  then 

the noise is not constant across input space. 

The 'y —* 0 limit 

The simplest case is the unregularized limit where we have only one hyper-parameter 

(3) to optimize. Before proceeding we note that the hyper-parameter /3 can be written 

in terms of the temperature T 1/0. In the limit 'y —* 0, for a < 1, the evidence is 

independent of 3 whereas, for a > 1, the evidence optimal temperature (Tev ) is finite 

as shown in figure 2.3, curves (i) and (ii). In fact, for a > 1 and increasing we can 

make steadily better estimates of the noise on the examples. 

This transition in behaviour is analogous to the phase transition found by Bruce 

and Saad (94). In the regime a < 1 there is not even enough data to specify the 

perceptron weights let alone the hyper-parameter, 6. This is demonstrated in the 

linear case where the variance in Tev  diverges as a approaches unity from above. In 

fact, for a > 1, Var(Tev ) = 8a4 /(N(a— 1)). Thus, the variance in the evidence estimate 

of the learning temperature is an order 0(11N) quantity for a > 1 and the evidence 

optimal temperature itself is well defined in the thermodynamic limit. However, as a 

approaches unity from above this variance becomes order 0(1) revealing a breakdown 

in the self averaging assumptions of the thermodynamic limit. In the regularized case 

(see below) this phase transition does not occur because our prior belief provides the 

additional information required to estimate the noise from the data even for a < 1. 

Let us contrast the evidence procedure assignments with those that optimize the 

consistency. We note that IIC I is also independent of the learning temperature for a < 1 

and that the generalization error is a function of the weight decay, ). = -y//3 , only and 
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so, in the limit -y -+ 0, is independent of 6. In the large a limit T,, -+ T where, 

rrOO —2(Pci+Pa)-i-1 ev — 
2PPcr 1  a 2  D',, 

2 
Xeff 

(2.21) 

In the linear regime Tev  is constant (Va> 1) as shown in figure 2.3, curve (i), whereas 

in the non-linear regime figure 2.3, curve (ii), shows that there are finite a effects. 

Furthermore, it can be shown that Tev  optimizes the consistency measure in the linear 

regime only. That is the evidence procedure optimizes the consistency measure if 

a 1  = a 2  or if D = 0 and al = 62 . The effect, on 15, I, of setting the learning 

temperature to T,, in the non-linear case is shown in curve (iv) of figure 2.2(c) where the 

optimal II is actually zero. The learning temperature which minimizes the consistency 

(T) is shown for this case in curve (iii) figure 2.3 (this is the same case as curve (ii) 

of the same figure which shows Tev ). In the limit a -+ oo, Tj, becomes, 

T157 	 2 
= 2 (a?a 1 P + aa2Pfl 

+ 	X1 X2 (2.22) 
aX ff 	 a6  

Xff 

Contrasting this with equation (2.21) above we note that T57  and TT are the same 
only in the linear regime. 

Thus, in summary, for 'y -* 0 in the linear case the evidence procedure optimizes 

the consistency measure (TI, = = const. Va s.t. a> 1). However, for a non-linear 

teacher or noise that varies across the input space, even in the large a limit, it does 

not. 

The -y> 0 case 

We now turn to the regularized case. In this instance in the large a limit TT is still 
given by equation (2.21) above, whilst, 

1 = 	 — 	
(2.23) 

a eV 	 Xeff 	 Uxff 

These asymptotic assignments can be understood intuitively. The setting of T reflects 
the average noise on the examples (Pta? + Pa) and the noise due to the unlearn-

ability, discussed earlier. The weight decay term is not as easy 

to interpret. However, in the linear regime we have N/2'y e° =Iw°1 P + w02PI 2 ; the 

variance of the prior is set to be the square of the normalized average teacher vector 

magnitude. Both these assignments can be considered optimal in the sense that they 

are the evidence estimates in the limit of infinite data. 
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(a) Linear Case 	 (b) Non-Linear Case 

Figure 2.4. The evidence procedure: Optimal /3 V's . In both graphs the 3 which 
optimizes evidence, 6,,(-y), is curve (i), that which optimizes the generalization error, 
0Eg (-y), curve (ii) and that which optimizes the consistency measure, /3(y),  curve (iii). 
The evidence procedure is the point in the -y - /3 plane where the evidence is maximal 
with respect to both 3 and 'y. In graph (a) the evidence procedure picks the point, 
in the -y - /3 plane, where all three curves coincide. However, in the non-linear case 
shown in graph (b) the evidence procedure point coincides only with curve (i). In other 
words the evidence procedure does not optimise either the generalization error or the 
consistency measure. 

In order to asses the evidence procedure for finite -y and a we axe forced to optimize 

the free energy and the performance measures numerically. In addition to /3,,(-y)  we 

define i3€  ('y) and /3o ('y) to be those assignments which optimize, for a given -y, e g  and 

J, respectively. 

In the learnable linear case (D 	0 and a1  = 0'2) the evidence procedure assign- 

ments of the hyper-parameters (for finite a) coincide with /3 and -y'  and also optimize 

g and & in agreement with Bruce and Saad (94). This is shown in figure 2.4(a) where 

we plot /3ev ('y), /3('y)  and  i3&(-y).  The point at which the three curves coincide is the 

point (in the 6 - plane) which the evidence procedure picks. 

However, Bruce and Saad (94) noted that if the hyper-parameter -y is held fixed, 

at some sub-optimal value, then the evidence assignment of 0 is also sub-optimal. 

Similarly, performance is not optimised in this case. In fact, these observations can be 

considered in terms of Bayesian robustness (Berger (85)). When we fix the parameter 

we define the prior chosen. Thus, by varying 'y we can examine, in a rather limited 
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sense, the effect of changes in the prior. Let us consider the identification of the 

optimal inverse noise level, /3, as a reduced problem. Then we can ask how robust 

is the estimate of 3 from the evidence maxima to changes in the prior (changes in 

y). Figure 2.4(a) shows this evidence estimate, /3ev ('y), for a range of 'y when the 

variance of the noise corrupting the teacher outputs is 0.5; the evidence estimate seems 

relatively robust in that it changes little for a wide range of 2 . Indeed, if we consider 

a non-informative prior on 0 itself, then this tells us something of the robustness of the 

posterior distribution of 3. For the nonlinear case we will consider the robustness of 

the true posterior, P(w I D,,3, A), in the next section. 

The results for an unrealizable rule in the linear regime (D > 0 and a = ax2 ) 

are qualitatively the same as in figure 2.4(a), but with an increased effective noise level 

due to the variance of the teacher output. The evidence procedure sets 3 = 8, which 

takes into account this effective noise, and sets 'y = 'y which reflects the effective size ev 

of the weights. The evidence assignments still optimize the generalization error and 

the consistency measure. 

The situation in the non-linear regime is shown in figure 2.4(b) where the point 

picked by the evidence procedure coincides only with curve (i) in this instance. That 

is, the parameters picked by the evidence procedure neither minimize e, or 6, nor do 

they set 0 and 'y to their asymptotic values. In fact, in analogy to the unregularized 

limit the evidence procedure assignments are a dependent in this regime. 

Discussion 

Meir and Merhav (94) found behaviour in a study of the stochastic complexity which 

mirrors that which we find here. In an average case setting, in the limit of large data 

sets, they found that minimization of the stochastic complexity resulted in optimal 

generalization performance in a realizable case but not in an unrealizable case. As we 

saw in section 2.2.1 the stochastic complexity approach to over-fitting avoidance is also 

a penalty based method. 

As we noted in section 1.2 any Bayesian scheme must make assumptions concerning 

the process generating the data (i.e. assumptions concerning the teacher) and in general 

such assumptions will be at best approximations to the truth. In this chapter, in the 

non-linear regime, we have explicitly violated the linearity assumption of our Bayesian 

scheme and so perhaps it is not surprising that the evidence procedure breaks down. 

In fact, in the non-linear regime, if we have different real noise levels associated with 

2  W note that the evidence optimal y(3) is not shown in figure 2.4 but that it is relatively robust 
to changes in /3. 
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each teacher (al 0  a2 ) this mismatch, between the evidence procedure assignments and 

those which optimize performance, increases. In this case we have not only violated the 

assumption that the teacher is linear but also that of our single Gaussian noise model. 

However, when or,,,= °X2  and D > 0 then the evidence procedure is optimal despite 

the fact that the data is produced by a mixture of linear rules which our student can 

not model. In general then, it is not easy to assess the effects of the inadequacies of 

the modelling procedure. As we have already noted an important question is that of 

robustness; given that the evidence procedure does not optimise performance in the 

non-linear regime how far from optimality is it? We touched on this issue above in a 

simple case and we now pursue this by exploring the effects on performance of these 

sub-optimal hyper-parameter assignments. 

2.6 Robustness of evidence procedure 

As argued previously, the importance of the posterior distribution is ultimately its effect 

on performance (see section 1.2.1). Thus here, in assessing the procedure's robustness 

we focus on the effect of its hyper-parameter assignments on performance. Secondly, 

we note that in exploring robustness it is more usual, as we did above, to vary the 

prior. However, here we consider variation of the underlying reality (i.e. the teacher) 

whilst holding the prior assumptions fixed; nonetheless the results are illuminating. 

Since we are interested in how fax the evidence assignments are from the optimal 

we examine the fractional degradation in average generalization performance defined 

by 

ic9 =  g('ev) - (2.24) 

Where A is the evidence procedure assignment and A,,pt is the optimal weight 

decay. Thus, c9 (A 0 ) is the best possible generalization error achievable by our linear 

student, for a given number of examples a. The percentage degradation, ,c = 100,c is 

plotted in Figure 2.5(a) for different noise levels and degrees of unlearnability. We also 

define 

I6c P ev , /3ev)I (2.25) 
= 	€g(Aev) 

This measures the error in using the variance of the post training distribution to esti-

mate the decaying part of the generalization error, as a percentage of the generalization 
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error itself, when we use the evidence procedure to set the hyper-parameters. The per-

centage error in estimating the generalization in this way, K6 = 100/c&, is plotted in 

Figure 2.5(b). There are three important points to note concerning ic and ic,, . Firstly, 

the larger the deviation from a linear rule the greater is the error. Secondly, that it 

is the magnitude of the effective noise due to unlearnability relative to the real noise 

which determines this error. In other words, if the real noise is large enough to swamp 

the non-linearity of the rule then the evidence procedure will not be very misleading. In 

general, the fractional error associated with predicting the generalization performance, 

is larger than that in the error itself, ic . In fact, when the teacher deviates 

significantly from linearity the former becomes rather large for small a. However, the 

performance of the evidence assignments as expressed by ic seems remarkably robust 

to this misspecification of the prior assumptions. Indeed, the magnitude of, Ic , for 

relatively large deviations from linearity is only a few percent and thus the evidence 

procedure might well be a reasonable, if not optimal, method for setting the hyper-

parameters in this non-linear regime. 

Whether one should, indeed, use the evidence procedure depends upon the alter-

natives to hand. Clearly, we do not have direct access to the optimal weight decay 

but there are alternative methods to the evidence, for instance those which attempt 

to estimate the generalization error, from which hyper-parameter assignments can be 

made. As already noted one such method is cross-validation and we will explore this 

and its relation to the evidence procedure in more detail in chapter 5. However, we note 

here that in the thermodynamic limit the cross-validation estimate of the generalization 

error and the generalization error itself are the same, at least when the number of test 

examples is not extensive (i.e. is lower than order 0(N)). This is because the more 

examples we leave-out for testing the fewer are available for training, and as we shall 

see in chapter 5 the cross-validation error is an unbiased estimate of the generalization 

error based on the number examples left for training. However, as we have seen, in the 

thermodynamic limit the generalization error depends on the ratio a = p/N where the 

number of examples pis 0(N). It is clear that if we leave-out P0 < 0(N) examples for 

testing then a -* p/N—p o /N is unchanged in the thermodynamic limit (i.e. N -* oo). 
Therefore, even in this unlearnable scenario the hyper-parameter assignment from the 

cross-validation error will be optimal in the thermodynamic limit whilst that of the 

evidence is not. This demonstrates an important difference between penalty based 

methods, such as the evidence, and methods such as cross validation noted by Kearns 

et al.(95), namely that the former tend to be more problem specific; recall that the 

failure of the evidence that we have witnessed in this chapter resulted from a break 

down of the assumptions on which it was based. Finally, we note that depending on 
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the level of error one is prepared to tolerate it would be preferable to improve our stu-

dent space to enable it to model the teacher more fully rather than attempt to squeeze 

the most from a sub-optimal model. Thus, as Mackay (92b) states, the failure of the 

evidence procedure to optimise performance is an opportunity to learn since it suggests 

our model is in conflict with the the truth. Furthermore, this is an opportunity not 

afforded by model selection based on the cross-validation error. 
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Figure 2.5. The relative degradation in performance compared to the optimal when 
using the evidence procedure to set the hyper-parameters. Graph (a) shows the per-
centage degradation in generalization performance ic . a(i) has D = 1 with the real 
noise level or = 1. a(ii) has this noise level reduced to a = 0.1 and a(iii) has increased 
non-linearity, D = 3, and a = 1. Graph (b) shows the error made in predicting the 
decaying part of the generalization error, €— €°, from the variance of the post training 
distribution as a percentage of the generalization error itself, ic, . b(i) and b(ii) have 
the same parameter values as a(i) and a(ii), whilst b(iii) has D,, 3 and a = 0.1 

2.7 Conclusion 

In this chapter we have analysed a simple system which enabled us to examine the 

efficacy of the evidence procedure for the case when the student was not sufficiently 

powerful to model the teacher. Such a situation may well arise in a real world applica-

tion since we rarely know the form of the teacher and, as discussed in the introduction, 

learning is a trade-off between minimizing student complexity and modelling the teacher 

on the data set. 
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In particular, we have examined the generalization error, the consistency measure 

and the evidence procedure within a model which allows us to interpolate between 

a learnable scenario and an unlearnable one in which our model serves as the basis 

for a general piecewise-linear teacher. We have seen that the unlearnability acts as an 

effective noise on the examples. Furthermore, we have seen that the evidence procedure 

optimizes performance, even in the unlearnable case, if the average teacher output 

is a linear function of the input. In the case of a non-linear teacher (and a linear 

student) the evidence procedure breaks down in that it fails to optimize the performance 

measures. Furthermore, we noted that, at least in the thermodynamic limit, the hyper-

parameter assignments from cross-validation were optimal. However, by examining the 

resulting performance we discovered that, even for quite severe mismatch between 

student and teacher, the evidence procedure is close to optimal, especially in terms of 

generalization. In other words, the evidence procedure was seen to be relatively robust 

against misspecifications of the prior assumptions. Whether or not such a breakdown 

of the evidence procedure, as witnessed here, is a generic feature of a mismatch between 

the hypothesis (student) and teacher, along with the consequent impact on performance 

are both matters for further study. 

2.8 Appendix: response function for unrealisable rule 

In this appendix we calculate the averages over the input distribution, P(x), required 

in section 2.4. 

We note that P(x) = P(x I Il = 1)P + P(x I Q = 2)P2t  and in what follows 

<<g >1>2= << g >2>1 =<< g >>, where < .. >i and < .. >2 refer to averages over 

the distributions P(x I Q = 1) and P(x I Q = 2) respectively. 

Firstly lets rewrite g' as g = Al + T where r = A2 + Al and I is the identity 

matrix. Now we can average over the distribution P(x I Il = 1) . This step is similar 

to the calculation, in Hertz et al. (89), of the average of the matrix (Al + Al) with Al 

replaced by the matrix r. 
In the thermodynamic limit we obtain, 

0,2 

<g >1 =  ( + 1 I)_ 1 	where, 
EQ = 1 + 	< tr g 	

(2.26) 

We can then rewrite (2.26) as 

<g>iA2=I—A<g>i—<g>iE l - 	 (2.27) 
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Now we wish to perform the average over the second distribution P(x I Q = 2) but 

the last term in the expression (2.27) is potentially problematic. However, if following 

the diagrammatic method of Hertz et al. (89) we examine the diagrams for this term 

we see that the crossings', or interactions, between < g >1 and E 1  are 0(1/N 2 ) and 

can be ignored in the thermodynamic limit. Thus, we can average the two factors 

independently, ignoring any interaction between them. This leads to 

<<gA2>>=I—A<<g>>—<<g>><<Ei>>. 	 (2.28) 

Using the matrix identity gA2 = I - Ag - A 1 g and defining W 1  =< El >2 we obtain 

<<gA1 >>= W1 <<g >>. If we perform these averages the other way around and define 

"2 =< E2 >1 we find the analogous expression. Thus, in general we have 

<<gAç >>= 'Pc <<g>>. 	 (2.29) 

Now by multiplying equation (2.27) by A2, averaging over the distribution P(x 

= 2) and using the matrix identity A2 gA 2  = A2 - AA2  g - A2  gA 1  we obtain 

	

<<A2 gA1 >>= Wi'P2 <<g>>. 	 (2.30) 

We now have all the averages we require in terms of the average << g >>. To evaluate 

this quantity, firstly, we average the matrix identity gA 1  = I - Ag - A2  g which gives 

us, 

(w 1  + W2  + A) <<g >>= I. 	 (2.31) 

This shows that <<g>> is diagonal, in this case, where the distributions P(x I 1) are 

normal and have zero mean. Taking the trace gives us an implicit equation for the 

response function G = ' <<tr g >>. Namely, 

	

C-' 
=A+ 

  
oP,a1 + cP2t0'2 	

(2.32) 
1 +0-2X1 G 1+o 2 G' 

which resolves into a cubic in G. Now since the variance of the student output over 

the post training distribution is o ffG/2/3 then G must be positive. Fortunately, we 

can show that only one of the three solutions, to the cubic, is positive. We also note 

here that G could be calculated using the more general method of Sollich (94a). 



Chapter 3 

Over-Realisable - the case of 

clever students 

Abstract 
In this chapter we consider the validity of the evidence procedure for the case where 

the student is more powerful than the teacher. To this end we explore a simple model 

of over-realizability, namely a piece-wise linear student trained and tested on examples 

generated by a linear teacher. Examination, in the thermodynamic limit, of this model 

reveals that although the generalization error is increased in comparison with a simple 

linear student, the evidence procedure remains optimal. This is in stark contrast to 

the effect of unrealizability examined in the previous chapter. Further, our results 

suggest that the evidence assignments will also be optimal, in the thermodynamic 

limit, for a linear teacher and a student analogue of the n-teacher introduced in 

chapter 2. 

3.1 Introduction 

In the previous chapter we saw that when the assumptions of our Bayesian scheme 

were violated the optimality of the evidence procedure was questionable. However, in 

the cases examined there the student was in some sense less powerful than the teacher 

and this unrealizability was seen to account for the sub-.optimality of the evidence 

procedure. Given this state of affairs one might attempt to learn the unknown teacher 

with a very powerful student so as to avoid the unlearnable case. In the case of neural 

networks and probably all semi-parametric methods this strategy is likely to prove far 

too computationally expensive in general due to the large number of basis functions 

(e.g. number of hidden units in an MLP) required and may also result in degraded 

generalization performance due to over-fitting. However, some work has been done 

43 
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to allow the application of powerful networks ( Neal (94)) provided that appropriate 

priors are applied. This begs the question as to whether maximum-likelihood methods 

such as the evidence procedure are optimal in the over-realisable case. 

In this chapter we attempt to answer this question by studying a simple case of 

over-realizability in relation to the optimality of the evidence procedure. Perhaps the 

simplest possible case of over-realizability would be to take account of more inputs than 

necessary. In an experimental setting this would correspond to measuring attributes of 

the system which had no impact on the quantity one is attempting to predict. For a 

linear student and teacher this means having more student weights (and thus, inputs) 

than teacher weights. In this case it is straight-forward to show that, for i.i.d inputs 

and noise in the thermodynamic limit, this over-realizability has no ill-effects on the 

validity of the evidence procedure or on the generalization performance. 

In fact, for the analogous (linear) case of unrealizability, namely having too few 

student parameters, the optimality of the evidence procedure is also not compromised, 

although the generalization ability was degraded. This is because, in this case, the 

extra inputs in the teacher simply appear as noise to the student. However, in chapter 

2, for a more serious form of unrealizability we found the evidence procedure to be 

sub-optimal. The question is then, will a similar form of over-realizability degrade 

performance? 

3.2 Piece-wise linear student 

In this section we introduce a piece-wise linear student in which each linear component 

takes responsibility for modelling a region of the input space. Generically we write the 

output, y8 (x), of this student given an N dimensional input x as; 

YS 

(X) 

= 	
1 

wk X 6k(X) 	 (3.1) 
k=1 

where the functions 6k(x) = 1 on some region (or zone), 2k,  of the input space and are 

zero everywhere else. In what follows we assume that these regions are non-overlapping. 

The parameters wk  are the weights of the k 1 component student. The model, thus, 

defines a piece-wise linear function on the regions Zk. 

An alternative model we might have adopted for our student is the n-'teacher' model 

we examined in the previous chapter. Here we would have weighted the kth  linear 

component with a Gaussian probability on input space, with mean ak and variance o. 

As before, in the thermodynamic limit we would obtain a piece-wise linear function 

with each of the n components covering a hyper-sphere. The 'hard' constraints used in 
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equation (3.1) ensure a piece-wise linear function for finite input dimension N. 

In the remainder of this chapter we will consider the student defined in equation 

(3.1) learning from and being tested on examples generated by a teacher which is 

assumed to be a linear function corrupted by zero mean Gaussian noise of variance a 2 . 

We, therefore, represent the teacher by the conditional probability, 

P(Yt I x) x exp —[yt - w°  x/v"] 2 /2a2 . 	 ( 3.2) 

As before we are supplied only with a data set V consisting of p pairs of inputs 

and outputs sampled from the distribution P(Yt I x)p(x), where p(x) is our sampling 

assumption. 

3.3 Hyper-parameters and priors 

We now have n student weight vectors (each of N- dimensions) which we wish to 

regularize and we will again examine the case of weight decay. We also adopt the 

noise model of chapter 2 and thus, the composite cost function of section 2.2.1 now 

becomes /3E(V) + > k ykC(w k ), where E(V) is the quadratic sum of errors and the 

cost function C(w) = wTw . In Bayesian terms this straightforwardly translates into 

priors on the student weights, 

P(wc I "1k) (X
k.Wk
.( 3.3) 

and a Gaussian noise model P(E) I 8,w) x e_1Ei()),  as before. The evidence then 

becomes, 

P(E) I M) = f fldwkP(wk I 	f /3, { wk}) 	 (3.4) 

Recall that the notation M denotes the model architecture and learning algorithm. 

In particular, here we have M,, {n,{'yk : k = 1..n},13}. As before (see section 2.3) 

we define the free energy f(V) = - 4 lnP(V I M a). However, since here the teacher 

is essentially deterministic we adopt the error function of equation (1.11) and use the 

average of the generalization error, thus defined (see equation 1.12), as our performance 

measure, 

= (((yt(x))P(1) - (ys(X))w)2)p(x)p(V) . 	 ( 3.5) 

The consistency measure, 8  (see equation 2.7) remains unchanged. 
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3.4 Calculating average behaviour 

Using the rationale of chapter 2, we expect the system to be self averaging, and will now 

focus on the average case behaviour in the thermodynamic limit deferring, once again, 

a discussion of the data dependent behaviour until chapter 4. We can now calculate 

the average free energy explicitly. 

Performing the Gaussian integrals and taking the logarithm is straightforward, since 

the integrals over the weights, wk, of the different components factorize. The integra-

tion of these individual factors can then be performed as shown in appendix 4.8.1. This 

factorization occurs because the regions Zk are non-overlapping. We are then free to 

average over the additive Gaussian noise on the examples introduced in equation (3.2). 

Also, since the problem is isotropic, at least as far as the examples, V, are concerned, we 

are free to average over the possible directions of the teacher vector w°. In other words 

we can average w° over a spherical distribution since only its length a = w w/N will 

be relevant. Neglecting an additive constant, these steps lead to the noise averaged 

free energy, 

f({x'}) = _1n/3+oc8a2 -(n A, + 	1ndet(gk) +.k) 	(3.6) 
k=1 

Where, 

= /3a) (
N

),2
tr gk - Ak) + ea2  (i - Aktr k) 

and in analogy to g and A defined in section 2.3 we have defined, 

gk = (Ak + AkI) 1  

with, 	Ak = and 	Ak = 	>(xIL )T x46k(xt L ) 	 (3.7) 
13 	 N j1=1 

whilst the definition a = p/N is unchanged. The important point to note concerning 

equation (3.6) is that since the regions Zk are non-overlapping, the last term is a linear 

sum of terms attributable to each component k of the student. The individual terms in 

this sum are analogous to the corresponding term in the free energy for the learnable 

linear case (equation 4.A8). Note also that if we have only one component we then 

recover the linear case (i.e. , the free energy of equation (2.11) if the teacher is linear). 

We will demonstrate the main characteristics of this learning scenario by examining 
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a simplified version. Firstly, we will assume that our student is made up of only 2 linear 

components (n = 2) and secondly that the regions Zk,  k = 1, 2, on which they are 

defined are as follows. The inner region Zi is a hyper-sphere centred on the origin with 

nominal radius c. The outer region 22 is the remaining volume in the N dimensional 

input space. Thus, the first component w 1  is responsible for modelling the inner region 

where I x j< c, similarly, the second component w 2  models the outer region where 

I x 1> c. Finally we take our sampling assumption, p(x), to be normally distributed 

with variance a and zero mean. In fact, as we will concentrate on the thermodynamic 

limit we could equally well assume that the inputs are drawn independently at random 

from any distribution p(x) with zero mean and variance a (i.e. , i.i.d. inputs). 

C 	 G 

RE 

0 	1 	2 	3 	4 	5 
a 

0 	1 	2 
 a 

3 	4 	5 

(a) Vi = 0.2 	 (b) V1 = 0.75 

Figure 3.1. Response functions versus a: The thermodynamic value plotted with the 
average value calculated from simulations for a system of size N = 20 and the fractional 
volumes occupied by the inner linear segment, Vi, as indicated. In both (a) and (b): 
(i) is the inner response function C1 and (ii) the outer response C2. In all cases shown 
the experimental and theoretical curves are indistinguishable with standard error bars 
too small to be visible on the scale of the figure. 

3.4.1 Average response function 

We can now calculate the average in the thermodynamic limit, over the sampling 

distribution P(x), of the quantities tr gj. We define these averages as the response 

functions NGk = (tr gk)P(x),  calculation of which will enable us to explicitly examine 

the performance of our student. 

We calculate these averages following the method of (Sollich 94), details of which 

are presented in appendix 3.8. The crucial point to note is that our decomposition of 

the space into shells centred on the origin allows us to calculate the average response 

functions analytically and show they are self averaging. For the case considered here 
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with a two component student defined on Zk, the inner and outer response functions 

in the thermodynamic limit are given by, 

- (a - 1)OVk +\/k + (a - 1)oVk) 2  + 4AkoVk 	
( 3.8) 

	

Gk = 
	 2AkaVk 

where we have defined the fractional volume occupied by component k as, 

V1 = a;(+2)(27r)_N/2 
fZk  

xTxexp I xx\ 
 2a 

)dx 

V2 = 1—V1 	 (3.9) 

Examples of these response functions are plotted in figure 3.1. To demonstrate the 

validity of the results for finite system size we have also plotted the results of Monte 

Carlo averages of the response functions for a system with N = 20. As indicated in 

figure 3.1, the difference between these experimental values and the thermodynamic 

results is not distinguishable on the scale of the graphs. Thus, in terms of the response 

function, which is an average quantity, the thermodynamic limit is good approximation 

for relatively small systems. Armed with these results we can examine the performance 

of our student. 

3.5 Generalization performance 

Following appendix 4.8.1 (see equations 4.A9 and 4.A10) it can be shown that the 

average generalization error of our piece-wise linear student is given by, 

or 2 
a 

k1 	
I-—(.Xk(tr gk)P(x)) - 	A—(tr k)P(x)] 	(3.10) 

	

= 	Vj 

where we have explicitly averaged over the noise and the teacher direction as before. 

Here we have written the generalization error for an arbitrary number of components, 

n, and the fractional volumes Vk will not, in general, be those defined in equation (3.9). 

Similarly, (see equation 4.A11) one can write the consistency measure as, 

= 	aVk 
(tr gk)p(x) - €9 k=1 2N,@ 

(3.11) 

Calculating the optimal hyper-parameters from equations (3.10) and (3.11), we find 

that the generalization error is optimised by )'k = 92 /0,  whilst the consistency is zero 

for these weight decay assignments if /3 = 1/2a 2 . We emphasise that these results are 
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average case results valid for any N, p and n. 

Setting n = 2 and replacing (tr gk)p(x)  in equation (3.10) by the thermodynamic 

average value Gk, as defined in equation (3.8), allows one to explore the generalization 

performance in the large N limit. In figure 3.2(a) we compare this average optimal' 

generalization for our piece-wise linear student learning a linear teacher against that 

for a linear student learning the same teacher. As one might expect, we find that the 

generalization error is larger for the piece-wise linear student. This is wholly under-

standable as there are more parameters to fit for this model. However, in the limit of 

noise free examples and optimal weight decay, this difference vanishes and the gener-

alization error decays according to 1 - a for both models. This is because, although in 

the piece-wise linear case, to fix the weights, we have 2N equations to solve, when the 

examples are noise free we have two equivalent sets of N equations (and thus enough 

information to fix the weights) for a = 1. A more intuitive explanation is that the 

difference, in terms of generalization error, between the n = 1 and n = 2 models is 

a reflection of the over-fitting of the noise by the more powerful model. Thus, in the 

noiseless case they are equivalent because there is no noise to over-fit. In the asymptotic 

limit we find that, 

	

2 	/1" 
urn E 	

a 
(n = 1) = - + 0 1 	 (3.12) 

a 

lirn€(n=2) = 2a 
2 

 
a 

Thus, although asymptotically both students achieve zero generalization error, to sec-

ond order in a, that of the n = 2 student is twice that of the linear student. 

Intuitively one might think that an optimal solution would be to set all but one of 

the weight decays to infinity, effectively 'killing off' the associated student components. 

However, this is not the case as each component is responsible for only a fraction of 

the input space. In the n = 2 case it is easy to show that 

urn c9o ,A 2 ) = a(a2ViGi+o,V2) 	 (3.13) 
A2 -400  

€g (Ao,Ao) = 	1oa2 VkGk. 

In fact, the solution A 1  = Ao, 1\2 -+ 00 is a saddle point of the generalization error, whilst 

the solution Ak = A0 is a true minima. In addition, using the fact that AGk(A) < 1, it 

can be shown that, lim 200  e9 (Ao, A 2 ) > €9 (Ao, A o ) for all a. Thus, the true optimal 

'That is when the weight decay has been optimised 



Over-Realisable 	 50 

true optimal weight decay setting is A 0  for both linear segments of the student. 

Again in the n = 2 case, for a = 1 and signal to noise ratio of unity figure 3.2(b) 

shows, as a function of Vi, the difference between the generalization error of our piece-

wise linear student and that of a linear student as a fraction of the latter. The weight 

decays in each model have been set optimally. The figure reveals that the deviation 

from the 'optimal' student (i.e. the linear one) is maximal when Vi = V2 = 1/2 and 

vanishes when either component is responsible for the whole input space (i.e. when 

the piece-wise linear student is effectively linear). 

€9 	 €9  

0.15 

0.1 

0.05 

0.0 
0 	2 	4 	6 	8 	10 

a 
(a)  

0.0 	02 	0.4 
V1 

0.6 	0.8 	1.0 

(b) 

Figure 3.2. Comparison of generalization errors: for linear and piece-wise linear stu-
dent learning a linear teacher. Graph (a) shows the case where the noise to signal ratio 
is one and the weight decay, A, has been set optimally; (i) for a piece-wise linear student 
with n = 2 and a cut-off c = 1 as described in the text. (ii) a linear student. As one 
would expect the generalization error of the piece-wise linear student is worse than that 
of the linear student. Graph (b) shows the difference between these two generalization 
errors as a fraction of the linear students error versus the fractional volume Vi occu-
pied by the inner region for a = 0.5. The fractional increase in generalization error is 
maximal when the two components are responsible for equal volumes of input space 
(V1 = 0.5) and the linear case is recovered for Vk —p 1. 

3.6 Optimality of evidence assignments 

Finally, we consider the evidence procedure assignments. Using the obvious exten-

sion to our definition of the evidence procedure point (i.e. simultaneously minimize f 
w.r.t. Ak : k = 1...m and 0), from equation (3.6), it is straight forward to show that the 

evidence optimal assignments are Ak = a2 /a2  and 3 = 1/2a2 . Thus, as in the case of 

a linear student, the evidence assignments correspond to those that optimise the gen-

eralization error and the consistency measure. Again, this statement is valid for all N, 
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p and n but, as we shall see in chapter 4, such average case results can be misleading. 

However, if self-averaging holds, as it should for any finite number of partitions n then 

this average case result will be representative in the thermodynamic limit. Further-

more, since the crucial step in the calculation is that the n components of the student 

decouple, we note here that this result will also hold, in the thermodynamic limit, for 

any student represented by the Gaussian mixture model discussed in section 3.2. That 

is, the evidence assignments will be optimal, and although the learning curves will not 

be identical, they should be qualitatively similar. 

As we have seen, the n = 2 model allows explicit calculation of the generalization 

performance. Similarly, using the result of appendix 6.6, we can also calculate the free 

energy in this case. Doing so we find that the solution Ak = A0 is a true minima of the 

free energy. In contrast, the symmetry breaking solution i = A0, A2 -+ oo) is not a 

true minima, but a saddle point of the free energy; recall that the generalization error 

is minimised by the symmetric solution. In addition numerical exploration of the free 

energy shows that, of the two, the symmetric solution is associated with the lowest free 

energy. Thus, we note that in the n = 2 case, we have found that the generalization 

ability of the over-parametrised model is worse than the correct model even when both 

are optimally regularized (see figure 3.2). This result suggests that the application 

of overly powerful networks to a learning task (e.g. Neal (94)), even when optimally 

regularized, may result in sub-optimal generalization performance. 

3.7 Summary 

We have considered an over-realisable learning scenario in which the student is more 

than able to mimic its teacher. As an example we examined a piece-wise linear student 

trained and tested on examples generated by a linear teacher. For a particular instance 

of this student (n = 2) we found that in the thermodynamic limit this over-realizability 

caused over-fitting leading to an increase in the generalization error, at least for noisy 

data, but that nonetheless, the evidence procedure was found to optimise the gener-

alization error and the consistency measure. The former result may have relevance to 

the work of Neal (94). In fact, the evidence assignments were found to be optimal 

in an average sense for any finite number of components n. In addition, we deduced 

that in the thermodynamic limit this statement would also hold if our student was the 

mixture model described in section 3.2. Thus, whilst we have not shown in general 

that the evidence procedure will be optimal in an over-realisable scenario our results 

suggest that un-realizability has a greater impact in this regard. 

'zç 

I 
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3.8 Appendix: Response function 

In this appendix we outline the calculation of the response function given in equation 

(3.8). This derivation follows the method of Sollich (94) and as described there we can 

write the matrix g,(P+  1) = (Ak + AkI)' based on p + 1 examples (see equation 3.6 

) in terms of the matrix g,(p), 

gk(p+ 	
1 ök(x)gk(p)xxTgk(p) . 

	 ( 3.14) l) = 

Here the (p+l)th  input example is denoted by x. Since the matrix g, (p) is independent 

of this example we are then free to average over x. Given our choice of constraints 6k  (x) 

such that we have two concentric regions Zk centred on the origin we can write the 

average (k(x)xTx)p(X) = oVkI where the Vk are defined in equation (3.9). Taking the 

trace of equation (3.14) and averaging over the example x it is then straight forward 

to show that, 

trgk(p+l) = 7trgk(p)-- _4&trg(p) +o(N,2) . (3.15) 
N1 + 	tr gk(p)x 

The response functions Gk are thus self averaging. Recalling that a = p/N we can 

re-write equation (3.15) in the thermodynamic limit as 

0Gk ôGk aVk 
(3.16) 

Given the initial condition Gk Ia=O= 1/Ak this partial differential equation may then 

be solved using the method of characteristic curves (see e.g. John (78)). The resulting 

solution then leads to the form of the response function given in equation (3.8). 



Chapter 4 

Finite Size Effects in Bayesian 

Model Selection and 

Generalization 

Abstract 

In this chapter we show that in supervised learning from a supplied data set Bayesian 

model selection, based on the evidence, does not optimise generalization performance 

even for a learnable linear problem. This is demonstrated by examining the finite size 

effects in hyper-parameter assignment from the evidence procedure and the resultant 

generalization performance. Our approach demonstrates the weakness of average 

case and asymptotic analyses. Using simulations we corroborate our analytic results 

and examine an alternative model selection criterion, namely cross-validation. This 

numerical study shows that the cross-validation hyper-parameter estimates correlate 

more strongly than those of the evidence with optimal performance. However, we show 

that for a sufficiently large input dimension the evidence procedure could provide a 

reliable alternative to the more computationally expensive cross-validation. 

4.1 Introduction 

As noted previously a major advantage of the statistical physics studies of learning 

and generalization over the usual approach in the statistics community is that one 

can examine the situation where the fraction (a) of the number of examples (p) to 

the number of free parameters (N) is finite (see chapters 1 and 2 or for example, 

Krogh and Hertz (92), Seung et al (92), Watkin et al. (93) ). This contrasts with the 

asymptotic (in a) treatments found in the statistics literature (see e.g. Plutowski et 

53 
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al.(94),Stone (77a),(77b), Shao (93), Gelfand and Dey (94)). However, one draw-back 

of the statistical physics approach is that it is based on the thermodynamic limit where 

one allows N and p to approach infinity whilst keeping a constant. Naturally, as noted 

before, this limits the applicability of these theoretical results to the real world. In 

this chapter we address this problem by calculating the first order correction to the 

thermodynamic limit, that is we explore the finite size effects. Finite size effects in 

supervised learning have been studied previously by Sollich (94) and Barber et al.(95). 

We show that in the problem studied here, namely Bayesian model selection based on 

the evidence, conclusions drawn from the thermodynamic results are qualitatively at 

odds with the finite size behaviour. In addition, we also show that average case and 

asymptotic (p - oo) results are also misleading if applied to particular instances of 

finite sized data sets. 

The supervised learning scenario we consider here, is that introduced in chapter 

1. Thus, we are presented with a set of data V= {(yt (x),x) = l..p} consisting 

of p examples of an otherwise unknown teacher mapping denoted by the conditional 

distribution, P(yt I x), of its one dimensional output, yt  Furthermore, we assume that 

the N dimensional input space is sampled with probability P(x) and thus, the data 

set is generated with probability P(V) = P(yt I x')P(x'). The learning task 

is to use the data base, V, to set the N8  parameters w of some model (or student), 

with output Yt  (x), such that it learns to mimic the underlying mapping as closely as 

possible, a popular measure of this performance is the generalization error. Often, and 

that which we consider here, the training process consists of minimising a weighted 

sum, 3E(V) + 'yC(w) of the quadratic error of the student on the examples, E(D), 

and some cost function, C(w), which penalises over complex models. As we saw in 

chapter 2, provided 'y is non-zero this serves to alleviate the problem of over-fitting. 

Once again it is the setting of the hyper-parameters ,3 and 'y which we will examine in 

this chapter. 

As we have noted, Langevin type dynamics on the gradient of the penalized cost 

function, 3E (V) 

+-yC(w), results in a Gibbs form for the posterior distribution of student parameters, 

(i.e. the post training distribution of section 2.2.1). If we wish to make a prediction 

at a novel input using the average, or the maximum, of this distribution then this 

prediction depends solely on the hyper-parameters. Thus, as we saw in section 2.2.1 

the selection of /3 and can be regarded as a model selection. In terms of practical 

methods for hyper-parameter assignment there are essentially two choices. Firstly 

one can attempt to estimate the generalization error (e.g. by cross-validation) and 

then optimise this measure with respect to the hyper-parameters. However, such an 
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approach can be computationally expensive. Secondly, one can optimise some other 

measure and hope that the resulting assignments produce low generalization error. In 

particular, as advocated by MacKay (92) and others, we have and will continue to use 

the evidence as such a measure. 

In chapters 2 and 3, building on the study of Bruce and Saad (94), we have explored 

the evidence procedure in relation to performance for both under and over realizable 

cases. However, these results pertain to the thermodynamic limit and are average case 

analyses. In section 2.4 we argued that this approach was valid because the relevant 

quantities were self averaging. Thus, in the thermodynamic limit average case results 

apply to a particular (that is every) data set. In this chapter we seek to explore the 

difference between the average case analysis and the data dependent behaviour. 

In the learnable linear case considered by Bruce and Saad (94) it was found that 

optimising the average, over all possible data sets D, of the log evidence with respect to 

the hyper-parameters optimises the average generalization error in the thermodynamic 

limit. In addition, Meir and Merhav (94) have studied the stochastic complexity in an 

average case setting in the asymptotic limit (p -* oo). These authors demonstrated, in 

a realisable scenario, that minimization of the stochastic complexity optimised hyper-

parameter assignment. Here we examine hyper-parameter assignment using the evi-

dence based on an individual data set, in the learnable linear case for a finite system 

size. That is we avoid the extremes of both infinite system size and infinite data set. 

Our standpoint can be summarised as follows. In any real experiment a single set of 

data is available for training and one seeks to optimise performance based on this data 

set alone. The optimal policy (e.g. those hyper-parameter assignments which minimise 

the generalization error) will fluctuate from data set to data set, as will policies based 

on the evidence and the cross-validation error. What is of interest is how close our 

chosen strategy is to the optimal for the particular set of data in question. It is clear 

that average case analyses and measures of average performance do not reveal this. 

Thus, in section 4.2.2 we define data dependent measures of performance and then 

subsequently explore the performance of the evidence assignments in relation to them. 

In addition, we also briefly consider the average case showing that such an analysis is 

in general highly misleading. However, we note that in the thermodynamic limit, if self 

averaging holds, then both approaches are equivalent. 

In the next section we review the evidence framework and the performance measures 

we will deal with. In section 4.3, we show that the evidence procedure is unbiased, mean 

square consistent and, employing some of the results of Sollich (94), we demonstrate 

that for large N the variances over data sets of the evidence and generalization error 

are 0(11N), that is the system is self averaging. In sections 4.4 and 4.5 we examine 
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hyper-parameter assignment from the evidence based on a particular data set. We 

calculate the variances of these assignments and those made from the generalization 

error showing them to be 0 (11N). In addition, we numerically explore, in some detail, 

the hyper-parameter assignments in very small systems (N = 1, N = 2). First order 

corrections to the performance measures show that in general the evidence procedure 

does not lead to optimal performance. From these corrections we estimate a lower 

bound on the system size necessary for the evidence procedure to give reliable results. 

Also in terms of performance, we explore the relative importance of fluctuations in 

the optimal and in the evidence procedure assignments. Finally, in section 4.6 we 

corroborate these conclusions using a numerical study which, furthermore, reveals that 

cross-validation is a superior model selection criterion to the evidence for small linear 

systems. 

4.2 Objective functions 

4.2.1 The evidence 

Following section 2.2.1 we denote the model specification solely in terms of the hyper-

parameters, M = {/3, y}.  Then since E(V) is the sum squared error, if we assume 

that our data is corrupted by Gaussian noise with variance 1/2/3, the probability, 

or likelihood of the data(V) being produced given the model parameters w and 3 is 

P(E) I /3,w) oc ew(').  Also following section 2.2.1 the complexity cost can also 

be incorporated into this Bayesian scheme by assuming the a priori probability of 

a rule is weighted against 'complex' rules, P(w I 'y) x Multiplying the 

likelihood and the prior together we obtain the posterior density of student parameters, 

P(w I V,y,/3) 

The evidence itself is the normalisation constant for the post training distribution 

P(E) I 'y,13) = f [JdwP(v I /3,w)P(w  I 'y), 	 (4.1) 

that is, the likelihood function for the hyper-parameters /3 and 'y. We continue to 

refer to the evidence procedure as the process of fixing the hyper-parameters to the 

values that simultaneously maximize the evidence for a given data set. Thus, although 

the Bayesian framework outlined here envisages the hyper-parameters as defining the 

whole distribution of input-output pairs, the assignments from the evidence procedure 

will depend on the data set at hand. Indeed, as we have seen one could regard this 
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procedure as empirical Bayes (see e.g. Berger (85)) where, to some extent, the data is 

allowed to influence the choice of prior. In addition, we emphasize that this is the way 

in which the evidence procedure is used in practice (Mackay (92)). 

4.2.2 The performance measures 

Here we briefly review the two performance measures with which we will concern our-

selves. As before the short hand (.) denotes the average over the posterior distribution 

P(w I D,'y,/3). 

As the principal performance measure we choose the expected squared difference 

over the input dimension P(x) between the average student and the average teacher. 

This is the data dependent error of equation (1.12) with the error measure defined in 

equation (1.11). Thus, we have the data dependent generalization error, 

e9 (D) = (((Yt(x))p(yIx) - ( ys(X))w)
2 
 /P(x)• 	 (4.2) 

If we were to average over all possible data sets of fixed size then this would correspond 

to the generalization error studied by Bruce and Saad (94) and Krogh and Hertz (92). 

Indeed, the key difference between this performance measure and that used in chapter 2 

is the explicit data dependency of the former. A second difference is the choice of error 

measure discussed in section 1.2.1 which means that the average of e g (V), in equation 

(4.2), is equivalent to the error defined in chapter 2 up to an additive constant; the 

variance in teacher output. In the linear case studied in this chapter, this variance 

is simply that of the noise corrupting the teacher outputs. The question arises as 

to what one means by optimal procedure. As noted previously, in the context of a 

real supervised learning experiment we are concerned with the performance based on 

the actual data set available and not on the average performance. Thus, the optimal 

policy is that which minimises the data dependent generalization error and our focus 

will be on the performance of the evidence procedure in relation to this. However, in 

section 4.3.1 we will consider an average case approach. Further, in section 4.5 we will 

also consider the effect of defining the optimal hyper-parameter assignment in terms of 

the average (cg (V))p(v) whilst using the data dependent evidence assignments. This 

will enable us to asses the relative importance of fluctuations in the optimal and the 

evidence assignments. 
We again consider the variance of the student output, y(x), over the student dis-

tribution ({y3(x) - (Ys(X))w} 2 )w,p(x). Adapting the definition of Bruce and Saad (94) 
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we define the data dependent consistency measure as, 

= ({Ys(X) - (ys(X))w}2)w,p(x) - €9 (V). 	 (4.3) 

For a linear student and teacher in the limit a - 00 ö tends to zero. As before, we 

regard o(D) = 0 as optimal since then we can estimate our expected error, e9 (D), from 

the variance of our student output; which in principle we can calculate if we could esti-

mate the input distribution. Indeed, Krogh and Vedeisby (95) suggest using unlabelled 

data to estimate the variance over the ensemble of students, albeit in slightly different 

context. Again note that we are principally concerned with the optimal procedure 

based on the training data available and not on the average over all such sets. 

4.3 Finite system size 

In this section we consider a finite system size N examining the, large p limit and show-

ing that in the learnable linear case under consideration in this chapter the evidence 

procedure is unbiased in a particular sense. Here, since the student is linear with out-

put y(x) = w.x/'/N we have N3  = N. We also assume that the teacher mapping is 

linear, parameterised by the weight vector w°, and corrupted by zero mean Gaussian 

noise of variance a 2 . Thus, P(yt  I x,) cx exp[—(y - w°.x/v'7) 2 /20,2 ]. Further, we 

assume P(x) is .ftf(O, a) and adopt weight decay as our regularization procedure, that 

is C(w) = wTw. In this case we can explicitly calculate the evidence, or rather the 

normalised log of the evidence f(D)= —11N in P(D I A, ), analogous to a free energy, 

where we have introduced the weight decay parameter A = y1(f3a). We note that this 

definition is a scaled version of that given in section 2.3; in the linear case it is more 

convenient to normalise by the factor a. The calculation of the free energy in this case 

is shown in appendix 4.8.1 and equations (4.A7) and (4.A8) there lead to, 

f(D)
1 
 In — In 

A 
a —+ ln2+ /3Aa a - 	indet g+3nTrn+y.n+,3aev  (4.4) =—— 

2 g 2 ir2 W  2N 

where, 

= - 
(x/ )T gx 	 2A(w 0 )Tgx, 

N20 + N' YIL N,/ N__ 
aA2 (w0)Tgwo 

aev  - 	
N 

and g=(A+AI) 1  with A — 1 E 
=

1(x,)Tx, 
-  
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Here p and v index the p patterns, I is the identity matrix in N dimensions, No- 2 = 
WO w° and the p dimensional noise vector n has components drawn independently 

from .M(O, a). The term aev  does not fluctuate with the noise but only with the inputs 
xIL. The normalization of the input correlation matrix A results in the rescaling of the 

weight decay noted earlier. Also as outlined in appendix 4.8.1 the generalization error 

and the consistency can be calculated from 1(V) by averaging appropriate expressions 

over the input distribution P(x). 

The generalization error is given by, 

eg(V) = nT/sn + z.n + a 9 	 (4.5) 

where, 

1 ( 	 2A ( 
= - N20.2 Xp )  aAU 	= N/N 

W )
aA 11v

and a, g = _(w0)Tw0  

Finally, the consistency is, 

1 
8(V) = 	-tr g - e9 (V) . 	 (4.6) 

We note here that the generalization error depends only on the weight decay, A, 

thus in the remainder of this chapter we refer to the optimal weight decay A 0 (V) 

as that which minimizes e9 (V). Similarly, for fixed weight decay the optimal inverse 

temperature, /3(V), ensures that 8(D) = 0 and thus that the variance of the student 

distribution is equal to the generalization error. We denote the hyper-parameters that 

simultaneously maximize the evidence as A ev (V) and &,(D). Thus, the term optimal 

refers to the optimization of, or with respect to, the performance measures whilst 

evidence optimal refers to maximisation of the evidence. 

4.3.1 Consistency and unbiasedness 

Firstly we consider the question of consistency, that is, we examine the free energy, 

f(V), and the generalization error in the limit of large amounts of data (i.e. asp -* 00 

with N fixed). Using the fact, shown in appendix 4.8.2, that, for large p, g jj  = 623 N/p+ 

0(1/p3/2 ) we can find the asymptotic evidence optimal hyper-parameter assignments, 
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namely, 

limA ev (D) = Ao+O (;) and 	liml3ev (D) =/3(j+O 
() 	

(4.7) 

where, A0 = a2 /(aa) and j6o = 1/(20,2 ). In addition, it can be shown that, to first 

order in l/p, the generalization error is independent of A. As we shall see later in the 

context of large N this insensitivity of the generalization error to the value of the weight 

decay is associated with a divergence in the variance of the optimal weight decay as 

the number of examples grows large. 

That the generalization error is independent of the weight decay for large p implies 

that any scheme, and in particular the evidence assignments, will achieve optimal 

performance asymptotically (i.e. the generalization error tends to zero irrespective 

of A). However, as we shall see in section 4.4 this does not imply that the evidence 

assignments correspond to the optimal hyper-parameters. Rather, it is a reflection of 

the fact that, for any weight decay setting, our linear student is mean square consistent 

(see e.g. Stone (77b)) when the teacher is also linear. 

For this reason, instead of looking directly at the generalization error when assessing 

the performance of the evidence assignments we will focus on the fractional increase, 

in generalization error above the optimal incurred by their use. That is, on 

(A,,, D) - e9 (A0 t,V) 
(4.8) ieg(Aev,V) 	

e9(A0,V) 

Similarly the fractional error in estimating the generalization error from the variance 

of the student distribution is, 

5cP'eV,I3CV, V) 
- €g (A ev ,D) 

	 (4.9) 

These data dependent measures of the performance of the evidence assignments are 

analogous to those average case quantities defined in section 2.6. In section 4.5 we 

examine the asymptotic behaviour of both ic (V) and '6 (V) in the thermodynamic 

regime. 

Secondly, we consider average case behaviour. Using the result of appendix 4.8.3 it 

can be shown that, 

(cg (V))p(v) = a2 Gav + Aa\Gav(a2 - Aaa) 
	

(4.10) 

where the response function Gay = (tr g)p(v)  is unknown in general. The average 
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generalization error is clearly optimised by A = A 0 . Similarly, it can be shown that the 

average consistency is optimised by /3 = /30 whilst the resulting average free energy, 

I =(f(V)) pp) is extremised by A = A 0  and /3 = /30 . This corresponds to the average 

case result obtained for the thermodynamic limit by Bruce and Saad (94) but is valid 

for all N and p. However, we are not able to explore the behaviour in more detail in this 

regime since we can only calculate Gay explicitly in the region of the thermodynamic 

limit. 

Thus, the particular conclusion, of the thermodynamic average case analysis of 

Bruce and Saad (94), that the evidence procedure optimises average performance is 

valid for all N and p and in this sense the evidence procedure is unbiased. Indeed, this 

is a reflection of the fact, noted by Mackay (92a), that on average the evidence will 

always favour the true model (see also section 1.2.1). However, we now show that the 

fluctuations around this average optimum performance become increasingly important 

as N gets smaller. 

4.3.2 Self averaging 

Using the result of Sollich (94) 1  that the variance of tr g/N is 0(1/N 2 ) one can 

calculate the variance, over possible realisations of the data set, of the free energy, 

f (V), obtaining 

Var(f(D)) = 20.4 (tr (FF))p({ x:jj= l ..p}) + 0,2 (tr (yT y)) P({ XI4L=l..p }) 	 (4.11) 

+02 (av)p({x:,=l pfl - /32 (aev) 2P({x.p_lp}). 

Here we have explicitly performed the noise average, the remaining average over the 

input points is with respect to P({x : p = l..p}). As shown in appendix 4.8.4, it is 

readily verified that (tr (IT))p({ : ,i_ l ..p}), (tr (yT y))p({ X ., l  and the variance of 

aev  are 0(11N) as we approach the thermodynamic limit. Thus, the variance of the 

free energy is 0(1/N), i.e. it is self averaging. Similarly, it can also be shown that 

the generalization error and consistency measure are also self averaging. This means 

that in the thermodynamic limit the behaviour exhibited by the system for every data 

set will correspond to the average case behaviour, that is the fluctuations around the 

average vanish. Thus, we see that the average case analysis of Bruce and Saad (94) 

corresponds to the case of any particular data set because their results were obtained 

in the thermodynamic limit. In fact, although we do not do so here the same can be 

shown, in a similar fashion, for the models examined in the preceding chapters. 

'Alternatively one can show this result using diagrammatic methods. 
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Figure 4.1. The scaled variance in the optimal weight decay, Var(A 0t ), for various 
noise levels, (i) A0 = 0.04, (ii) A 0  = 0.25 and (iii) A 0  = 0.44 is shown in the left-hand 
graph. Notice the linear divergence in a which corresponds to our result in section 
4.3.1 that, for sufficiently large p, the generalization error is independent of A. The 
variance in the evidence optimal weight decay, Var(A ev ), is shown, in the right-hand 
graph, for the same noise levels. The 0(1/a) decay of this quantity is a reflection of 
the fact that for large p the evidence optimal weight decay A ev  (D) = A0. 

The asymptotic 0(1/a) decay of the formerreflects the fact that, as discussed in 

section 4.3.1, A(D) = A0. Similarly, the divergence of the latter is indicative 

of the insensitivity of the generalization error to the weight decay for large a. The 

divergence of both curves for small a is order 0(1/(Na)) indicating a break down of 

the thermodynamic limit as p/N -4 0 and in fact, for p = 1 it can be shown analytically 

that these quantities are 0(1). In the limit of zero noise we find that the variance of 

diverges for a < 1 and is zero for a > 1. However, in this limit of zero noise 

the variance of the optimal weight decay tends to zero irrespective of a. Since, at 

least to first order, the average of AA p t  is zero this means that optimal weight decay 

(A 0t  = A 0  + zA 0 ) is zero in the limit of no noise. In this case the evidence procedure 

can only set the weight decay with confidence for a> 1, whilst the optimal policy is to 

accept the data completely (zero weight decay) for all a. Thus, in the noiseless limit 

there is a phase transition at a = 1 below which the evidence weight decay assignment 

is ill defined and above which it is optimal. This is analogous to the phase transition 

discussed in section 2.5.2. 
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Figure 4.2. The distance between the optimal and the evidence optimal weight decay: 
The left-hand graph shows the unnormalised separation, 11 A - A 'Pt 11 2 , (scaled by N) 

for various noise levels; (i) zero noise, (ii) A0 = 0.8, and (iii) A 0  = 1. In large a limit the 
unnormalised separation diverges linearly, whilst for a < 1 it diverges as A0 -4 0 and is 
zero otherwise. The right-hand graph shows the normalised distance, II A,, - A .Pt 11%- 
for the same noise levels. In this case asymptotically we find a separation of 1. In the 
limit of zero noise 11 A, - A opt 3j---* 1 for a > 1 whilst it too diverges for a < 1. 

A second feature we consider is the average separation between the evidence as-

signment of the weight decay and the optimal, 

II -  AOP II 2 < (Aev(D) - A 0 (D)) 2  >P(D) . 	 (4.16) 

This quantity, scaled by N, is shown in the left-hand graph of figure 4.2 for a 

number of different noise levels. We see that as the noise increases the separation also 

increases. However, in the limit of zero noise whilst 11 A,, - A "Pt 11 2  is zero for a > 1 

we find that it diverges for a < 1. This divergence is linked to the divergence in the 

evidence assignment of the weight decay discussed in the preceding paragraph. In the 

limit of large data sets we find that the average distance between the optimal weight 

decay and the evidence assignment diverges linearly, indeed for large a we find that, 

I Aev - A 0Pt 112  Var(A0t). (4.17) 

Thus, we see that this divergence is caused by the fact that, whilst the evidence assign-

ment becomes ever closer to A 0 , the variance, over data sets, of the optimal regulariza-

tion parameter diverges. For this reason we define the normalised averaged separation 

ED 

0] 
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Figure 4.3. The correlation between the optimal weight decay and the evidence 
optimal weight decay CA,,, A 0 t) is shown, in the left-hand graph, for (i) A0 —+ 0.0, 
(ii) A O  = 0.01, (iii) Ao = 1 and (iv) A0 = 4. The right-hand graph shows the correlation 
between the optimal inverse temperature 8opt and the evidence optimal 8 for (i) 
AO  —+ 0.0, (ii) A0  = 0.025, (iii) A0 = 1 and (iv) A0 = 16. 

between the evidence and the optimal weight decay assignments as, 

II Aev — A0 	II All' -  A0  11 2  
Var(A0t) 	

(4.18) 
 

which gives us a measure of the distance of the evidence assignments from the optimal, 

as a fraction of the uncertainty in that optimal. We note that it is an order 0(1) 

quantity. In the right-hand graph of figure 4.2 we see that in the small noise limit the 

normalised separation tends to unity for a > 1 but still diverges for a < 1. Asymp-

totically, for large a, 11 Aev  — A"Pt II3- tends to 1 irrespective of the noise level, A0, 

reflecting the fact that the variance in the optimal weight decay diverges whilst that in 

the evidence estimate tends to zero (see equation 4.15). 

Similar calculations can be carried out for the optimal inverse temperature, /3opt, 
and the evidence optimal, For example in the data dominated regime (a —+ oo) 

we find that 

	

Var(/3) 	 and Var(f30t ) 	_. 	 (4.19) 
2aaN 	 aN 

Thus, asymptotically there is uncertainty in the optimal assignment, whilst the evidence 

assignment is well defined in this regime, reflecting the consistency result of equation 

(4.7). This discrepancy between the optimal and the evidence assignments of the inverse 
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Figure 4.4. 1-D simulation results: The left-hand graph shows the variance in the 
optimal weight decay A 0  (solid curve) and that in evidence optimal A,, (dot-dashed 
curve) both for )o = 1.0. The latter curve has been scaled by a factor of 0.01 for ease 
of presentation and standard error bars are shown. Qualitatively, both curves show 
similar characteristics to the theoretical curves of figure 4.1. For larger p the variance 
of A pt  to diverge linearly. In the right hand graph, the correlation between 
the optimal weight decay and the evidence optimal weight decay C(A, A 0 t) is shown, 
for AO  = 0.01 (full curve) and A 0  = 1 (dot-dashed curve). 

temperature is reflected in their average separation 

2 
lim < (/3ev (D) - I30t(V))2 >P(D) 	 (4.20) 

We shall see in the next section that this result has implications for the estimation of 

the generalization error from the variance of the post training distribution of students. 

Finally, we examine the normalised correlation between A ev (D) and A 0 (D), 

C(A, A pt) and that between 0,, (D) and 30 (D), C(/3ev ,,8opt ) to order 0(1) as shown 

in figure 4.3. The normalised correlation between two fluctuating quantities h(V) and 

k(V) is C(h(D),k(V)) = ((hk)p(v) - (h)p(v) (k)p( V ))/(Var(h)Var(k)) 1 /2 . For small 

a the non-monotonic behaviour of C(A ev , A opt) with the noise level A 0 , is a reflection 

of the fact, discussed above, that the variance in the evidence assignment diverges 

for small noise whilst that of the optimal tends to zero. As the noise level increases 

Var(Aev ) reduces and Var(A 0t) increases causing the correlation to first increase and 

then decrease as a function of Ao. For zero noise 	A OPt) tends to zero for all 

a, since the fluctuations in A. pt  tend to zero in the noiseless limit. The behaviour of 

C(/3ev, )3opt) is more straight forward. For small a this correlation reduces monotonically 

with increasing A0. In the limit of zero noise C(/3e,, )3t) = 1 for a < 1 and is zero 

otherwise. The behaviour in the region a < 1, where the variances of both I3opt and 



Bayesian Model Selection 	 67 

/3ev diverge for small noise level is indicative of the fact that, for this case, in the 

thermodynamic limit neither the consistency nor the evidence are dependent on the 

inverse temperature, 3. For a> 1 both f3ev (V) and 8(D) are uniquely determined 

in the noiseless case. 

Finally, in the large a limit we find 

-  lim C(A ev ,A opt ) - 	 (4.21) 
- './2\
_ 

+ 1'  

and 

lim C(/3ev ,I3opt ) 	4Aa 7"2 . 	 (4.22) 

Thus, for large noise the asymptotic correlation between the evidence and the optimal 

weight decays tends to —1 whilst for small noise it tends to zero. In contrast C(/3ev, /3opt) 

invariably tends to zero. In general then, to order 0(11N) the evidence assignments 

correlate rather poorly with the optimal assignments. 

As noted earlier, when defining the evidence procedure, we can choose whether to 

optimise the evidence with respect to each of the hyper-parameters whilst holding the 

other fixed or simultaneously w.r.t. both. In the thermodynamic limit, in the linear 

case, we find that the evidence assignments are optimal only in the case where we 

simultaneously minimise the free energy w.r.t. to both hyper-parameters (Bruce and 

Saad 94). This was the motivation for studying the later case here. However, we briefly 

note that if we fix /3 /3o  and optimise the evidence w.r.t. the weight decay only we 

are free to expand A ev (D) about A0 as before. In this case we find that, in analogy to 

the thermodynamic limit, this assignment is less correlated with the optimal than in 

the situation we have been discussing where we optimise the evidence simultaneously 

with respect to both hyper-parameters. 

4.4.1 Simulation results 

To corroborate these results qualitatively, we performed Monte Carlo simulations of one 

and two dimensional perceptron students and teachers. In these simulations we gen-

erated random data sets and found the evidence assignments of the hyper-parameters 

and the true optimal assignments. Then by averaging over many such data sets we 

calculated the variances and correlations of these assignments. Some results from the 

one dimensional simulations are shown in figure 4.4. The left-hand graph shows the 

variance of A.pt  and of A ev  versus the number of examples, p, in this case. They show 

qualitative agreement with the large N results of figure 4.1, with the variance of A,,pt  

diverging linearly for large p whilst that of A ev falls off with p. The right-hand graph of 
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Figure 4.5. Probability distribution of evidence weight decay assignment: The figure 
shows histogrammed samples from this distribution for the 2D linear model; 10000 data 
sets were sampled for a noise level of A 0  = 0.25. For a small number of examples the 
distribution is similar to that of the optimal but as p increases we find that the mass of 
the distribution concentrates around A 0  (i.e. 0.25) in agreement with our asymptotic 
results. 

figure 4.4 shows the correlation between )'opt  and 	These simulation results demon- 

strate that there is a region of positive correlation for a small number of examples and 

that as the noise reduces so does the level of the (anti)- correlation. 

A better understanding of this behaviour is to be had by examining the his-

togrammed samples of the probability distributions, of the evidence and the optimal 

weight decay assignments. These are shown, for a two dimensional linear student and 

teacher with A 0  = 0.25, in figure 4.5 for the evidence and figure 4.6 for the optimal 

assignments. In both graphs the number of examples, p runs from 2 to 20. For small 

p the distribution of evidence assignments looks qualitatively similar to that of the 

optimal assignment, namely a distribution peaked at zero but with a long tail. Thus, 

there are many occasions where A and A.pt  are coincident and the correlation between 

them is positive although as we expect from figure 4.1 the variances in the assignments 
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Figure 4.6. Probability distribution of optimal weight decay assignment: The figure 
shows histogrammed samples from this distribution for the 2D linear model; 10000 data 
sets were sampled for a noise level of )to = 0.25. This distribution, skewed towards zero, 
but with a long tail becomes more accentuated as p grows, explaining the growth in 
the variance of )'opt. 

are large. The fact that the correlation is positive is confirmed by figure 4.7 where 

we plot a histogrammed sample of the co-occurrence of the optimal and the evidence 

weight decay assignments for p = 2. 

As p grows the evidence assignments begin to cluster around A0 (see figure 4.5) as by 

our consistency results they must for large p. The mean of A thus tends to A0 and its 

variance decays in accord with our thermodynamic results. In contrast, as p grows the 

distribution of the optimal assignment remains similar to its small p form but becomes 

more accentuated; the peak at zero and the tail both grow. Thus, the variance in opt  

becomes larger in accord with our theoretical results (see equation 4.15). Given the 

differences between these two distributions it is hardly surprising that the correlation 

between the two corresponding hyper-parameter assignments is not positive in this 

region. This is shown by the coincidence (or lack of) of the two assignments in figure 

4.8 for p = 10 and A0  = 0.25. Finally, we note that the increasing dissimilarity of the 
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Figure 4.7. Correlation of evidence assignments with the optimal: Histogrammed 
samples of the probability of co-occurrence of A ev (V) versus A 0 (D) for 10000 data 
sets of p = 2 examples in the 2 dimensional linear model with noise level A O  = 0.25. 
The mode of this distribution is seen to be where the two assignments are the same 
(i.e. zero) suggesting a positive correlation. 

two distributions, asp increases, is reflected in the fact that the distance, A,v - A 0  11 2 , 
we calculated in the thermodynamic limit diverges as a increases. 

A word or two should be said of the relation of these results to the thermodynamic 

regime with which our analysis is concerned. Firstly, the simulations were performed to 

demonstrate that, at least qualitatively, the features found in our analysis were evident 

in a system of finite size, N. Indeed, the one and two dimensional systems studied 

are extreme cases (i.e. very small N) and thus we would expect differences to our 

theoretical results to become smaller as the system size increases. In particular, the 

evidence and the optimal assignments of the weight decay must cluster around A O  as 

the system size increases, at least when p increases correspondingly ( as we have seen 

the thermodynamic limit breaks down for a = p/N -* 0. see e.g. figure 4.1 ). Given 

this, the results for the optimal weight decay assignment of the N = 2 system, shown 

in figure 4.6, seem particularly strange. The peak at zero is not readily understandable 
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Figure 4.8. Correlation of evidence assignments with the optimal: Histogrammed 
samples of the probability of the co-occurrence of Aev(D) versus A0 (D) for 10000 data 
sets of p = 10 examples in the 2 dimensional linear model with A0 = 0.25. In this case 
the mode of the distribution does not occur where the two assignments are coincident 
revealing that they are negatively correlated. Indeed, the shape of this distribution 
reflects the fact that the optimal assignments are concentrated around zero whilst the 
evidence assignments cluster around Aev  = A0. 

and is in disagreement with our finite size corrections, although it should be noted that 

N = 2 is far from the thermodynamic limit. However, preliminary numerical results 

suggest that in a slightly bigger system this problem is largely resolved; for N = 10 and 

p 10...16 the distribution of the optimal assignments, A 0 (V), does indeed start to 

cluster around Ao. However, for any finite sized system we would expect our analytic 

results to be unreliable for very small or very large p. The reason for this is that, 

as stated above, for a = p/N —* 0 the thermodynamic limit breaks down whilst for 

a —+ 00 our small fluctuations ansatz for A,, pt  breaks down (see equation 4.15). 
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4.5 Effects on performance 

We now examine the effects on performance of these sub-optimal hyper-parameter 

assignments. Firstly, for the generalization error to order 0(11s/N) the optimal per-

formance, €9 (A 0 , V), and that resulting from use of the evidence procedure, g (A ev , V) 

are the same. However, to order 0(11N) they differ, thus we can write the correlation 

between them, somewhat suggestively, as 1 - 0(11N). Unfortunately, we are unable 

to calculate this correlation to 0(11N). Therefore, we examine the increase in error 

invoked by use of the evidence procedure 

AE (D) 	€g (A ev ,D) - e9 (A 0 t,D) 

= LA ev ôAC g  + 	+ 	 + 0 (k), 	(4.23) 

where the quantities in the second line are evaluated at )o.  The degradation in perfor-

mance, &(V), is a fluctuating quantity (over data sets) and in order to estimate its 

typical magnitude we calculate its average and variance. The average degradation in 

performance can be written in terms of the average separation of the evidence weight 

decay assignment and the optimal, as defined in equation (4.16). Thus, we find that, 

<e(v) >P(v)=  (ô 9 )o II A.- A0  11 2  +0 (k). 	(4.24) 

Whilst, the calculation of this average is then straight forward that of the variance is 

more tricky. The variance is 0(11N 2 ) and thus we would have to calculate the variance 

of the response function tr g/N to this order. Instead, we simply calculate the variance 

over the noise ignoring that over the inputs. Clearly, this will give a lower bound on 

the true variance. We also expect this to become increasingly tight as c grows since for 

zero noise the fluctuations generated by the input variables vanish for c> 1. Thus, to 

0(11N), a lower bound on the typical error invoked by use of the evidence procedure 

is the average degradation of equation (4.24) plus the square root of its variance over 

the noise. 

In figure 4.9, to first order, we plot this typical error, (i€)p(v) + (Var(L€)) 1I2 , 

scaled by N as a fraction of the optimal generalization error. This quantity is denoted, 

/c(,\) As before the notation h denotes the function h scaled by N. Figure 

4.9 shows that use of the evidence procedure results in a fractional degradation of 

significant magnitude for finite system size, N, and number of examples, c. This is 
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true of the degradation itself and clearly demonstrates the failings of the average case 

approach which, as we have seen, suggests the evidence assignments are optimal in 

this case. Figure 4.9 allows one to determine a lower bound on the typical fractional 

degradation for any system size. For example, for N = 100, we see that the fractional 

errors shown in figure 4.9 will range between 0.01 and 0.29 and for a larger sized system 

the evidence procedure results in closer to optimal behaviour. In fact, in the large a 

limit we find that, for the average fractional degradation, 

1 	2(Ao+1) 
lim <icE9(ACV) >P(V) 	ç;: + 	

Na 	
+ 	 (4.25) 

Note that the average relative degradation, < ic (A) >p(-D), does not decay with 

a despite the fact that the degradation in performance, < Lc(A) >p(V),  is itself 

0(11aN). Thus, although the evidence assignments are consistent in a mean square 

sense they are never optimal even asymptotically. Furthermore, given the large frac-

tional degradation associated with the evidence for finite a and N (shown in figure 

4.9) even this mean square consistency is of questionable relevance in practice. If we 

consider the fluctuations, induced by the noise, in the relative degradation we find that 

asymptotically they do not contribute being order 0(1/aN). Indeed, in general the 

importance of the fluctuation term can be seen in figure 4.10. Graph 4.10(a) shows that 

the fluctuations do not qualitatively change the behaviour of the relative degradation, 

< ic (A ev ) >p(v).  The relative size of the fluctuation term as a fraction of the typical 

error, <L5Eg (A ev ) > = (€(.Xev) <' g (Aev) >p(V))/kEg7ev), is shown in graph 

4.10(b) where we see that the fluctuations are most important for a mid range a. 

As the noise level increases so does r.,g  which is a reflection of the increasing un-

certainty in ) as shown in the right-hand graph of figure 4.1. In the zero noise limit, 

since we consider only the variance induced by the noise, the fluctuation term vanishes 

in both the degradation and the fractional degradation, for all a. However, whilst the 

average degradation, < &(A,,) >p(v)  vanishes for a> 1 it diverges for a < 1. Thus, 

for zero noise the evidence procedure gives optimal performance for a > 1 but very 

poor performance for a < 1. The fractional degradation is more revealing in this limit, 

as we find that <!c (A s,,) >p(v) diverges when the normalised number of examples, a 

is less than one, but for a > 1, 

1 a+1 
urn <kf9  (A ev ) >P(V) 	a - 1' 	

(4.26) 
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Figure 4.9. Scaled estimate of the fractional error 	for a system size of N dividing 

Aev) by N gives the an estimate of the true fractional increase in error above 

the optimal incurred by using the evidence procedure. 	 diverges as Ao —p oo 

and as a —* 0. For large a 	 tends to 1/N and for small noise it diverges for 
a < 1 and is a finite function of a for a> 1 (see text). 
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(a) Average and typical degradation 	(b) Fractional fluctuation. 

Figure 4.10. Importance of the fluctuations around the average fractional degra-
dation in performance: Graph (a) compares the average degradation in performance, 
< >p(-D), shown by the solid curve, with the larger (dotted) curve showing the typi-
cal degradation for )• The latter includes an estimate of the variance of the typical er-
ror (see text). Graph (b) shows this fluctuation as a fraction of the typical error (i.e. av- 

erage plus fluctuation), < 	(A) > (€(Aev) < 'ceg (.Xev) >P(V))/keg (Aev), 
for A0  = 0.5 in the upper (dotted) curve and A 0  = 0.1 in the lower (full) curve. The 
importance of the fluctuations diminishes as the number of examples grows. 

showing that, for small noise, the evidence does not give optimal performance. We can 

understand this behaviour if we consider the evidence weight decay assignments in the 

case of zero noise. In the region a < 1 the variance of A ev  (V) diverges as A 0  -+ 0 and 

thus A (D) is ill defined. This mirrors the behaviour we found in the thermodynamic 

limit for the 'y - 0 model discussed in section 2.5.2 where 3 is ill defined for a < 1. 

Furthermore, as we noted in the previous section, in the current scenario we find that for 

a> 1 the variance, Var(A ev ) —+ 0 in the limit of no noise and thus the evidence weight 

decay assignment is zero ( i.e. A s,, = Ao + AA,, — Ao -4 0). When there is no noise on 

the examples the optimal weight decay, )'opt,  is zero for all a since there is no danger of 

over-fitting. Thus, the average degradation, < Li€ >p(D) and the separation between 

the evidence and optimal weight decays diverge for a < 1 and are zero otherwise. This 

reflects the fact that for a < 1 we do not even have enough examples to fix all the 

weights and certainly do not have enough to set the weight decay. However, for a> 1 

the evidence optimal assignment is well determined. Thus, in the noiseless limit the 

performance of the evidence is optimal for a> 1. However, this is not reflected in the 

average fractional degradation, equation ( 4.26), because the optimal error approaches 

zero at the same rate as the degradation in performance. In other words for small noise 
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level and a> 1 the evidence assignments are still sub optimal. We also note here that 

this difference between the degradation in performance and the fractional degradation 

is mirrored by that between the separation and the normalised separation. In the limit 

of no noise the former tends to zero, for a > 1, whilst the latter tends to unity (see 

figure 4.2). 

We have argued that the optimal policy is a function of the actual data set available 

and to date we have largely focussed on this definition. However, we now briefly 

discuss the effect of re-defining the optimal policy as that which minimises the average 

generalization error. As we saw in section 4.3.1 this is achieved by choosing the weight 

decay A = A0 . Thus, in this case the optimal weight decay does not fluctuate over data 

sets and the error associated with the evidence assignments will be due to fluctuations 

in A(V) alone. Furthermore, we have already seen that asymptotically the evidence 

assignment tends to A0. It is thus not surprising that we find the average relative 

degradation associated with the evidence assignment when compared with the new 

'optimal' generalization error, (eg (Ao,D))p(v), is to first order in a 1  0(1/Na) and 

in fact, < !cf9 (A ev ) >p(v) 4A0 /(Na). Thus, in this case the evidence assignment 

is asymptotically optimal and it is clear that the fluctuations in the optimal weight 

decay caused the asymptotic inconsistency reflected in equation (4.25). In contrast, for 

this new optimal, at small a we find qualitatively similar behaviour in the fractional 

degradation to that displayed in figure 4.9. Moreover, fluctuations in the optimal are 

relatively unimportant, in terms of performance loss, for small a but grow rapidly with 

the number of examples; dominating in the asymptotic regime as we have seen. These 

results show that an average case definition of optimal is misleading especially in the 

data dominated regime. 

Finally, we consider the error incurred in estimating the generalization error from 

the variance of the post training distribution of students. If we use the evidence assign-

ment of the inverse temperature, /3(D), then our error will be 0(11'/); an order 

of magnitude larger than the degradation, Ac (A, D), itself. On average this vanishes 

but we can estimate the typical size of the fluctuation by calculating the square root 

of its variance. Dividing this by the true generalization error gives an estimate of the 

fractional error, rj,, defined in equation (4.9). To first order this quantity, scaled by ../it 

'45c
typ . 	. 	 -.typ. 

and denoted by 	, is plotted in figure 4.11. In general, 'ö 	is much larger than 

In the limit of large a we find that there is some residual error associated with 

this procedure when using the evidence assignments, This result reflects 

the asymptotic discrepancy between the evidence and the optimal assignments of the 

inverse temperature as shown in equation (4.20). For A0 —* 0 RjtY P diverges whereas 
typ 

RbC —* 0 as A0 increases. That is, as the noise level increases the generalization error 
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Figure 4.11. Scaled estimate of the fractional error lc5:  for a system size of N 

dividing 	by N 1I gives an estimate of the true fractional error in estimating the 

generalization error from the variance of the student distribution. R tYP diverges as 
Jc 

a —* 0 and as A0  -+ 0 whilst as a -+ oc we find that 	/2. 

becomes larger and we are able to estimate it, using the consistency criterion, to a 

greater degree of accuracy when it is larger. 

4.6 Comparison with cross-validation 

Given, that the evidence procedure is sub-optimal it is natural to ask if another model 

selection criteria could do better. Here we compare the evidence procedure with leave-

one-out cross-validation, CV(1) (Stone 74), using simulations of our 1-dimensional 

system. That is we set the weight decay using the cross-validatory estimate and the 

evidence estimate and compare the resulting generalization error to the optimal. The 
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Figure 4.12. 1-D simulation results: The left-hand graph shows the correlation be-
tween the optimal generalization error and those obtained using the evidence (solid) 
and cross-validation (chain) with A0 = 1.0. The right-hand graph shows the fractional 
increase in generalization error r,,,, (A) = (€(A) - f9 (A0t ))1f9 (Aopt ). A is set by the 
evidence (dashed) and by cross-validation (chain) for A0 = 1.0. For A 0  = 0.01 the 
evidence case is the solid curve cross-validation the dotted curve. In the latter case the 
error bars are not shown for the sake of clarity but are of a similar magnitude. 

results, averaged over 1000 realisations of the data set for each value of p, are plotted 

in figure 4.12. These results corroborate the results of the previous section in that they 

show the evidence procedure to be sub-optimal. They also show that cross-validation 

produces closer to optimal performance. The left-hand graph in figure 4.12 shows that 

the resulting error from the cross-validatory estimate correlates more strongly with 

the optimal generalization error than does that resulting from the evidence estimate. 

That this correlation for both methods increases with the number of examples, p, is a 

reflection of the mean square consistency of the linear student in this case. In addition, 

the right-hand graph shows that the fractional increase in the generalization error, 

"LEg (A), is considerably larger for the evidence procedure than for cross-validation. 

We anticipate that the evidence and cross-validation assignments will become closer, 

or at least differences in performance will lessen, as the system size increases. However, 

due to the computational intensity of cross-validation, simulations become very expen-

sive for larger systems. We thus defer further investigation of cross-validation until the 

next chapter where we calculate the finite size corrections to the CV(1) assignments 

in the thermodynamic limit. 
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4.7 Conclusion 

By considering the fluctuations around the average case we have shown that in general, 

even in the learnable linear case the evidence assignments do not result in optimal 

performance, despite thermodynamic, asymptotic and average case results to the con-

trary. We have explored the evidence hyper-parameter assignments in terms of first 

order corrections to the thermodynamic limit and found qualitatively the same fea-

tures in simulations of low dimensional systems. In particular, we found the evidence 

assignment of the weight decay became ever further from the optimal as the number of 

training examples increased and as the system size reduced. This is in stark contrast 

to the optimality of these assignments suggested by the average case approach. Con-

sideration of the generalization performance reflected this sub-optimality, although it 

should be noted, that for large data sets, performance improves as more data become 

available, even if the weight decay is sub-optimal. Furthermore, we found that the 

inconsistency of the evidence weight decay assignment was due to asymptotically di-

verging fluctuations in the optimal for large data sets. The performance witnessed for 

finite normalised number of examples, a, showed that the asymptotic results are of lit-

tle relevance to the data impoverished regime. We noted earlier the average case results 

of Meir and Merhav (94) on the consistency of hyper-parameter assignment via mini-

mization of the stochastic complexity for a realizable case. Given our results it would 

be interesting to examine finite size effects in the stochastic complexity framework. 

In addition, our numerical studies indicate that for small learnable linear systems 

cross-validation is closer, than the evidence procedure, to producing optimal perfor-

mance. This is perhaps not surprising as cross-validation attempts directly to estimate 

the generalization error. However, we have found lower bounds on the system size 

required to make the evidence procedure reliable and in such instances it might still be 

a reasonable alternative to the computationally expensive cross-validation. In the next 

chapter we go on to examine model selection by methods, like cross-validation, which 

estimate the generalization error, but we will make comparisons with the results from 

this chapter throughout. 

4.8 Appendices 

4.8.1 Appendix A: calculation of the free energy 

In this appendix we show how to calculate the evidence and the free energy in the 

linear case. Furthermore, we show how certain useful quantities, such as the average 

student weight vector, are calculated from it. We also indicate how to modify this to 



Bayesian Model Selection 	 80 

obtain these quantities in the 2-teacher case of chapter 2 and in the scenario of chapter 

3 where the student is a piece-wise linear function. 

The noise model, as introduced in section 2.2.1, is normalised by the quantity, 

I [J dn,Le''2 
	(IT) 2 

 j 	
(4.A1) 

when the training energy is a quadratic sum of the noise induced errors in each of the 

p examples represented by n1
1 

Similarly, the prior distribution of equation (2.2) is 

normalised by the factor (,/)N/2  The evidence as given in equation (2.4) can then 

be written, 

N 

P(V I -Y"8) = 	
2 [fi 	 (4.A2) 

\ir) 	ir) I j 

Where 7-(w,V) is given by 

	

?-1(w,V) OE.  (V) + yw Tw . 	 (4.A3) 

Recall that the weights w parameterise the student. In the case of a linear student we 

can write the quadratic training error, given a linear teacher parameterised by weight 

vector w°, as, 

Ew(v)j(w_w ° ) 	 (4.A4) 
2 

	

- 	

.  

Here  the variables n1  represent instantiations, in the pth example, of the noise process 

corrupting the teacher output. The data set, V, here expressed in terms of the exam-

ples generated by a linear teacher and corrupted by this noise process is written V= 

{ (*w° . x + = l..p} and the sum in the above expression is over the p 

elements of this set. 

Upon introducing the vector difference between student and teacher weights, 7?. = 

W - w°, following some rearrangement, we can express equation (4.A3) as; 

7-1(7?., 7)) = 1  RTA-'R - 	+ y(w0)Two 	 (4.A5) 

Where, here we have defined the matrix A and the vector p by, 

A 1  = 2(/3oA + -y 1) 	with A = 
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2/3 " 
p 

= 	= >2 n,Lx, - 2'yw°. 	 (4.A6) 

The matrix A is the normalised correlation matrix of the inputs, with or 2  
X  the variance 

of the of the sampling distribution from which the inputs are drawn (see e.g. section 

1.2). The index k runs from one to the N dimensions of the input space. The response 

matrix g in this linear case is given by g = that is g = (A + Al) — ' where 

A=y//3a. 

The integral over the student weights is thus Gaussian and following integration we 

find that, 

P 	N 

	

P(V y,  3) = 
(~) (1 

	
det A]'!2exp (pTAp - y(w0)Tw0) 	(4.A7) 

	

r 	k7 

In order to calculate the quenched averages over the training data we consider the 

free energy (see for example sections 2.4 or 3.4), 

f(D) = —1nP(V I y,/3) 	 (4.A8) 

Average student weight vectors 

In addition to the evidence, another interesting quantity is the generalization error. 

For example, as defined in equation (4.2), when the teacher and student are linear this 

is given by, 

or 2 
e9(D) = 	>2(7k)w(7k)w. 	 (4.A9) 

Following, the notation introduced in section 2.2.2, the angle brackets with the subscript 

w denote the integration over the posterior distribution P(w I D, -Y,,6). Thus, the 

generalization error depends on the difference between the student and teacher weight 

vectors averaged over the posterior distribution. These averages can thus be calculated 

from the logarithm of the evidence, 

N 
lnP(V I ,/3) = (k)w = >2pjAjk 	 (4.A10) 

	

apk 	 j=1 
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Similarly, the variance of the k 1 component of the vector R. over the posterior is given 

by the second derivative of the logarithm of the evidence, 

02  

	

In 	I 'ri3) = 	- 	= Akk 	 (4.A11) 
ajok  

This last quantity is related to the variance of the student output over the posterior 

distribution and thus to the consistency measure (see e.g. section 2.4). Indeed, in the 

linear case, this variance is given by _L0.2  tr A. 

Determinant of response function matrix 

One further quantity we will require is the logarithm of the determinant of a matrix with 

the form of g. Indeed, this appears in sections 2.3, 3.4 and 4.3. Here we show that this 

quantity can be written in terms of the matrix itself when it is of the form (A + Al) - '. 

Starting with the well known identity In det g 1  = tr In g- ' and differentiating with 

respect to A we find that, 

	

1ndetg(A) = -tr g(A). 	 (4.Al2) 

In fact, mostly we require only this derivative with respect to the weight decay since 

we are generally interested in the evidence assignments of this parameter (see section 

2.5.2). However, in chapter 6 we require lndetg itself, which can be written, 

lndetg(A) 
= f 	tr g(A')dA' 

- f 	dA' 	 (4.A13) 

In fact, for the learning scenarios examined in this thesis this integral diverges but 

nevertheless it is used in appendix 6.6 to find the ratio of two free energies. 

Extensions from linear scenario 

To date we have discussed only the linear case since this is the scenario we are concerned 

with in this chapter. However, in chapter 2 we calculate the free energy and other 

quantities such as the generalization error in the case where the data is generated by 

an n-teacher (see section 2.3). In this case the above derivations are somewhat similar 

but the initial training error is now written as, 

Ti 	 2 

) x 	
An 	 (4.A14) '\ 

	

E(V) = 	(—(w - w 	- i ) .  
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4.8.3 Appendix C: average case. 

Here we show that (gij)p(v) = Gaväjj. Firstly, we can expand g as, 

= 	— ) -2A + )C3 AkAk 3 .... 	 (4.C1) 

where, A23 = 2i3  

A typical term is then, 

/ 1 \fl+1 
/21 /Ll /12 	 /2n-1 /1n-1 /-2n (2n+l A_(n+2) 

() 	; 
XX 	

/12 
X/ ............ Xk 1 Xk 	XkXj 	 (4.C2)ki  

In order to perform the average over the inputs we must pair all the indices. Ignoring, 

the pattern indices p it is easy to see that any pairings of the lower indices, i, k1..k,j, 

will lead to i = j. In order to have i j one index must remain unpaired and the 

resulting average will vanish. Thus, on average the matrix g23  is diagonal. 

4.8.4 Appendix D: self averaging. 

In this appendix we show that quantities in equation (4.12) are 0(11N). Firstly, tr IT, 

— 	N2a 	N j 	N20.2 + pt), 	
(4.D1) tr rr — 

((x/2)Txv + 
	

((xgx 

where repeated indices imply summation. Now the average of this, over the distribution 

P({x'2  : tt = 1..p}), can be re-expressed in terms of the average response function 

G = (tr g/N)p({ x:l ..p}), which can be calculated using the method of Sollich (94) 

or the diagrammatic methods of Hertz et al. (89). Thus, we can write, 

(tr FF)p({x: ,1=l..p}) = 	(a — 1 + )2OG) 
	

(4.D2) 

Since G is 0(1) then it is clear that (tr FF)p({ xM : /1= l )) is 0(11N Similarly 

(tr yTy)p({x.,l pp  can also be shown to be 0(11N). 

Finally we turn to the variance of aev  over P({x : y = l..p}). It is clear that, 

Var(aev ) = o,\4  Var ((w0)Tgwo) 
	

(4.D3) 

Now, due to the isotropic nature of the inputs it is clear that only the magnitude of the 

teacher vector w° is important since one could always transform the inputs to rotate 
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the teacher to any particular direction. Thus, we can evaluate the variance of aev  by 

calculating the variance of (w0)Tgwo/N  over a spherical distribution of weight vectors 

WO constrained to be cr in length. We then obtain, 

Var g(WO)T  gw-) = 	aAG)o - (G)) + 0 (k). 	(4.D4) 

Where, again, (h)o denotes the value of h in the thermodynamic limit. 

4.8.5 Appendix E: calculation of covariances 

Here, as an example we calculate the correlation between A ev  and )'opt.  From equation 

(4.12) we find, 

AA"
= detM 	0Af - l9l9Af 0 f}A 0 ,0 	 (4.E1) 

Where we have defined, 

	

M = ( 
9f o/3aAf 

' 	 (4.E2) 

	

\.. 9A'9/3f 	8f I 

Now, we are expanding about the thermodynamic limit, that is around A 0  and  60 . 
Since these are the evidence optimal assignments in this limit o9 j and 8f are of the 

order 0(1//N). However, the second derivatives do not vanish at this point and so 

and ô1 E1,f are 0(1). Thus, expanding up to first order we obtain, 

Ak~

1  
= - 	 {(ôf)o f - (OôAf)o O,f}Aojo + 0 () 	(4.E3) 

(det M)o 

Similarly, from equation (4.13), we can write, 

Alkopt
( 	 8Ag 

) AO"6' +O ( 1
(ô€g)o 	 :) 	

(4.E4) 

Thus, the covariance of A,, and A.pt  is given by, 

1 
(AoptAev)P(V) 

= (detM)o(€g)o0 
(oAf OAg)P(V) 

- (80Af)o (8f OAg)P(V)}Ao,o  +0  
( 3/2) 	 (4.E5) 

Now let us focus on one of these averages, namely (8Af 8Ag)P(V). Firstly, using the 
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fact that (f IA0)P(v) = 0 and (t9,e A,,)P(D) = 0 we can write this as the following, 

(OAf OAfg>P(v) = Cov(nTF'n, 	 (4.E6) 
F 	 /1 

+Cov(n.y
F 
 ,n.z

F 
 ) +.BoCov(a,a

F
g ) + 0 

	) - 

Here h' = Oh and Cov(h(D), k(D)) = (hk)p(v) - (h)p( v )(k)p( v ), whilst the individual 

terms, F, A etc... are defined in equations (4.4) and (4.5). Equation (4.E6) can then 

expressed in terms of the response function as we saw in appendix 4.8.4. The second 

term, (O'jf 9A€9)P(v),  is similar. 



Chapter 5 

Model Selection by Estimating 

the Expected Error 

Abstract 

In this chapter we consider setting the weight decay parameter in a linear student 

learning from examples generated by a noisy linear teacher using empirical estimates of 

the generalization error. In the context of finite size corrections to the thermodynamic 

limit we examine two methods for achieving this, one based on the test error on an 

independent set, the other on a cross-validatory estimate of the generalization error. 

In the former we consider a scenario in which we must choose how to partition our 

data base into test and training sub-sets. We consider two partitioning methods 

and find that one, the minimal variance partition, requires that the fraction of data 

used for testing approaches unity as the data base grows in size. The other, optimal 

partitioning, results in a degradation in generalization performance, compared to 

the true optimal, which is an order O(/J7) worse than that associated with the 

evidence procedure. The particular version of cross-validation we consider is leave-

one-out cross-validation (CV (1)). In contrast to the test error we find that, at added 

computational cost, CV(1) makes good use of the test data points resulting in a 

degradation in performance of the same order as the evidence. In fact, comparison of 

the evidence and leave-one-out cross-validation reveals the performance of the latter 

to be superior except in the noiseless case, when the number of examples exceeds the 

number of model parameters, and in the asymptotic regime where they are equivalent. 

However, it should be noted that the enhanced performance of CV(1) is achieved 

through greater computational effort as compared with the evidence procedure. 

EYi 
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5.1 Introduction 

In this chapter we analyse the performance of model selection methods based on the 

idea of estimating the generalization error directly. The process of model selection 

then proceeds by choosing the model, or models, with the lowest estimated error. In 

particular, we examine the test error and leave-one-out cross-validation, CV (1) (Stone 

74). The test error is evaluated on a set of data independent from that used to train 

the student networks and is, thus somewhat wasteful of the available data. Cross-

validation methods in general, and CV(1) in particular, are an attempt to overcome 

this drawback without encountering the attendant problem of underestimating the true 

error. Such an underestimation of the generalization error is caused by testing the 

students on data also used in the training set. Indeed, in the limiting case where all 

the data is used both for training and testing the test error is simply the training error 

and must be a biased estimate of the generalization error; recall that minimizing the 

training error can result in overfitting. 

In particular, we will focus on the noisy, but learnable, linear case where weight 

decay is employed as a regularizer (see chapter 4). We will explore the behaviour 

of weight decay assignments based on the test and cross-validated errors, evaluate the 

performance of each method and make comparisons with that of the evidence procedure. 

As we shall shortly see, all three methods assign the optimal value to the weight decay 

parameter in the thermodynamic limit. Similarly, in the sense used in section 4.3.1, all 

three methods are unbiased. Thus, we will be chiefly concerned with finite size effects 

as in the previous chapter. Once again, focusing on this regime will reveal important 

behaviour not apparent in the thermodynamic limit. In particular, it will enable us to 

meaningfully compare all three algorithms in terms of performance, identifying their 

strengths and weaknesses. 

In the next section we calculate the test error assignment of the weight decay 

and evaluate its variance and correlation with the optimal regularizer in two different 

scenarios. The first, in which the test set is separate from the training set, is used to 

explore the properties of the test error assignment without undue complication. The 

second is a more realistic situation in which we must decide how best to partition a 

data base into training and testing sub-sets. In the later case we base this partition 

on two criteria, namely minimising the variance of the weight decay assignment and 

optimising the performance. We compare this optimal performance to that found for 

the evidence in chapter 4. 

In section 5.3 we calculate the popular leave-one-out cross-validation error, again 

for the learnable linear case. We show that this quantity is self averaging, find the 



Cross-Validation and related methods 	 89 

weight decay assignments made from it and calculate their correlation with the optimal 

assignments. We explore the implications of these assignments on the performance of 

CV(1) and finally, in section 5.4, we compare this performance with that associated 

with the evidence assignments calculated in chapter 4. 

5.2 Model Selection from the test error 

As before, our student, denoted by its 1-D output y, (x) for an input x in N dimensional 

space, is distributed according to the predictive distribution, P(y8 (x) I X,Vt rn ,M). 
Here, Dtrn = {(yt (xv), x") ii = 1...1} is the data set used to train the student and 

M denotes the form of the student model, including hyper-parameters such as the 

weight decay (see section 1.2.1). In particular, here we will adopt the noise model and 

prior outlined in section 2.2.1. Since the architecture will remain fixed, as previously, 

the model is specified by the inverse temperature, 3, and the weight decay, A, thus 

M = 10, A}. In Bayesian tradition and as we have done through out this thesis, we 

choose to make predictions based on the average over this predictive distribution. We 

also comment that, if we believe our model is correct, as is implicit in the Bayesian 

paradigm, then for a least squares loss criterion, such as those defined in equations 

(1.10) and (1.11), this average is also the optimal predictor. The teacher, with 1-D 

output yt(x), is drawn from the distribution P(yt I x) and we consider the case of 

random examples where the inputs are sampled from a distribution P(x). The test 

error is then given by, 

in 

2  6test = 	(<ys(XIL) >P(y s (x)Ix,Dt rn ,M) — yt()), 	 (5.1) 

Where m is the number of test points available in a finite test set D = {(yt(x'), x's) 

= 1.. .m}, which is drawn independently of the training set, D. Although one could 

consider alternative scenarios the most realistic case, and that which we examine here, 

is when the test points are drawn i.i.d from the same distribution as the training 

set. The total data base consisting of p examples, with m from the test set and 1 in 

the training set, is denoted V. 

In the linear case, with weight decay, the test error translates to, 

rn,, 1 	 2 

test = 	( 7 (< W >P(wIDtrn,,/3) —w°) . x' - 
	

. 	(5.2) 
m 
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Here the average over the predictive distribution translates into an average of the, N 

dimensional, student parameters, w, over the posterior P(w I Dtrn, A,,3). Furthermore, 

we have assumed that the linear teacher, with weights w°, is corrupted by uncorrelated 

Gaussian noise of mean zero and variance a 2  The random variables 7 1  denote an 

instantiation of this noise in example ji and are thus distributed accordingly. Similarly, 

in what follows, we assume that P(x) is normal with mean zero and variance a. If we 

average over the test points we find that the test error is a noisy estimate of the data 

dependent generalization error, 

(ftest(V))p(V tst ) = €g (Dtrn) + 0r2 . 	 (5.3) 

Thus, as we saw in section 4.3.1 for the evidence, the test error assignments will 

be unbiased in the sense that the average test error is minimised by the same weight 

decay assignment as the average generalization error. Once again this result is valid for 

any system size N. Also, as we did in section 4.4 for the evidence, we can examine the 

parameter assignments made from the test error based on a particular data set. In par-

ticular, we consider the thermodynamic limit where the number of training examples, 

I = scales linearly with the system size. Recall that in chapter 4 we found that 

if the number of training examples was not extensive the thermodynamic limit broke 

down with key quantities, such as the variance in the optimal weight decay, diverging 

(see sections 4.4 and 4.5). Then, if the number of test examples, rn, also scales with 

the system size N where m cc Ns,  with 0 < s < 1, is the scaling law, it can be shown 

that the test error is self averaging (Barber et al.(94)). Thus, in the thermodynamic 

limit we find that the average case corresponds to any particular case and the test error 

assignments coincide with the optimal. We allow a wider range of scaling behaviour 

for the test set size than for the training set size since, as just stated the training set 

size must be order 0(N) for the thermodynamic limit to make sense and latterly we 

will investigate optimal test set sizes. 

Furthermore, for large N, we are justified in Taylor expanding the equation defining 

the test error optimal weight decay, A 8  (D), 

9AEt st(D) 	9et3 (V) k +AO€ti(V)  k= 0. 	 (5.4) 

Then, up to 0(1//) the test error optimal weight decay can be written as A3 
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A0 + LA t8t (V) where 

ôAe tt (D) IA0 

= a2 ftst(D) ixo 	
(5.5) 

Using the methods introduced in chapter 4 we can then examine the variance of this 

fluctuation as well as its correlation with other quantities, such as the optimal weight 

decay A 0  (V). We now go on to explore weight decay assignments from the test error 

in two different scenarios. The first is somewhat unrealistic assuming, as it does, that 

we have a data set containing 1 = atr,N examples available for training our student 

and independent of this we have a data set of m examples which may only be used for 

testing. Latterly, we will consider the more usual situation in which we have a single 

data base, of p = aN examples, which we must choose how to partition into training 

and testing sets. 

5.2.1 Separate testing and training sets 

As stated, here we will examine the situation in which we have a totally separate set of 

data which can only be used for testing. This will allow us to explore the properties of 

the test set estimate of the weight decay, A(V) without complicating considerations 

concerning the optimal partitioning of the data base. 

The calculations of the variance of A 3  (V) and its covariance with the optimal 

weight decay, when we have 1 = atrnN examples available for training, are similar to 

those of chapter 4. In particular, we find that the variance in the test error weight 

decay assignment is of the form, 

Var(Ajst ) = Var¼0t) + 	(fv (A o ,atrn)) 2 	 (5.6) 
M 

where fv (Ao,at rn) is positive order 0(1) quantity in the thermodynamic limit. Thus, 

for any finite test set, A 3 (D) is a noisy estimate of the optimal weight decay. In the 

limit of large training sets we find that, 

lim Var(At3t ) = 
A0 (2 + Ao)atrn Aoatrn  

trn4 	 2Nc 	
+ 

N 
(5.7) 

when the test set size, rn, scales linearly with the training set size, 1, (i.e. , m = 

and at3t = atrnc). The second term is the variance of the optimal weight decay in 

the limit of large training set (see equation 4.15). Thus, the variance in A t,t  diverges 

linearly with atrn  and even in this limit the test error assignment remains a noisy 
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estimate of the optimal weight decay unless the test set is infinite (i.e. c diverges; 

atst  >> cxtrn). In contrast, when the test set size m X N' does not scale with the 

number of training examples we find that the variance of the test error optimal weight 

decay is order Q(N) and diverges even faster with atm, 

o(2 + ) o)a?mn urn Vart7tt) = 
)t 
	 (5.8) 

atrn-*00 	 2m 

Note that we return to the linear divergence with at,  found in equation (5.7) if we 

substitute in = atrnNc into the above expression. Thus, as the number of training ex-

amples increases we must use more and more test points to achieve the same accuracy 

in estimating the weight decay, although as the generalization error improves for large 

and increasing atmn  the gains in identifying the optimal weight decay reduce. Further-

more, equation (5.7) in particular implies that the test error is even less sensitive to 

the weight decay than is the generalization error. Indeed, in chapter 4 we saw sim-

ilar behaviour where, asymptotically, the evidence weight decay assignments became 

increasingly distant from the optimal as the number of training examples increased. 

The variance in At,t  scaled by N, Var(At3t ), is shown in figure 5.1 for finite at,,,  

for two different noise levels and a number of different test set sizes, all of which scale 

linearly with atm  and the system size. As we saw in chapter 4, for the optimal variance, 

as the number of training examples decreases towards zero the scaled variance diverges 

signalling a breakdown of the thermodynamic limit. Similarly, the linear divergence, 

for large crtmn  is clearly evident in all the curves and naturally, the variances are larger 

when the noise levels are greater. This reflects the increase in the variance of the 

optimal assignment as well as that in the estimation of the generalization error by the 

test error. In addition, we note that, for a given noise level, the variance in X 3 (V) 

reduces as the size, m, of the test set increases. Thus, as can be seen from equation 

(5.6), to estimate the optimal weight decay as accurately as is possible one needs an 

arbitrarily large test set. 

	

Now we turn to the normalised correlation, C(A 3 , 	of the assignment of the 

weight decay from the test error with that of the optimal. In the case, under consid-

eration here, where we have a completely separate test set the covariance between 

and kpt takes on the simple form, 

	

Cov(Att , .\opt) = Var(A0pj ). 	 (5.9) 
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Var(Atest ) 

 

V81(Atest) 

(ii) 
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(a)Ao=O.1 	 (b)Ao=1 

Figure 5.1. Variance of )test. In graph (a) the noise to signal ratio is )¼Q = 0.1 and 
the test set size m = atrnNc, with (i) c = 10, (ii) c = 1 and (iii) c = 0.1. In graph (b) 
the noise to signal ratio is unity with the test set sizes as before 

Thus the correlation function is, 

A 0 t) 
IVar(Aopt)1 1/2 

(5.10) = I 
[Var(Atst )j 

and minimising the variance, Var(A t3t (D)), maximises the correlation. In the limit of 

large at,n  we find, 

I 	2c 	1/2 
urn 	A 0  t) = L + 2(1 + c)] 	

' 	 (5.11) 
rn Ct -+00 

when m = Otmn NC. However, if m does not scale with the number of training examples 

then we find that correlation decays as 

I 	2m 1 / 2  
urn C(A 5 , A0t) = L 	 . 	(5.12) 

	

atm 400 	 Natrn (A o  + 2)]  

Also, since m 0(N 3 ), for s < 1 the correlation is lower than order 0(1). 

The normalised correlation C(X 3 , )topt) is shown, for the case where the test set 

size scales linearly with that of the training set, 1 = atmm N, in figure 5.2. It is apparent 

that, as the the test set size increases relative to, but not at the expense of, the training 

set (c increases) the correlation increases. Furthermore, as the noise level increases, 

for fixed test set size, the degree of correlation reduces, In fact, in the limit of large c, 

C(A 3 , A0t) —+ 1 and for the case of zero noise in the large training set limit (aim  4 oc) 
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Figure 5.2. Normalised correlation of At est with the optimal weight decay versus the 
number of training examples. The noise levels are shown in the captions. In both (a) 
and (b) the size of the test set scales with atm,  m = atrnNc and the fraction of test 
examples to training examples is (i) c = 0.1, (ii) c = 1 and (iii) c = 10 respectively. The 
explicit dependence of AOPt  on atrn  emphazises the fact that here the optimal is defined 
in terms of the number of training examples and not the total number of examples. 

we find C(A t3t , )'opt) —* /c/(1 + c). Finally, for the finite values of c shown, we can 

see that the correlation tends towards non-zero asymptotic values as at increases in 

accord with equation (5.11). 

In figure 5.3 we see again the normalised correlation but now in the case where the 

size of the test set does not scale with the number of training examples. We witness 

broadly similar behaviour to the previous case, with the correlation increasing, for 

fixed cItmn  as the size of the test set increases and reducing as the noise level increases. 

However, as expected from equation (5.12), as at,,, increases the correlation decays 

rather than asymptoting to some non-zero value. 

An alternative measure of the similarity between the test error weight decay as-

signment and the optimal is the average squared distance between them, <(.\0 (D) - 

A 5 (D)) 2  >p(v). A similar measure was introduced in section 4.4, however there we 

normalised this distance by the variance in the optimal weight decay (see equation 

4.18). The rationale behind this being that this distance diverged for large training 

sets due to the divergence in the optimal weight decay; by normalising we obtained a 

measure of the distance from the optimal as a fraction of the uncertainty in the optimal, 

and avoided this divergence. Since < (,\0(D) - \(V)) 2  >p(v) also diverges for large 
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Figure 5.3. The normalised correlation of At,,t with the optimal weight decay when 
the test set size, m, does not scale with the number of training examples, I (in this case 
m = at3tN, with at8 t const. as at —* oo). The noise levels are shown in the captions 
and in both (a) and (b) the size of the test set is (i) at,t = 0.1, (ii) at3t = 1 and (iii) 

at8t = 10. 

data sets we adopt the normalised distance measure as before, 

< (.X0(D) - A 5 (D)) 2  >P(V) 	 (5.13) AtIt 	
2 	__________________________________________ 

	

- A 0  11w = 	 Var(A0 t) 

Var(Atst) — Var (A 0 t) 

	

= 	Var(A0 t) 

Figure 5.4 shows the normalised distance measure for the cases when the test set size 

does and does not scale with the training set size. In the latter case even the normalised 

distance diverges whilst in the former II — A.Pt IIr- (2 + Ao)/2c in the large at, ,,  
limit. Comparing with the evidence case (see equations 4.17 & 4.18) we see that for 

large enough test set, rn > atmn Nc t , where = 1 + AO/2, the test set assignment 

is asymptotically closer to the optimal than that of the evidence. We also note that 

in the limit of infinite test set size the distance, 11 At,t - )'opt 11 3.--* 0 for all atm. For 

finite test sets, the un-normalised distance from the optimal diverges for zero noise at 

atrn < 1 and is zero for larger training set size. That this behaviour is not fully reflected 

in figure 5.4 is due to the rates at which < (,\ 0 (V) — )t8t(D)) 2  >p(v) and Var(A0 t) 

approach zero (for atrn > 1) as A 0  -+ 0. Indeed, asymptotically, for zero noise, the 

normalised distance equals c 1  as opposed to the un-normalised distance which is zero 

for atrn > 1 in the noiseless case. 

(iii) 

(ii) 
(i) 
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)\tst - A-Pt 11( ' 
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atrn 	 attn  

(a) m cx 1 	 (b) m constant 

Figure 5.4. Average normalised distance between ) 3 (V) and A 0pt(V): In graph (a) 
the test set size 'in = atNc, scales with the training set size I = atmnN with c = 0.1 
and the three curves shown are as follows; The upper full curve is for A O  = 1 whilst the 
lower solid curve is for zero noise level and the dotted (middle) curve has AO  = 0.25. 
In graph (b) the test set size m = Nc does not scale with the training set size. The 
example shown has c = 0.1 and the noise levels as in graph (a). Clearly, unless the 
test set scales with the training set the normalised distance of the test error weight 
decay assignment from the optimal diverges with atm. In both cases, for zero noise 
and at, < 1, this distance diverges, whilst it is finite for at,,, > 1. It should be noted, 
however, that the true (un-normalised) distance between the test error assignment and 
the optimal does tend to zero, for at, > 1, in the noiseless limit but at the same rate 
as VarA0t ). 

Performance 

Finally, we look at the effect of the test set weight decay assignment on performance. 

Recall that our measure of a particular algorithms performance, /c V) has been 

the degradation in generalization ability incurred in using it, as a fraction of the optimal 

generalization error (see e.g. section 4.3.1); 

LX(.X azg , D) 

	

€(A atg ,D) = eg()aig,D) - e9 (Ao ,V) and tQg (Aa1g,V) = 	 (5.14) 

In the case under current consideration )'alg = )'tst. Furthermore, in this chapter we 

will focus on the average performance, rather than concern ourselves with fluctuations 

around it. That is, we will focus on < (A, V) >p(v)  and not take into account 

the variance of this quantity as we did in chapter 4. Indeed, for the evidence, we 

found that for a small amount of training data these fluctuations were small compared 
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with the average fractional degradation (see e.g. figure 4.10). In addition, although 

they were seen to become relatively important for mid-sized training sets they did 

not qualitatively effect the behaviour of i (A ev ). Furthermore, asymptotically, as the 

number of training examples grew, the fluctuations were seen to become unimportant 

as we would expect. 

Similarly to equation (4.24), in chapter 4, the average degradation in performance, 

to first order in N, is given by, 

<&(A 3t , V) >p(v)=  aeg(Ao) (Var(At3t) - Var( 0t )). 	(5.15) 

Thus, as the test set becomes larger and Var(A tst ) approaches Var(A0t) (from 

above) the performance approaches the optimal. However, as we found for the evi-

dence procedure assignments (see section 4.5), in general, even in the limit of large 

at,,,, the average fractional degradation, icE 9  (At 8t) does not decay to zero. In fact, for 

the limit of large training set we find that when the test set size scales with that of the 

training set (i.e. m = 

lim < ic€9t)tts 	
2 + )

t,D) >P(D) 	2Nc 	
(5.16) 

Etrn +OO 

In comparison with our results of section 4.5, for the evidence procedure, we find that 

the performance resulting from this, rather idealized, use of test error is superior for 

large enough test sets. In particular, this method out performs the evidence if the 

test set size m > atrnNcct , where crzt = 1 + Ao /2 > 1 (see equation 4.25); the 

result revealing the dependence of the fractional degradation on the distance measure, 

II Atst - A,,pt  11 2 . We note that, since the test set is separate from the training set, this 

implies that the test error assignment of the weight decay will only out-perform that 

of the evidence by using more than twice the data. Indeed, when the test set size does 

not scale with the training set size, 1, the performance is worse than associated with 

the evidence procedure, with the fractional degradation diverging linearly with at,,, , 

&t"
'
(2 + Ao) 

urn < lcE9 (.Xt S t,D) >P(D) 	 (5.17) 
'trn+OQ 	 2m 

In summary then, we have found that, in the learnable linear case, the test error 

allows us to make a noisy prediction of the true optimal weight decay, the degree of 

error diminishing as the size of the test set increases. Furthermore, we have seen that 

as the training set grows in size it becomes increasingly difficult to estimate the optimal 

weight decay requiring an ever larger test set to achieve the same accuracy, but of course 

the generalization improves and becomes ever more insensitive to the assignment of the 
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weight decay. Finally, both these features were seen to be evident in the performance 

resulting from using the test error estimate for the regularization parameter. 

5.2.2 Partitioning the data base 

We now turn to the problem of partitioning a data base, of p = aN examples, into 

testing and training sets. In the previous section we were forbidden from using the 

test set data for training, but in practice no such such proscription exists. However, 

as discussed in the introduction, in order not to produce a biased estimate of the true 

error we should not use training data in the test set, or vice versa. As we saw earlier, 

for a given training set size, the accuracy of the test error assignment of the weight 

decay increases with the size of the test set, but now increasing the test set reduces 

the data available for training. Similarly, devoting more data to training reduces the 

accuracy of the test error. Thus, there is a trade off between these two activities. In 

this section we look at two criteria one might use to identify the optimal partition of 

the data base into test and training sets. 

Minimal variance 

The first criterion we consider is that of minimising the variance of the test error 

assignment of the weight decay. That is, we want to identify the optimal weight decay 

as accurately as possible. As a practical option we should note that this policy might 

be difficult to implement. Nonetheless, this variance is dependent on the student and 

training data only and so one might imagine estimating it using separate data bases, 

however, we do not deal with this problem here. In mitigation we remark that, from a 

practical view point, it is more useful as method of partitioning the data base than our 

ultimate goal of minimising generalization error to which we do not have direct access. 

Firstly, let us consider the form of the variance in equation (5.6) recalling that 

Var(A0t ) is an order 0(11N) quantity when the training set size is extensive. If the 

test set size m is of the order of N, (i.e. s=1 and 'in 0(N)) then both terms in 

the variance (see equation 5.6) are also order 0(11N) whilst, if 'in is 0(1) then the 

variance is also 0(1). Likewise, for s < 1 the variance in )'tst  is larger than 0(11N) 

(e.g. s = 0.5 -4 Var(A tst ) 0(N 112
)). Thus, since we have fixed the total number 

of examples to be 0(N), the minimal variance will be achieved for test set of size 

'in = crt8t N. Thus, in this case we have a = at,.,, + at3j as the number of training 

examples, 1 = atmn N, must also be of the order of N for a variance of 0(11N) (see 

divergence as at,,, -  0 in figure 5.1). 

Figure 5.5(a) shows the minimal variance fraction of test examples Am = 
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Figure 5.5. Minimal variance fraction: Partition of data set into training and testing 
subsets resulting in minimal variance of Att(D):  The left-hand figure shows the frac-
tion that should be devoted to testing as a function of the total number of examples 
available, a for (i) A 0  = 0.01, (ii) A 0  = 0.1, (iii) A 0  = 0.25 and (iv) A 0  = 1. The right-
hand graph shows the same optimal fraction versus A 0  for (i) a = 0.5, (ii) a = 1, (iii) 
a = 1.2 and (iv) a = 1.5. Note, that as a increases we should devote a progressively 
larger fraction to testing. 

versus the normalised total number of examples a for different noise levels (A O ). For 

a - 0 minimal variance partition is when /.rn = 1/3 which corresponds to using 

half as much data for testing as for training. In contrast, as a increases, Lrn tends 

to unity. Thus, when only a small amount of data is available a relatively small test 

set should be used, but where a large data base is used most of the data should be 

used for testing. The fact, that A m -* 1 still means that a t,.,, -4 oc but that it is a 

progressively smaller fraction of a. At small values of a the minimal variance fraction 

is a decreasing function of the noise level. Figure 5.5(b) shows the same fraction versus 

the noise level, A 0 , for various values of a. For large noise level the minimal variance 

fraction is a monotonically increasing function of a which tends to one. 

The result that Am -* 1 as a -+ oc is similar to that obtained by Shao (93) in 

the context of cross-validation. Shao's results suggest that cross-validation will only be 

consistent if, as the total size of the data base (p) increases, a relatively large fraction 

(m/p) of data should be used in the validation set (similar to our test set), compared 

to the training set, such that rn/p -* 1 as p -* oo. Thus, as we find, in order to hit 

the target, as more data becomes available, a greater fraction is required for testing 

(validation). 
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Figure 5.6. Optimal scaling: The logarithm of optimal test set size, which minimises 
the average degradation in performance, versus the log of the system size N. The 
left-hand figure shows the optimal test size for noise to signal levels (i)A o  = 0.01, 
(ii)Ao  = 0.25 and (iii)A 0  = 1 all for a = 2. Other values of a show similar behaviour. 
The right-hand graph is curve (i) on a smaller scale, revealing that the scaling law is 
rnopt 0(N112). 

Optimal partition 

As noted in the last section our ultimate goal is the minimization of the generalization 

error. What partition of the data base will achieve this? Clearly, this is not something 

we can do in practice directly, but nevertheless it would be interesting to know the 

optimal policy. 

Firstly, let us identify the optimal scaling of the test set size rn with the system 

size N (i.e. find s0 t). Examining equation (5.14), for the average degradation in 

performance (se), we note that the optimal generalization is now achieved by setting 

the weight decay optimally and using all the p examples available as the training set. 

Thus, if we devote rn 0(N) examples to testing the average degradation will be 

0(1). However, if rn 0(NS)  with 0 < s < 1 then then for large system size N we 

can expand, to order 0(11N), the average degradation as, 

<ze(.x 8 ,v) >p(v)=< €g (.Xo + AAt, t ,a - rn/N) >p(p) - <e9 (Ao + A0 t,a) >p(-D) 

	

(e(Ao, a)) 0  - 	 (Oe9 (Ao, a)) 0  + 1  (ôeg (A o )) (Var(At3t) - Var(A0t)) 

- (€g (Ao,a)) o  + o (NI /2) 

- (e9 (o,a)) 0  + I (3 9 (A o )) 0  (Var(At8t) - Var 0 t)) + 0 (V13—/ 2 ) (5.18) 
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Here we adopt the notation of chapter 4 whereby, (h) o  denotes the value of the 

function h in the thermodynamic limit. Since, Var(A0t) is order 0(11N) and Var(A t8t ) 

is order 0(1/rn) then rn 	0(N) with s < 0.5 will give an average degradation of 

0(11N) whilst for s > 0.5 we find E€ 	0(11N). Thus, the minimal average 

degradation attainable is 0(N'!2 ) and occurs for a test set of size rn 0(N 112 ). We 

note that Barber et al. (94) found alternative scaling laws for the optimal test set size 

when, at fixed weight decay, trading off generalization performance with the ability to 

predict that performance. In fact, they found two scaling laws depending on whether 

the regularization was too strong or weak. That only one scaling law exists here is due 

to the fact that we are optimising the weight decay and thus, to first order in N, the 

generalization error is a monotonically decreasing function of atm . 

Figure 5.6 shows the log of the optimal test set size, found numerically, versus the 

log of the system size for large systems. The left hand graph shows that, as we would 

expect, the scaling law does not vary over a range noise to signal levels. The right hand 

graph shows more clearly that the scaling law is s = 0.5. 

Given that the optimal test set size scales with N 112  we can now calculate, to 

first order, the optimal test set size. That is, writing rn = bN"2 , we find boPt  which 

minimises, 

< Lf(\,D) >P(D) 	 (5.19) 

b () 	8e9 (Ao)o(fv (Aoatrn)) 2 ) 

= 	N112 	 - 	2b2  

The above equation is obtained by combining equations (5.6) and (5.18). The 

optimal partition bp', which has a relatively simple form, is shown in 5.7. As a tends 

to zero b0Pt  diverges like 0(1//). Similarly, for a large number of examples, but 

a <<N, we find that the optimal test set size scales with a, 

lim b0t = a/2 + Ao 
(5.20) 

a-+oo 
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Figure 5.7. Optimal test set size scaled by N 1 !2 : The optimal number of test examples 
diverges linearly with a. For a small data base, a -+ 0, the optimal fraction of test 
examples tends to order 0(1) at a rate of p' 12 . The precursor to this divergence is 
evident for small a. Also, as the noise level increases more data must be devoted to 
the test set. 
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Re g  P 

Figure 5.8. Scaled degradation in performance, from the optimal, when using the 
optimal partition of data set into training and testing subsets, €9 (A7t ): Note in this 
case the scaling is O(N 112 ) ( i.e. the fractional error is an order 0(N 112

) larger than 
that associated with the evidence procedure shown in figure 4.9). 
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As can be seen in figure 5.7 as the noise increases so does the size of the optimal 

test set. In fact, as A 0  -+ 00, diverges. As witnessed by figure 5.7 it also diverges 

as a increases. However, it should be noted that the optimal fraction of test examples 

to the total number of examples is 0(1/N" 2 ) except where boi)i  diverges in which case 

the test set size approaches 0(1). If we compare the optimal partition in this section 

with the minimal variance partition we find that variance in the resulting weight decay 

assignment is much larger (i.e. order 0(1/N'! 2 )) in the optimal partitioning case. 

Similarly, as can be seen in equation (5.12), the resulting correlation in the present 

case is much smaller than that obtained by the minimal variance partition, being of 

the order 0(1/N'! 4 ) for the optimal partition. However, the minimal variance partition 

results in a degradation in performance which is order 0(1). As we now discover this 

is much larger than the performance loss associated with the optimal partition. 

We denote the weight decay assignment resulting from the optimal partition by A. 

As can be seen in equation (5.19), the fractional degradation in performance resulting 

from this optimal partitioning is i 9 (A 7 ) 0(1/vN) which in the thermodynamic 

limit is much larger (by a factor of 0(v'N)) than the fractional degradation associated 

with the evidence procedure (see section 4.5) and, as we will see later, with CV(1). The 

average fractional degradation, ic 9 (A), scaled by 0(v'7), is shown in figure 5.8. As 

the noise increases we find that fractional error also increases. The minimum we find in 

this surface along a 1 is simply due to the different rates at which the degradation in 

performance and the optimal generalization error decay with the number of examples. 

Initially, as a increases the average degradation improves quickly but latterly this decay 

slows relative to that in the optimal error. Figure 5.9 shows this effect more clearly. In 

the limit of a small data base we find that 9 (A) diverges like 0(1//)1.  However, 

as the size of the data base grows the average fractional degradation tends to a constant; 

lim 	- /2(2 + A o ). 	 (5.21) 
- 

Again, this disappointing performance is attributable to the increasing difficulty in 

identifying the optimal weight decay as the number of training examples grows and in 

this optimal partitioning scheme we are not able to devote sufficient resources to the 

test set. In other words, using a large test set to accurately identify the optimal weight 

decay is wasteful of data, in that it would be better used as training data. The evidence 

procedure does not suffer from this draw back in that all the data can be devoted to 

training whilst the method still provides an estimate for the weight decay. Similarly, 

'Here we continue our convention that a quantity, h, which scales like N 3  can also be written, in 
rescaled form, h = N8h. 
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(iii) 

(ii) 

Figure 5.9. A closer look at the scaled degradation in performance: Curve (i) shows 
the optimal generalization error, curve (ii) the average degradation, (&(At8t))p(v) 7  

scaled by N 1 !2  and curve (iii) shows, >ttSt), the ratio of (ii) to (i) The minimum in 
the fractional degradation is the due to the different rates at which (i) and (ii) decay 
as a increases. 

as we shall see, leave-one-out cross-validation uses test data more efficiently. 

Here we briefly comment on the work of Kearns (96) who has recently studied this 

question of the optimal training-test set split in the context of mappings with binary 

outputs. Building on the work of Vapnik (82) and Barron and Cover (91) he was able to 

bound the generalization error obtained when model choice is based on minimization 

of the error on an independent test set. Although the details of this problem differ 

from that which we have studied here, there are some broad similarities between our 

findings and those of Kearns (96). In particular, he noted that the optimal fraction of 

the data which should be devoted to the test set increases as the total amount of data 

(a) increases. This observation agrees very well with the result (5.20), which shows 

the test set size increasing with a. In addition, Kearns (96) showed that as a increases 

the generalization performance becomes ever more insensitive to the actual choice of 

training-test set split. Again this agrees well with our findings, with figure 5.10 showing 

the average degradation in performance, < D) >p(v),  for a range of values of 

the training set size, in = bN1/2  and two values of a. The dotted straight lines show 

the optimal performance for each a (with the lowest being for the largest a). For small 

a the performance is rather sensitive to the choice of b, but this sensitivity reduces 

markedly as a increases. 
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In summary then, for large systems we have seen that the use of a test error to 

determine the weight decay assignment is considerably less powerful than the evidence 

procedure in terms of the performance achieved. Indeed, we should remember that 

figure 5.8 depicts the optimal performance possible, but that it is not clear how to find 

the optimal partition in practice. Thus, in reality we would expect even worse perfor-

mance when using a test set to set the level of regularization. In the next section we 

will examine leave-one-out cross-validation and compare our results to those obtained 

for the test error in this. We will see that the more sophisticated use of a test set in 

the cross-validatory approach rectifies some of the short comings we found in the naive 

approach considered so far. 

<&() 8t,D) >P(D) 

00 5 10 15 20 25 30 

Figure 5.10. Sensitivity to the training-test set split: The average degradation < 
e(A 3 , D) >p(v) versus the normalised test set size b (i.e. the test set size rn = bN1 I2 ). 

The noise to signal ratio A0 is unity, with the upper dotted line showing, for reference, 
the optimal performance (b = b0Pt) for a = 1 and the lower dotted line that for a = 10. 
Curve (i) shows the degradation in performance versus b for a = 1 and curve (ii) the 
corresponding values for a = 10. 

5.3 Leave-one-out cross-validation 

As we have already implied the basic motivation behind cross-validation is to gain some 

of the benefits of estimating ones expected error using a test set whilst diverting as 

little data as possible from the training set. This is achieved by taking advantage of the 

fact that there are a large number of possible ways to divide a data base into 1 training 
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examples and m testing examples; 
(m I) to be precise. When practising cross-

validation one tests and trains a student based on a particular partition of the data 

set. One then generates a number of such students and corresponding test errors based 

on different partitions of the data set. The cross-validation error is simply the average 

of each individual student's test set error over all the students generated. Adopting 

the notation of the previous section we write 

i s 1  
€vai(D) 	 (< 	>P(yslxaj,D[a),M) 

_Yt(xai))2] . 	( 5.22) 
a=1 L a1=1 

Here the outer sum is over the S partitions of the data set (i.e. over all the students 

generated) and the inner sum is over the m test points in each partition. That the 

training set and testing sets are non-overlapping is emphasized by denoting the testing 

set by a and the training set by [a]. 2  Thus, for each partition the student output is 

the average over the predictive distribution based on the data set V["] and it is tested 

on the m elements, (Yt  (xaO, Xaj),  of Va.  As before, the p elements (y, x) of the data 

set, V = D'+ V[°i, are sampled i.i.d from (P(yt  I x)P(x),P(x)). 

At this point, to avoid future confusion, we should clarify two terms. The cross-

validation error, of equation (5.22), is used to estimate the expected error (generaliza-

tion error) of various competing models. In order to calculate C,aj  a number of students 

must be generated for each model from the different partitions of the data set. In 

other words students are generated by training the model in question on the different 

partitions of the data set. Model selection, in the cross-validatory sense, consists of 

picking the model with the lowest cross-validation error. Thus, in the particular case 

we consider in the next section the models are simply different values of the weight 

decay and in order to calculate the leave-one-out cross-validation error we must train 

p students for each A value we consider. 

Since, the number of data base partitions grows exponentially with the size of the 

test set, rn is often kept low. Indeed, perhaps the most widely used form of cross-

validation is 'leave-one-out', CV(1), where only one data point is left out for testing, 

m = 1. However, a number of approaches have been adopted to overcome the com-

putational cost incurred by the use of larger test sets. These include Monte Carlo 

Cross-Validation, MCCV and Balanced Incomplete Cross-Validation, BICV (see e.g. 

Shao (93) whose abbreviations we have adopted). In MCCV the cross-validation error 

'Although in principle one could consider a degree of overlap between the two we do not do so here. 
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(equation 5.22) is estimated by randomly sampling a relatively small number of parti-

tions rather than training students on all possible partitions. BICV also aims to reduce 

the computational effort through reducing the number of partitions considered. This is 

achieved by dividing the data base into, say n <p, blocks of example pairs. Students 

are then trained on the data with one of the blocks left out. The cross-validation error 

in the BICV scheme is then the test error on this left out set averaged over all the block 

partitions. In fact, BICV might be more appropriately named block cross-validation; 

the terminology BICV apparently derives from the field of experimental design. As we 

shall see below, there may be a number of good reasons for adopting a cross-validation 

scheme which leaves out a large proportion of examples for testing. However, leave-one-

out cross-validation is widely used because it is straightforward to implement and has 

a relatively low computational cost in comparison to other cross-validation schemes. 

A number of authors have investigated cross-validatory schemes from an analytical 

point of view. Much of this work has focussed on the asymptotic regime, that is, on 

the limit of infinite data sets. Indeed, Stone (77a) showed that leave-one-out cross-

validation and Akaike's criterion were asymptotically equivalent when maximum like-

lihood parameter estimation is used within the models under scrutiny and the teacher 

is realizable by the student. In the same year Stone (77b) also explored the asymptotic 

consistency of cross-validation and found that for mean square consistent predictors, of 

which our linear student is an example when the teacher is also linear, CV(1) is consis-

tent in that it estimates the generalization error correctly asymptotically. However, as 

Stone also noted this is a rather weak condition. In our terminology a model which is 

not mean square consistent would be described as being unable to represent the teacher; 

the task of learning the teacher is unrealisable. In fact, for nested linear models CV(1) 

was shown, asymptotically, to be able to distinguish between mean square consistent 

predictors and those which were not. That is between students powerful enough to 

model the teacher and those which are not. However, in this latter work Stone also 

demonstrated, for a simple univariate estimation problem, that asymptotically CV(1) 

is unable to identify the best model, from amongst a set of mean square consistent 

candidates. In other words, leave-one-out cross-validation is inconsistent in terms of 

model choice, except in the crudest sense. Indeed, shortly we will see this form of 

inconsistency displayed in the CV(1) selection of the weight decay parameter in the 

learnable linear case. As we noted in section 5.2.2, Shao (93) showed, in general, that, 

in the context of nested linear models, leave-one-out cross-validation was inconsistent, 

in that it picked the wrong model with finite probability in the limit of large data bases 

(large p). Furthermore, Shao demonstrated that the consistency of model choice could 

only be restored if the ratio of test set size, m, to data base size, p, approached unity 
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as p -4 00. Thus, a considerable price must be paid for consistency in model choice. 

Other work has focussed on the estimation of the generalization error itself. For 

example, Plutowski et al. (94) show that leave-out m cross-validation gives an unbiased 

and consistent estimate of the average generalization error for a student trained on 

p - m examples, <cg (D,p - m) >p(-D). That is, when we leave-out m data points for 

testing, the cross-validation error is an unbiased estimate of the average generalization 

error obtained for the student under consideration trained on p - m examples. Thus, 

as Burman (89) used in support of leave-one-out cross-validation the larger the test set 

the further any given student is from its optimal performance (based on training on 

the whole data base). Although, we note here, that correction terms were suggested 

by the author to remedy this defect of hold out rn cross-validation. In the statistical 

mechanical framework Barber (95) has investigated different cross-validatory schemes 

(e.g. MCCV, BICV and different partitioning schemes), ranking them from the point 

of view of minimising the variance of the cross-validation error itself. The motivation for 

this was to estimate the true model error as accurately as possible with the assumption 

that good model choice would follow suit. 

As we have noted before, the principal novelty of the statistical mechanics approach 

is the ability to focus on the regime where the number of examples is of the order of 

the number of model parameters. This is in stark contrast to the limit of infinite data 

sets with which most of the preceding discussion was concerned. Thus, in this section 

we will explore the leave-one-out cross-validation assignment of the weight decay in a 

linear scenario and examine its effects on performance. As we have done throughout 

this thesis, we will rely on the thermodynamic limit, once again this will enable us to 

study effectively finite data sets, but at the expense of studying a system in which the 

dimension of the input space diverges. However, in mitigation of this we will focus on 

the first order finite size corrections to this limit, as we did in the previous section for 

the test error and in chapter 4 for the evidence. As we have already stated we will be 

concerned more with model choice, at least in the limited sense implied by the setting of 

a regularization parameter, and with its effect on performance than on the estimation 

of the expected error itself. We focus on CV(1) because it is the most widely used 

form of cross-validation and because of its relative simplicity (e.g. we will not have to 

consider optimal partitions of the data base). 
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Figure 5.11. Variance of the leave-one-out cross-validation error: Both graphs show 
the scaled variance, Var(€ vai) with the weight decay set to A0. In graph (a) the dotted 
upper curve is for )o = 1, whilst the lower solid curve is for .X 0  = 0.1. In graph (b) the 
solid curve has A0 = 0.01 whilst the dotted curve is for zero noise. 

5.3.1 Finite size effects 

In the linear case, for leave-one-out cross-validation, equation (5.22) becomes, 

P 	
((< w >P(wIV[a],A,$)  —w°) a - a) 2  

€vai(V, 	 (5.23) 
a:i

A) = 

As before, the random variables a  represent instantiations, in the ath  example, of 

the Gaussian noise, of zero mean and variance cr2 , corrupting the output of the linear 

teacher parameterised by weights w°. The posterior, over which the student weights 

are averaged, is as used in chapter 4 (see section 4.2.1) but now it is conditioned on 

the reduced data set, VEal,  where the a' example has been deleted. 

It is straight forward to show that, since the test points are independent of the 

training sets, the average CV(1) error is, 

<€vai(V, A) >p(D)< eg(p - 1"
X) 

>p(D) +0
,2,( 5.24) 

where, < p - 1, A) >p(v) denotes the average generalization error based on p - 1 

examples with a weight decay A. Indeed, this is a special case of the results of Plutowski 

et al. (94). Thus, as with the test error, the average leave-one-out cross-validation error 
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is optimised by the same weight decay assignment as the average generalization error, 

namely A0. In this sense CV(1) can be said to be unbiased. In the remainder of 

this section, following, what is by now, a familiar route we calculate the variance of 

the leave-one-out cross-validated error showing it to be an 0(11N) quantity and then 

examine the fluctuations in the weight decay assignments for finite system size. In so 

doing, we find that this unbiasedness is somewhat irrelevant in terms of the performance 

to be expected on a typical data set for a finite sized system. 

Since, we have calculated the average cross-validation error, in order to calculate 

its variance, we must now calculate the following quantity, 

I 	P 

	

<vai(D,A) 2  >P(V) - 	
<a1b >) 	 (5.25) 

a,b=1 

Where we have defined, 

2 

= ( 	
<w - w° >P(wIv[a1,;\j3) a - a) 

	 (5.26) 

The quantities Ea  are simply the test errors of individual students based on the a' 

partition of the data set; that is students trained on data set V[°] and tested on example 

('a,  y(X a)). In fact we can write equation (5.25) as the sum of two components, a 

variance like term and a covariance like term, 

<fvai(D, A) 2  >P(D)= I 	<(€a)2 >P( -D 	 <ffb >P(V) , 	(5.27) 

	

a=1 	 a1b5a 

where the last summation in the second term is over b = l ... p such that b 	a for 

each value of a. The first term in equation (5.27) is related (in an obvious way) to the 

variance in the test error of a student trained on p - 1 examples and its calculation 

is very similar to the calculations we performed in the previous section. Indeed, this 

term is O(l/p) due to the 1/p 2  pre-factor and we need only calculate < ( Z)2 >p(v) 

to order 0(1), nonetheless a representative calculation is shown in appendix 5.6. The 

covariance like term, however, poses more problems as it is rather unlike anything we 

have had to calculate before, either in this chapter or in chapter 4. The key feature is 

that now the training data of one student contains the data used to test the other and 

vice versa. Thus, we can not, as we did in the case of the test error, simply average 

over the test points. 

In fact, because we have split off the variance component, within the covariance 

term itself we can write the data sets used to train students a and b as 	- V[a] = 
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Dc+(xb,yt (xb)) and Da+C 	= DC+(Xa,y(Xa)) respectively. Thus, each training 

set contains a block common to each student and a block (just one example pair for 

CV(1)) corresponding to the test set of the other student. As explained in appendix 

5.6 we can separate and average out this non-overlapping component, leaving us with 

the average over the common block, DC  to perform. However, this last average is very 

similar to the problems we dealt with in chapter 4 and presents no problems. The 

details are relegated to the appendix 5.6. 

As expected we find that the variance is an 0(11N) quantity, with the self aver-

aging properties of the thermodynamic limit breaking down, with the scaled variance 

diverging, for a —+ 0. The scaled variance of the cross-validation error, Var(E val), thus 

calculated, is shown in figure 5.11 for the various noise levels indicated there 3 . The 

variance is an increasing function of the noise level, whilst in the limit of zero noise we 

find that Var(evaj) is zero for a> 1 and some finite function of the normalised number 

of examples for a < 1. As we shall see this is indicative of the fact that, for a > 1, 

in the case of no noise on the examples, the cross-validatory weight decay assignment 

is zero (at least to the order we have calculated) whilst, for a < 1 it is greater than 

zero but well defined. The a < 1 behaviour is in contrast to that of the evidence 

assignment. Returning to the variance of the cross-validation error itself, in the limit 

of a large number of examples, we find that, 

2a4 	

( 

1  
lim Var(f vaj(D)) = 	+ 0 	. 	 (5.28) 

c—*OO 	 aN 	Na 

Thus, since Cval is unbiased, asymptotically the leave-one-out cross-validation error 

accurately estimates the generalization error, based on p — 1 examples, of our linear 

model. This result is in agreement with the consistency results of Plutowski et al.(94). 

'The scaled variance Var(e va i) = NVar(evaz). 
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Figure 5.12. Cross-validation weight decay assignments: Graph (a) shows the scaled 
variance of the leave-one-out cross-validation weight decay assignment, Var(A vaj). The 
upper curve is for A0 = 1, the dotted curve for A0 = 0.1 and the lower curve for 

= 0.01. Graph (b) shows the normalised correlation between the cross-validatory 
assignment of the weight decay and the optimal for (i) A0 = 0.1, (ii) A0 = 0.25 and (iii) 
A0 = 4. Graph (c) shows the normalised square distance of A vai from the optimal. The 
lowest, right angled, curve is for zero noise, the middle (dotted) curve for A0 = 0.25 
whilst the upper most curve corresponds to a noise level of Ao = 1. 
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Parameter assignment 

We now turn our attention to weight decay assignments from the cross-validation error. 

Since the cross-validation error is intended to be a good estimate of the generalization 

error itself we should pick models with the lowest cross-validation error. In the con-

text under discussion here this simply means finding the weight decay with the lowest 

CV(1) error. In practice this will require considerable computational effort as one 

must train and test p students for each value of the weight decay considered. How -

ever, analytically we can determine the optimal leave-one-out cross-validatory weight 

assignment by minimising the CV(1) error of equation (5.23) w.r.t. the weight de-

cay parameter A. As before, because the cross-validation error is self averaging, in 

the thermodynamic limit the assignments from particular data sets correspond to the 

assignment from the average cross-validation error and thus, as we saw above, to the 

optimal. However, for a finite sized system we can explore the cross-validatory assign-

ments by expanding around the average case, as we did earlier for the evidence and the 

test error assignments. Thus, we write Avai = A0 + tA vat  where IA vat  vanishes in the 

thermodynamic limit. 

In doing this we find that the variance in the cross-validatory assignments is given 

by, 

Var(A 	
< 	,)2 >P(D) 	 / 1 " 

vai(D)) 
= 	

(a 
(ô2 	2 	+0 	 (5.29) 

Ava1,O 	I )=A0 

Where, as before, the subscript zero indicates that the function in brackets is to be 

evaluated in the thermodynamic limit. The average required here can be evaluated 

from < €vai(Ai)€vai(A2) >p( -D) , the calculation of which is outlined in appendix 5.6, by 

taking consecutive derivatives w.r.t. Al and A2  and subsequently setting A 1  = A2 = 0. 

In a similar manner we may obtain the covariance of the cross-validatory assignment 

with that of the optimal weight decay from < Eva1(A1)1Eg(A2) >p(v). The calculation of 

this latter quantity is similar to that shown in appendix 5.6. 

Graph (a) of figure 5.12 shows the scaled variance in the cross-validatory assignment, 

Var(A vai). We see that the variance increases with the noise level, A0. In fact in the 

limit of zero noise we find that the variance vanishes for a > 1 whilst for a smaller 

number of examples it is an order 0(11N) function of a. This is in stark contrast 

to the evidence assignment whose scaled variance diverges (i.e. Var(A ev ) = 0(1)) for 

a < 1 in this limit. Thus, we find that in the case of no noise where the evidence 

weight decay assignments are poorly defined the cross-validatory assignments are well 

defined. However, since the optimal weight decay in this region is zero we note that the 
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cross-validatory assignments are not optimal since the fluctuations in CV(1) around 

A 0  = 0 are non zero for a < 1. We also note that for a > 1 both the evidence and 

cross-validatory assignments are optimal (i.e. zero) in the noiseless limit. 

In the limit of large data sets we find that 

2A(2Ao + 3) + o () . 	 ( 5.30) urn Var(Avaj) = 
a 	 \Na 

Thus, the cross-validatory weight decay estimate is asymptotically equivalent to A0 to 

order 0(11/W). However, this is at odds with the optimal assignment whose variance 

diverges in the large a limit (see section 4.4). Thus, the model selected by CV(1) must 

be sub-optimal asymptotically as, indeed, Stone (74b) showed for a univariate estima-

tion problem. Nonetheless, given that the cross-validated error is a sum of test errors, 

the result (5.30) is somewhat surprising given the divergence in the variance of the 

test set assignment of the weight decay obtained earlier (see equation 5.8). The im-

plication is that the correlations between test and training points reduce the variance 

in the cross-validation weight decay assignments. In a moment we will discuss some 

simulation results in support of this idea, however before that we discuss some other 

analytical results. 

That the cross-validatory weight decay assignment is sub-optimal is confirmed by 

graphs (b) and (c) of figure 5.12 which show the cross-validatory assignment's nor-

malised correlation with the optimal weight decay and its average normalised squared 

distance from the optimal. Considering the correlation we see that the smaller the 

noise level the larger (less negative) the asymptotic correlation. Indeed, we find, 

- lim C(A vat , A 0 t) 	 (5.31) 
a-400 2A _0+3 

Thus, asymptotically, the CV(1) estimates are more strongly correlated with the 

optimal than are those of the evidence (see section 4.4) except in two cases where 

they are equally correlated; for large noise or in the limit of zero noise. Indeed, for 

large noise we find, asymptotically, that both evidence and cross-validation assignments 

are fully anti-correlated with the optimal whilst, in the zero noise limit we find that 

C(A vai, A 0 ) -+ 0 for all a as for the evidence assignments. This latter phenomenon 

can be understood from the fact that the optimal weight decay does not fluctuate over 

data sets in the noiseless limit. 

The normalised distance measure, II Avai - A0pt II3- defined in analogy to equation 

(4.18) but for the CV(1) weight decay assignment, has a more straightforward be-

haviour. It is a monotonically increasing function of the noise to signal ratio, A0, and 
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asymptotically, for large a, it tends to 1. In the limit of zero noise it is the same as 

II )'ev - AOPt Il- (see section 4.4), diverging for a < 1 and unity otherwise. Examination 

of the un-normalised distance, II A,al - )'opt 11 2 , reveals that the cross-validatory, CV( 1), 

assignment of the weight decay is in fact, optimal in the noiseless case for a > 1 but 

otherwise never coincides with the optimal. In section 4.4 we found the same to be 

true of the evidence assignment. However, in the noiseless regime for a < 1 the CV(1) 

weight decay assignment is well defined in contrast to that of the evidence, that is 

II Avai - )'opt 11 2  is finite in contrast to II A,, - )'opt 112. 
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Figure 5.13. Simulations: Variance of the cross-validatory, CV(1), weight decay as-
signment and the optimal assignment. Simulations were performed for a linear student 
and teacher the results averaged over 1000 data sets in each case. As indicated graph 
(a) shows the results for a system size N = 1 whilst in graph (b) N = 2. The noise 
to signal ratio in both cases is A 0  = 0.01 and the variance of A vaj is the lower (dot - 
dash) curve whilst, Var(A 0 t) is the solid curve. The standard error bars show that in 
both cases for a relatively large number of examples the variance of the cross-validatory 
assignment is lower than that of the optimal. 

Simulations 

At this point we should draw attention to some discrepancies between our finite size 

corrections to the thermodynamic limit and our simulation results for low dimensional 

systems. Our simulation results suggest that the variance of the cross-validatory weight 

decay assignment diverges linearly with p (see figure 5.13) whereas our finite size cor-

rections reveal that asymptotically this variance decays to zero (equation 5.30). Thus, 
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these simulations demonstrate important differences in behaviour between our finite size 

corrections to the thermodynamic limit and small systems. Nonetheless, as we shall 

see, in terms of performance our simulations and finite size corrections are broadly in 

agreement (see figure 4.12). 

The fact that the variance in the CV(1) assignment for a small system diverges 

seems reasonable when we recall that the variance of the test error assignments of the 

weight decay also diverge (even close to the thermodynamic limit, see section 5.2.1). 

In fact, the test error can be thought of as a noisy estimate of the generalization error 

and as we saw earlier the variance in the weight decay assigned from it is, indeed, 

larger than the variance in the optimal assignment (see equation 5.6). Since the cross-

validation error is an average of the test errors from a number of students then we might 

think that the same should hold for the variance in the cross-validatory assignments. 

However, our simulations reveal that this is, in fact not true; the variance in the optimal 

assignment is larger than that in the CV(1) assignment (see figure 5.13). Furthermore, 

comparison of figures 5.13(a) and (b) shows that the divergence in the variance of the 

cross-validatory assignment is less marked in the larger system (N = 2) as compared 

with the N = 1 case. We expect that as the system size increases this trend will continue 

with simulation results approaching our finite size corrections. However, simulations 

become prohibitively expensive for larger system sizes. 

5.3.2 Cross-validatory performance 

Having established, in the first order finite size corrections, that the cross-validatory 

weight decay assignments are similar in character, asymptotically, to those of the ev-

idence, we now explore their effect on performance. Once again we will focus on the 

relative degradation in performance but firstly let us consider the degradation in per-

formance itself, 

z€(V, )'vai) = Z.A va1t9Af g  + 	 + 	+ 0 
() . 
	(5.32) 

The degradation in performance associated with CV(1) is thus the same order as 

that of the evidence assignments, that is an order 0(11N) quantity on average but with 

a variance of order 0(1/N 2 ). However, as explained in section 5.2.1 we will not consider 

these fluctuations here, but concentrate our efforts on the average degradation. The 

most important point to notice concerning equation (5.32) is that it is an order 0(/) 

improvement over the performance degradation achieved by the optimal partition of 

the test set found in section 5.2.2. Thus, since the cross-validatory approach involves 

the training and testing of p students, as compared with one in the case of the test 
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error, it improves the performance by a factor of i/k, as compared with the naive 

use of a test set, but at the cost of increasing the computational effort by a factor of 

p 0(N). 
The average degradation, < ii(A9,) >p( -D) , can be expressed in terms of the 

average separation between the cross-validatory assignment and the optimal weight 

decay, I I Av.,- )'opt 11 2 , defined in analogy to equation (4.16). In the large a limit we find 

that, as with the degradation associated with the evidence procedure, < I€Avaj) >p(D) 

is order 0(1/aN). This then, as we have noted, is an example of Stone's (77b) result 

that leave-one-out cross-validation produces asymptotically optimal performance for 

mean square consistent predictors. Similarly, in the zero noise limit we find that, when 

the number of examples exceeds the number of parameters in our model, the average 

degradation, < /-(Avai) >p( -D) , is the same as that associated with the evidence, 

namely zero. However, for a < 1 the performance of the cross-validatory choice of 

regularizer is considerably better than that of the evidence since, < L€(A vat) >P(D) is 

order 0(11N) in this region whilst < &(A) >p(v)  is order 0(1) (see section 4.5). 

We now turn to the average relative degradation in performance, < K, 9 (A vai) >P(v) 

(see equation 5.14). This scaled by N, < RE, (A vai) >p(v), is plotted in figure 5.14. The 

divergence in the variance of the cross-validatory weight decay assignment as a —* 0 (see 

e.g. figure 5.12(a)) is reflected in the divergence of < R,g (A vai) >p(v) for small numbers 

of examples. Indeed, by now we are familiar with this breakdown of the thermodynamic 

limit when the number of training examples is not extensive. In contrast, in the limit 

of large data bases we find that, 

u 	 1 + rn < 	(A vai) >P(D) 	 _(Ao +i)+0(1 -). 	(5.33) 
c—+oo 

So, asymptotically the cross-validatory assignments are not optimal and indeed, result 

in the same performance as do the evidence assignments (see equation 4.25). Thus, 

we find that model choice based on the leave-one-out cross-validatory error is asymp-

totically inconsistent, as Stone (77b) showed in the case of univariate estimation. In 

fact, as we have mentioned Shao (93) demonstrated that, for nested linear models, this 

inconsistency could only be remedied by holding out larger and larger test sets as the 

data base increased in size. It would be interesting to explore this issue in future work 

within the current framework. 

The asymptotic result, equation (5.33), reveals that the relative degradation in-

creases with the noise to signal ratio. In the limit of zero noise we find that < 

R, 9  ( A,,,,) >p(v)  diverges at a = 1 due to the rate at which the optimal generaliza-

tion error approaches zero. This divergence can be seen in figure 5.15 which shows 
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the average relative degradation, < R,,(A,,j) >p(v), for a range of noise levels, A0, 

approaching zero. We see that, in the zero noise limit for a < (A vat) does not 

diverge, in stark contrast to the evidence case. However, for a> 1 we find that both 

the evidence and the cross-validatory assignments achieve the same performance (see 

equation 4.26) since, 

a+1 
urn <(Avai) >P(D) = a - i 	

(5.34) 

Naturally, this performance is a reflection of the cross-validatory weight decay assign-

ments themselves. In the zero noise limit, for a > 1, we find that A vai coincides with 

the optimal assignment, A,,pt  = 0, at least to the order we have calculated. Indeed, 

we expect this to be generally true since in this regime one has access to all the in-

formation required to solve the problem fully. Similarly, for a < 1 and zero noise, 

the cross-validatory assignments are also well defined, but sub-optimal. This contrasts 

strongly with the evidence weight decay assignment which is ill defined in this regime. 

5.4 Comparison of model selection by cross-validation and 

evidence 

Having explored the performance of weight decay assignment by leave-one-out cross-

validation we now seek to directly compare it to the performance of the evidence pro-

cedure. Recall that, even with optimal partitioning, the naive application of a test set 

to model selection, as explored in section 5.2.2, is an order 0(/i) worse, in terms 

of the performance degradation suffered, than either CV( 1) or the evidence proce-

dure. Thus, it is somewhat meaningless to compare i €g (At st) directly with R, g (A vai) or 

1g (A ev ). In the previous section we were able to compare the evidence and CV(1) 

algebraically, in certain limits, namely zero noise and asymptotically. In this section 

we look at the more realistic regimes of non-zero noise and finite data bases. 

Figure 5.16 shows the average relative degradation associated with the evidence 

procedure and with leave-one-out cross-validation for three different noise levels at 

finite a. The top most graphs, (a) and (b), show that for A 0  = 0.1 the performance of 

CV(1) is appreciably better than that of the evidence procedure for small sample sizes. 

However, for larger samples, say a> 2, they are barely distinguishable, a reflection of 

the fact that asymptotically to order 0(1/Na) they are the same (see equations 4.25 
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Figure 5.14. Scaled fractional degradation in performance, from the optimal, when 
using the leave-one-out cross-validatory assignment of the weight decay, 	(A) 



Cross- Validation and related methods 
	

121 

!eg  (Avat) 

(a) 

Figure 5.15. Relative degradation in performance when using CV(1) for low noise 
levels. The lowest curve is for A0 = 0.1, in the middle curve A0 = 0.01 and the top 
curve is the zero noise limit. In this limit R, g (A vai) diverges at a = 1, whilst for a > 1 
we find that R,, (A vai) = (a + 1)/(a - 1) and is finite for 0 <a < 1. 
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(c) A0  = 0.25 	 (d) A0 = 0.01 

Figure 5.16. Comparison of the fractional degradation in performance of the evidence 
procedure with that associated with cross-validation. In both graphs the performance of 
the evidence ,) is shown in the upper dashed curve whilst that of cross-validation, 

€g (A) is the solid lower curve. Both graphs (a) and (b) are for a noise level of 
A O  = 0.1 with graph (b) showing a close up of graph (a). In the former we see that 
leave-one-out cross-validation is superior to the evidence for small to moderate sample 
sizes. However, the latter shows that for larger data sets the two methods are barely 
distinguishable; a reflection of the fact that they are asymptotically equivalent to order 
0(1/c) and indeed, in the limit, both tend to 1. Graph (c) shows broadly the same 
behaviour for a slightly larger noise level whilst graph (d) shows the case of relatively 
small noise to signal ratio. In the latter case we see precursors to the zero noise limit 
behaviour discussed in the text. 
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and 5.33). Figure 5.16(c) reveals that the situation is broadly similar for slightly a 

larger noise level whilst graph (d) reveals some of the small noise behaviour discussed 

in the preceding section. In particular, we see that for this rather small noise level, 

A O  = 0.01, the average fractional degradation associated with the evidence procedure is 

very large for a < 1 whilst that of CV(1) is large close to a = 1 but is much smaller 

than ,) in the a < 1 regime. For a larger number of examples we find that the 

performance of both algorithms is very similar. Recall that in the zero noise limit the 

performance of both methods is identical for a > 1 (see equations 4.26 and 5.34), whilst 

only R , ,, ( A,,) diverges for a < 1. Figure 5.17 shows that as the noise level increases, 

whilst cross-validation is still superior, the difference in performance between the two 

diminishes; note that the scale on these graphs is smaller than that in figure 5.16. The 

broad conclusion that CV(1) generally achieves better performance than the evidence 

procedure is also supported by our simulation results for low dimensional systems (see 

figure 4.12). 

Finally, figure 5.18 compares the normalised distance II A.19  - )'opt Ar between the 

optimal weight decay and the assignments from leave-one-out cross-validation and the 

evidence procedure. Both graphs show, for reference, the case of zero noise where the 

two methods are indistinguishable in terms of this measure 4 . Broadly speaking, for 

non-zero noise the differences in performance are reflected in this average distance from 

the optimal weight decay, with the evidence assignments being further away. 

We briefly comment on our results in relation to those of Wahba (85) who investi-

gated a similar problem to that with which we have busied ourselves here. In particular, 

she studied the problem of setting the regularization parameter in smoothing splines 

on the basis of a cross-validatory method and a maximum likelihood method analogous 

to the evidence. The details of the problem are somewhat different, for instance the 

student and teacher functions being defined on a finite region of input space, making 

absolute comparisons difficult. Nonetheless, qualitatively our results are in agreement 

with her findings. For function classes including our linear problem Wahba found that, 

asymptotically, the performance associated with the two algorithms was indistinguish-

able, as we find. In addition, Monte Carlo simulations revealed that, for moderate 

sample sizes, the cross-validatory approach was superior for small noise level whilst 

the difference was less significant for larger noise levels. Although, this later result is 

the less relevant of the two as it was obtained for a different class of functions from 

which the linear case is excluded. Secondly, Kearns et al. (95) compared model selection 

algorithms such as the evidence and cross-validation from a fairly general point of view 

4 Note, however, that they are distinguishable in terms of performance. 
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Figure 5.17. Comparison of the scaled fractional degradation in performance of the 
evidence procedure with that of cross-validation. In both graphs the performance of 
the evidence R, g  (Aev ) is shown in the upper dashed curve whilst that of cross-validation, 

Eg (A vai) is the solid lower curve. In both graphs the noise level is rather high with 
AO  = 1 in (a) and A 0  = 4 in (b). Comparing to figure 5.16 we see that for large 
noise level there is less to distinguish between the evidence and CV(1) in terms of 
performance. 
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Figure 5.18. Normalised distance between optimal weight decay and assignments 
from CV(1) and the evidence: In both graphs the right angled curve, zero noise, case is 
shown for reference. The upper curve (dotted) is 11 Aev - A'Pt  112 - whilst the middle curve 
is Avai - )'opt 11%- for the noise levels indicated in the captions. All curves tend toward 
unity as a increases. Likewise the evidence and the cross-validatory assignments are 
indistinguishable in the zero noise limit. In general, however, the evidence assignments 
are further from the optimal than are those of CV(1). In fact, in the zero noise limit for 
a < 1, this normalised distance measure is misleading in that only the un-normalised 
scaled distance (see equation 4.16) between the evidence assignments diverges. Thus, 
even though the cross-validatory assignments are sub-optimal they are much closer, to 
the optimal, than are those of the evidence. 



Cross- Validation and related methods 	 126 

using the PAC approach. As is natural within that framework, they considered stu-

dents and teacher mappings in discrete space in contrast to the linear case with real 

inputs and outputs studied here. These authors concluded that cross-validatory choice 

of model was to be generally preferred in situations where the generalization error obeys 

a power law decay (i.e. where phase transitions in generalization ability are absent). 

The learnable linear case is an example of such a system and thus, our results support 

this suggestion. 

In summary then, we have seen that, in the learnable linear context, leave-one-out 

cross-validation, generally, achieves superior performance as compared to the evidence 

procedure. However, asymptotically the two procedures are equivalent in performance, 

at least to the first order finite size corrections we have considered. Similarly, for zero 

noise and a> 1 they are indistinguishable. However, let us consider the computational 

effort required by each method. Since we choose to make predictions based on the 

average over the predictive distribution we must, in fact, calculate the evidence as a 

minimum requirement. Thus, we see that model selection based on CV(1) is consid-

erably more computationally expensive than model selection from the evidence since 

in the former we must train and test p students for each of the models (e.g. values of 

the weight decay) to be compared. Thus, we must leave it to the practitioner to decide 

how much she is willing to pay for the improved performance of the CV(1) weight 

decay estimates. Nonetheless, we can suggest that in situations where large amounts 

of data are available or where the data is noiseless (if p > N) there is little to be gained 

in using the cross-validatory approach over the evidence procedure. 

5.5 Summary 

In this chapter we have examined two methods of model selection based on different 

estimates of the generalization error. In both cases we have focused on the problem of 

setting the weight decay parameter in the learnable linear case. As in chapter 4 our 

principal tools were statistical mechanical using which we have investigated the first 

order finite size corrections to the thermodynamic limit. 

In the first model selection method investigated, the estimate of the expected error 

was the error on an independent test set. We, thus, had to decide how best to partition 

the data into training and testing sets. We examined two criteria on which to base such 

a partition, and found that in the first, the minimal variance partition, the fraction 

of data required for testing approached unity as the size of the data base increased. 

This is a reflection of the fact that the optimal model, from amongst a set of mean 

square consistent candidates, becomes harder to identify as the amount of training data 
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increases. The second criterion, namely minimisation of the resulting generalization 

error, revealed that when the data base contains an extensive number of examples, 

p = aN, the optimal scaling of the test set size is m 0(N 112 ) for large system 

size, N. Furthermore, the optimal degradation in performance associated with such a 

partition is an order Q(V'N) larger than that associated with the evidence procedure 

calculated in chapter 4. 

The second model selection method examined in this chapter was leave-one-out 

cross-validation, CV(1). We investigated the parameter assignments of this method 

and their effects on performance. We found that the cross-validatory approach made 

better use of the test set, resulting in a degradation in performance of the same order 

as the evidence and thus, an order 0(v',7) improvement over the naive use of a test 

set. In fact, the performance of CV(1) was also seen to be superior to that of the 

evidence procedure excepting the zero noise case when the number of examples exceeds 

the number of parameters and the asymptotic (a -+ oo) regime. However, we noted 

that the enhanced performance of leave-one-out cross-validation is achieved at increased 

computational effort as compared with the evidence procedure. 

5.6 Appendix: calculating (co)-variances of the cross-validation 

error. 

In this appendix we outline the calculations required to obtain the variance of the 

cross-validation error itself (see equation 5.23) and the (co)-variance of weight decay 

assignments made from it. To this end we show how we calculate a representative 

term from these quantities but do not show the full calculations which are somewhat 

lengthy. As mentioned in section 5.3.1 we can calculate the variance of the weight decay 

assignments from the cross-validation error by differentiating < c,, (1\1 )fvai (A 2 ) >p(D) 

with respect to A 1  and A2 . Since we also need this quantity (when A 1  = A2) for the 

variance of the error itself, for the sake of generality, we will focus on its calculation 

here. Furthermore, we note that the co-variance of the cross-validation assignment, 

Avai, with optimal weight decay can be found from < fval(A1)1E g (A2) >p(v) calculation 

of which follows along similar lines to those presented here. 

As in equation (5.27) we can write < Eval(A1)Evai(A2) >p(v) as the sum of variance 

and covariance like terms, 

1p  

2

1 
< fa(A )€a(A ) >P(V) +— 	< fa(A )(A ) >P(D) 	 (5.35) 

a=1 	 a54b 
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Variance terms 

Initially, let us deal with the first of these; the variance like term which is, in any 

case, the simpler of the two. Introducing the vector R. = w - w°, and expanding this 

variance like term (see equation 5.26 & 5.27) an example term is found to be 

4 p 
< (7Z(V 1°- i, xi)) . xaaxa . 	p[a] A2)) >P(V) . 	(5.36) 

P 2N 

Here we are using the notation () w  to denote the average over the posterior distribution. 

Since, the training data (on which the 7Z vectors depend) is independent of the test 

points one can simply average over these separately. On averaging out the test data 

we find that 

4a2a 	
< ((V [,A1)) . ((V[a],2)) >P(D[a]). 	 (5.37) 

p2N a 

The average vectors (7?) , which are the difference between the student and teacher 

weight vectors averaged over the posterior, can be expressed in terms of the response 

function matrix as described in Appendix 4.8.1 (see equation 4.A10). Substituting for 

these and averaging over the training data presents us with no problems which we have 

not already dealt with, in this chapter or earlier, and in so doing we obtain, 

4a2 2 
[ (i(gi Cg2)) + Al A20' 0,  

P 1 	
(9192)] 	 (5.38) 

The matrix C is the normalised correlation matrix of the inputs in the common block 

of examples (i.e. those not used for testing). In addition, gi  and  92  are the response 

function matrices, based on the correlation matrix for this common block (see appendix 

4.8.1), where we have introduced the subscript to denote the dependence on A1 or A2 

(e.g. gi = g(Ai ) = (C + All) - ') and tr = tr IN is the scaled trace. We discuss the 

evaluation of (gg)  and g1Cg2) at the end of this appendix. 
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Covariance terms 

Now let us expand the covariance term and calculate the component corresponding to 

equation (5.36), namely, 

4 p < (1(DI1a), )'i)) 	xarfzqbxb. (7Z(D[b] .X 2 )) >P(V) 	(5.39) 
a$b 

Now since a 0 b in this sum we can write V[b] = Va+C where Da+C = 7C + (xa, y(X a )) 

as described in section 5.3.1 Substituting for the posterior averaged 1?. vectors, our 

demonstration term, equation (5.39), becomes 

p2N2cr 

p 1 p—i
77 

	

1Lb(x  )Tg(vb+C,Ai) _Ai(w0)Tg(VC,Ai)] 	aa 
X a:Ab Lb=1 

rp— i 

	

X rxb. I E 77 a(x)Tg(Da,A2) - Al(w0)Tg(va+c,A2)])P(v). 	(5.40) 

The sums involving iA and pi)  are over the examples 

The response functions depend only on the input variables and not on the noise. 

Thus, we are free to average over the noise variables, the ijs, considerably simplifying 

the expression, 

4cT4 ' 
<N2a 	

A i ) xb(xb)T g(VC, A2)xa >P(v) 	(5.41) 
aib 

Here we should apologise for this slight abuse of notation, where we have integrated 

out the noise but have left the notation for the averaging, <>p(-D), unchanged. We 

must now begin to average out the input variables. In order to do this we make use of 

the following identity used in Sollich (94a), 

g(D',Ai) = g(DC,Xi) - 
	___________________ 

Na 1 + 	(xa)Tg(VC, Ai)Xa 

= g(DC,A i )_L 

= gi — L. (5.42) 

This allows us to separate off the extra example, a, from the response function matrix, 

g, such that we will be left with an expression in which the response functions depend 
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only on the data of the common blocks. Since, this is the case we have dropped the 

explicit dependence of g on DC  and furthermore have reintroduced the subscript to 

denote the dependence on A 1  or A2. In the component L, the subscript again denotes 

a dependence on Al whilst the superscript denotes the dependence on input, a,  the 

dependence on the common block being suppressed. We also note that, the terms in 

which the , appear are of the order 0(11N) and since we only seek to calculate to 

this order we can take, 

- 1 g(DC,Ai)x(xa)Tg(DC,Ai) +0

() 	
(5.43) 

NN 	No(l+Gi) 

where in the thermodynamic limit NG1 = tr gi.  Thus, re-writing equation (5.41) using 

the identity (5.42) we obtain, 

4a4  
= -- >1 <N2cr 

(xa)T[gi  - z]xb(xb)T [g - ] x >P(D) 	 (5.44) 
ab 

4a4 P 1 	a T 	b0 - j bo,a 	- jr, bi,bo + F bi,bo,a2 1 
xa >) = 	< 	_.(x ) [Y91,92 	 gi,gi,g2 	gi,gi,g2,g2jNor2 

ab 

Where we have introduced, 

1 	2 	n-i 

F 1'2 )..... 
A, 	

Ax(x)TBxP2(xP2)TC xPl(xP')TZ, 

representing the scalar functions, of the response function matrices, to be averaged. 

Here the p2  take on the values a or b whilst a2  is either, 0, 1 or 2 and the notation 

can be extended to any number, n, of square matrices A, B etc.... Finally, m0 = 1, 

m1 = (1 + G1) and m2 = (1 + G2). We can now integrate out the examples not 

contained in the common block, DC  (i.e.  xa and  xb).  For example the first term in 

equation (5.44) averaged over these test points is 

44 P 	 4a4mo 0 	 _____ >11 < 	 b xa >P(x,x0) = N2a < (
xa)Tgixb(xtl)Tg 2  xa 

a54b 
4a4  - 

= --tr(g1 g2)+0(). 

Thus, retaining only terms to order 0(11N) we find that equation (5.39) can finally be 
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written, 

[(gig) —m2tr  (9192)tr92 -m1(g1g2)g1 +m1m2(g1g2)ig1g2} 

Thus, we see that this term is order 0(11N) as are all the (non vanishing) terms in the 

variance and co-variance calculations of section 5.3. 

Response function 

Finally, we note that the final forms, for both the variance and covariance like terms, 

are written in terms of the trace of the product of gi and g,  G12 = (gg) which 
to date we have not calculated. Fortunately, however, we can obtain this quantity 

from the linear response function G1 = trgi which we have used extensively. Recall 

that this response function can be calculated as a special case of the response function 

calculated in Appendix 2.8 and indeed was calculated by Hertz et al.(89). We remind 

the reader that gi = (C + All) - ' where C is the normalised correlation matrix of the 

inputs in the common block of data, DC. Thus we can write, 

tr (91C92) = tr (gi(I - )192)) 

= tr g - A1tr (gig), 	 (5.45) 

and similarly, 

tr (92C91) = tr (g(I - A 2 91 )) 

= tr g - )2tr (9192). 	 (5.46) 

Since matrix multiplication commutes under the trace, equations (5.45) and (5.46) are 

equivalent and combining the last line in each we find that, 

1 tr g - tr gi = 	
A 1  A2 

' 	 (5.47) 

Which in the limit of Al,  A2 —* A recovers the known result that tr (gg) = -0Atr g. 



Chapter 6 

Discrete Model Selection 

Abstract 

In this chapter we consider the problem of selecting model architectures from a discrete 

set of alternatives. In particular, we consider a method based on the noise sensitivity 

signature, NSS, of a model in addition to methods based the evidence and the cross-

validation error. We consider this problem in the context of a simple example, namely 

the selection of the architecture of a piece-wise linear student trained and tested on 

data generated by a linear teacher whose outputs are corrupted by noise. Our analysis 

is average case and conducted in the thermodynamic limit. We establish that, in 

this context, model selection based on the NSS can, indeed, be used to select the 

architecture. However, we note that such methods fail to identify the optimal weight 

decay. Consideration of the cross-validation error shows that it too can be successfully 

employed to select the architecture in this scenario. Finally, we see that the evidence 

procedure leads to choice of the true architecture (i.e. linear), in the case where the 

linear model is optimally regularized. However, we note that a potential pitfall for all 

three methods is the case where the competing models are not optimally regularized. 

Indeed, we point out that such observations could be interpreted as support for the 

hierarchical Bayesian approach. 

6.1 Introduction 

To date we have considered various aspects of the model selection problem within a 

scenario in which the candidate models are distinguished by a number of continuous 

parameters ( i.e. the hyper-parameters). Thus, we have had a continuum of possible 

models from which to choose. However, often model selection involves choices within a 

discrete set of models. For example, in the case of multi-layer perceptrons, discussed in 

section 1.1, we would like to select the appropriate number of hidden layers and units. 

132 
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In this brief chapter we consider a simple example of such a model selection task in 

which we must choose between discrete model characteristics which specify the model 

architecture. In addition to cross-validation, CV(1), and the Bayes factor (see section 

1.2.1), we apply in this case a model selection criteria which we shall introduce shortly. 

This latter method is based on the noise sensitivity signature (NSS) of Grossman and 

Lapedes (94). We note that Meir and Fontanari (93) have made an analytical study of 

discrete model selection based on the stochastic complexity. Furthermore, Gelfand and 

Dey (94) present asymptotic results for the Bayes factor in a case of nested models. 

As we have stated the main objective of this chapter is to gain some understanding 

of model choice from a discrete set of alternatives. Our focus to date has been selection 

of continuous regularization or hyper-parameters and in this chapter we compare and 

contrast the two problems. In the approach adopted here we shall, as we have done 

before, consider the hyper-parameters as part of the model specification. We shall see 

that the results of model choice as applied to architecture selection can be dependent on 

these parameters, which control the learning algorithm, as well as on the discrete model 

characteristics. A possible objection to this approach is based on the interpretation of 

the regularization parameters as hyper-parameters. As discussed in section 2.2.1, the 

hierarchical Bayes scheme would have us integrate out these hyper-parameters and thus 

no such dependence would be apparent, although, even in this scheme, different noise 

models and prior specifications would affect the selection of discrete characteristics. 

Here we do not consider this effect, examining only one form for the likelihood and 

prior namely that adopted in section 2.2.1 and used throughout this thesis. We rebut 

the foregoing criticism in two ways. Firstly, we argue that in practical situations one 

may not wish to integrate out the regularization parameters from the point of view 

of computational cost. Thus, a number of students may be trained, each based on a 

different architecture and possibly regularization scheme. We then seek to compare the 

merits of each architecture on the basis of these students, as reflected in our analysis. 

The second argument relies on the validity of the approximation of hierarchical Bayes 

by the MLII (evidence) procedure. Thus, as we did in section 2.4, we argue that, in the 

scenario considered, the setting of the hyper-parameters by the evidence is equivalent 

to the full hierarchical calculation in the thermodynamic limit. Interestingly, however, 

we will see that this presents some support for the use of the hierarchical Bayesian 

approach. In summary, then, we will sometimes consider the hyper-parameters as, in 

part, specifying the model, whilst when we employ the evidence procedure assignments 

argue that we are doing the full hierarchical calculation, since we conduct our analysis 

in the thermodynamic limit. 
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Learning scenario 

In accord with our general approach we seek insight into this discrete model selection 

problem by performing an illustrative calculation in a relatively simple learning scenario 

which we now describe. In general we adopt the notation of the earlier chapters (see e.g. 

section 2.2.2). In, particular we consider a teacher with real one dimensional output, 

yt(x), described by the conditional density P(yt  I x). Our sampling assumption is P(x) 

and therefore a data set V= {(yt(x), x) : it = l..p} is generated with probability P(V) 

= fl.1 P(yt  I xP)P(x It). In fact, we will consider only a linear teacher corrupted by 

Gaussian noise of variance a 2  in this chapter and thus write, P(yt I x) X exp[—(y - 

w0 .x/'/7) 2 /20r2]. Furthermore, our sampling assumption is also Gaussian, with mean 

zero and variance a. Therefore, where a = *(w 0 ) Tw0 , the noise to signal ratio is 

A 0  = a2  /a2  as before. 

The learning algorithm (i.e. noise model and prior) we consider here is that intro-

duced in section 2.2.2 and used throughout this thesis. In other words, the posterior 

distribution of student parameters is based on a Gaussian noise model and a prior which 

corresponds to regularization by weight decay. Also, as before we will make predictions, 

at input x, using the average over the predictive distribution conditioned on the train-

ing data which is written (y s (x))p( y3x,v,M). In the case under consideration in this 

chapter the architecture will not be fixed as it was previously and therefore the model 

specification, M, is written, M = {i3, A, A}, where we now define the architecture, A, 

in the current context. 

The students we study here are the piece-wise linear students introduced in chapter 

3. We recall equation (3.1) which defined the student output, ys(X), at input x as; 

n 

Y" (x) = . x8j(x) 	 (6.1) 
k=1 

where the functions ök (x) = 1 on some region Zk of the input space and are zero 

everywhere else, here we also assume these regions are non-overlapping. The parameters 

wk are the weights of the k th  component student and the learning algorithm introduced 

in section 3.3 has n weight decay parameters Ak. The discrete model characteristics are 

thus, the number of linear pieces, n, making up the student. In terms of notation the 

architecture, A, is then specified by A = ri and our model selection criteria must select 

the appropriate architecture. In what follows we consider only a simplified problem, 

namely the choice between the true model, n = 1, and the model n = 2. In the 

statistics literature such a scenario is referred to as a case of nested models since the 

full model, n = 2, can represent the reduced, n = 1, model. We adopt.the constraints, 
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6k (x), of section 3.4 and the main elements of the necessary calculations are given in 

section 3.4.1 to which we refer the reader. Nonetheless, results directly relevant to the 

current study will be presented in this chapter. Here the reduced model is denoted by 

= 13, A, n = 11 and the full model by, M2 = 10, Al, A 2 , n = 2}. However, in this 

chapter, since we will only be concerned with the generalization error (see equation 

3.10) and since we make predictions using (ys(X))p(ysIx,V,M)  we will not be concerned 

with the inverse temperature /3 which controls the variance of this distribution. Indeed, 

all the quantities considered here are independent of /3. 

In the next section we introduce the noise sensitivity signature and a method of 

model selection based on it. We then briefly review the Bayes factor and the cross-

validation error in this case. Finally, we will consider the relative strengths and weak-

nesses of these three model selection criteria as applied to the architecture selection 

problem outlined above. 

6.2 Noise sensitivity signature 

The basic idea behind the noise sensitivity signature, introduced by Grossman and 

Lapedes (94), is that complex, overly parameterised, models will over-fit the data 

more than those of an appropriate complexity. Indeed, it is the determination of what 

appropriate means in this context which has preoccupied us throughout this thesis. 

In order to determine whether a particular model is over-parameterised these authors 

suggest adding noise to the examples in our data base, D, to create new data sets. 

Various student models are then trained on these noisy data sets in order to assess to 

what extent each of them fits the added noise. We describe below, in more detail, how 

this is achieved. 

The advantages of this approach, as spelled out by these authors, are that unlike 

penalty based approaches it is not problem dependent (see e.g. chapter 2) and in 

contrast to cross-validation does not require that any of the data be left out for testing. 

Furthermore, Grossman and Lapedes (94) suggest that the NSS method can be used to 

set any complexity parameter in a model, in other words the architecture in addition to 

the regularization parameters. We note that these proposals were made in the context 

of classification algorithms; in our language, discrete input-output mappings. Indeed, 

they demonstrated the utility of this approach experimentally, by selecting the number 

of hidden units in an MLP, which was a binary classifier 1,  in a case where the teacher 

was known. Nonetheless, the criteria used to judge the appropriate number of hidden 

'Referring the reader to section 1.1 in this case the transfer functions are sgn(h) 
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units was somewhat heuristic. One motivation for the study presented here was to 

reduce this degree of subjectivity. As noted above the problem which we explore in 

this chapter is a mapping between real inputs and outputs, in contrast to the discrete 

case considered by Grossman and Lapedes. Indeed, in the case studied here the very 

rich behaviour revealed by these authors is much simplified. Nevertheless, we show 

that the NSS method can be applied with some success in this case and our results 

perhaps point to its strengths and weaknesses in a more general setting. 

The noise sensitivity signature of a model is based on a number of quantities which 

we now discuss, noting that the definitions given here pertain to mappings between 

continuous spaces. As stated above we produce a number of new data sets by adding 

noise to the existing data base, V. In the current context we add zero mean Gaussian 

noise, of variance e2,  to the outputs of our data base to produce corrupted data sets, 

E) (0, d) = {(y(x', 0 j ), x't) : = l..p}. Here d = l...Tid indexes such sets and y j (x', O) 

denotes that, in the dY' data set, the output of the tLth  example has been corrupted 

by zero mean Gaussian noise, of variance 02.  In other words each example of each 

data set is independently corrupted by noise of the same variance. Using the learning 

algorithm of chapters 2 and 3, we train students on these corrupted data sets. The 

response of such a student at a novel input, x, is the average over the predictive density, 

P(y5  I x, V(0, d), M). The first quantity we consider is the average error of students, 

thus generated, when tested on the original data set. That is, 

1 nd P 

	

Eciean(V, 0) 	 I ((Ys)P(yaIx,V(9,d),M) - Yt()) 2 	(6.2) 
P7d d=lp=1 

Similarly, when tested on their training set, the average error of these students is, 

nd P 

	

Enoise (D, 0) = 	I E ((Ys)P(yIx,v(o,d),M) - yt(x, 9))2. 
	

(6.3) Pnd  

Using these two quantities we can gain some insight into the appropriate model com-

plexity. Specifically, we expect the performance on the clean data set to be superior to 

that on the corrupted sets. That is, we expect Eciean(D,  0) < Enoise (V, 0) if this is 

not so then the model under consideration is (over) fitting the added noise and, in the 

NSS scheme is considered to be overly complex. In the original study a third quantity 

was introduced to complete the characterisation of the noise sensitivity signature of a 

model, namely the average functional distance between classifiers. In the current con-

text we can examine the test set estimate of the average distance between the outputs 
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of students trained on different realizations of the corrupted data sets, that is, 

Dist(0) = 	 ( 6.4) 

1 m 	1 	d nd 

rn 	fld(fld - 1) 	(YsP(ysIx,v(O,di),M) - (Ys)P(ysIx,D(o,d2),M))2. 
d1=1d2=d1 

Here m is the number of test points used to evaluate the functional distance, but we 

note that these can be unlabelled data, the indices dk denote the different data sets. 

Thus, Dist(0), measures the sensitivity of the model to the noise in the training data. 

In particular, we expect this measure to be relatively small for models of appropriate 

complexity since in this case the changes from one data set to the next will not affect 

the students output much, at least when the added noise level is low. However, we 

expect that over-parameterised models will learn this noise and thus the outputs of 

different students will vary considerably from one data set to the next. Similarly, an 

under-parameterised model will be unable to learn even the uncorrupted data and 

thus, we can expect significant variation when trained on the corrupted data sets. We 

note that in the case we consider here we are unable to explore a significantly under-

parameterised model. 

6.2.1 Average case 

In contrast to chapters 4 and 5 here we investigate the average case in the thermody-

namic limit. However, although we do not explore this issue here we expect the system 

to be self averaging. In fact, for the linear, n = 1, model we have explored this issue 

in chapter 4. In addition, we saw in chapter 3 that the free energy of the n = 2 model 

is simply a sum of terms from the free energies corresponding to suitably chosen linear 

systems. 

Regarding the errors on the uncorrupted and corrupted data sets (equations 6.2 

and 6.3) we shall consider the average difference, 

ENSS(0) = (Enoise (D, 0) - Eciean (V, 0))P(v,o) 

= 2 	 461'k] +() 
	

(6.5) 

Where we have conducted the average, in the thermodynamic limit, over the supplied 

data set and over the extra noise added to the examples. Since we are considering the 

learning scenario of chapter 3 the response functions Gk are as given in equation (3.8). 

A similarly straightforward calculation shows that the average distance between 
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two students trained on different corrupted data sets is, 

(Dist (0))p(v,g) = 292 	(Gk + Ak&Gk)  + 
0 () 	

(6.6) 

where ô,, denotes the partial derivative w.r.t. y. 

As already noted, the behaviour witnessed here is considerably simpler than that 

to which Grossman and Lapedes (94) testify. Immediately obvious is the linear depen-

dence of both quantities (equations 6.5 and 6.6) on the added noise level, 0. This is in 

stark contrast to the non-linear behaviour seen by Grossman and Lapedes. However, in 

general this simplification is no surprise since we are conducting an average case anal-

ysis of a linear system in contrast to their experimental study of a highly non-linear 

binary system. Nonetheless some qualitative features are preserved here. 

In particular, the noise sensitivity signature of the two models, as revealed by 

LENSS(0) and (Dist(9))p( v , g), allows us to choose between the two competing models. 

Figure 6.1 illustrates the situation for a case where both candidate models are optimally 

regularized. Graph (a) in figure 6.1 shows that the average distance, over the corrupted 

data sets, between two students generated from the n = 2 model is larger than that 

for students with the n = 1 architecture. This suggests that the n = 2 model is over 

parameterised. A similar conclusion can be drawn from ENSS(0)  (see figure 6.1 (b)) 

which, shows that the n = 2 model fits the added noise to a greater extent than does 

the n = 1 model. In this case both models over fit the added noise with LENSS(0) <0 

for small a but model M2 is the worse offender and we would expect its performance 

to suffer as a result. This is confirmed by the generalization performance of each 

model, in this case shown in figure 6.1 (c). In the cases where both models are over or 

under regularized to the same degree we find that the NSS prescription as used above 

identifies the optimal model. That is, model M1 (n = 1) is chosen and this model has 

the lowest of the generalization errors. 

However, in the case where the models are not optimally regularized and the n = 1 

model is under-regularized to a greater degree than the n = 2 model we find that, 

in general, the NSS prescription breaks down. This is shown in figure 6.2 where 

in graph (a) we see that, for a small number of examples (a), the average distance, 

(Dist (0))p(v ,e), is larger for the n = 1 model. In this case because the regularization 

is weak the model can over-fit the corrupted data; asymptotically this is not the case 

and the n = 2 model is more sensitive to the added noise. A similar effect is indicated 

by ENSS(0), in figure 6.2 (b), where, again for small a, the ii = 2 model over-fits the 

corrupted data less. Nonetheless, asymptotically, in the data dominated region, the 
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( Dist (0))p(p ,o) 	 LENSS (0) 

o1 
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(a) NSS: distance 	 (b) NSS: errors 

Eg  

0.8 

0.4 

0.2 

	

01 	 8 1 
a 

(c) Generalization 

Figure 6.2. Noise sensitivity signature and generalization error: noise to signal ratio 
A 0  = 0.1 with the n = 1 students under-regularized model M1 = f,3,,\ = 0.01, n = 11 
whilst then = 2 students are over-regularized such that, M2 = {f3, A l =A2 =1,n=2}. 
In all three graphs quantities associated with M 1  are shown by the dashed curve whilst 
solid curves relate to M2. In graph (a) for a small number of examples the average 
distance between students of model M1 is larger than that between students of M2. 
For large a the n = 2 model is more sensitive to the added noise. Graph (b) shows that 
the under-regularized n = 1 model over-fits the added noise to a greater extent than 
the over-regularized n = 2 model for small a. Again for larger numbers of examples 
we find that M1 does not over-fit as badly as M2. This is linked to the fact that 
regularization (prior knowledge) plays an ever decreasing role as the amount of data 
increases. Based on graphs (a) and (b), given a small number of examples, we would 
choose the n = 2 model whereas graph (c) reveals that the n = 1 model achieves better 
generalization performance for all a. 
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true model (n. = 1) is seen to win out as we would expect. Thus, in the example shown 

in figure 6.2, the NSS prescription would have us choose the n = 2 model for small a 

and the n = 1 model as the number of examples grows. However, figure 6.2 (c) reveals 

that the generalization error is, in fact, smaller for the n = 1 model irrespective of 

a. The noise sensitivity signature has been misleading in this case, both in terms of 

generalization performance and architecture selection. Thus when comparing model 

architectures, at least if using model selection based on the NSS, one should be careful 

to set the regularization parameters optimally, or at the very least, in a way which does 

not put one of the architectures at a significant disadvantage. 

This raises the question of whether the regularization parameter, the weight decay, 

can be set using the NSS approach. In fact, when we consider that in general the 

optimal weight decay is related to the true noise level inherent in the original data 

set, it is difficult to see how this could be achieved by adding further noise. Indeed, 

in the case under consideration the average distance, (Dist (6))p( v , o), is minimised, 

and the difference between the corrupted and uncorrupted data set errors, ENSS  (6), 

maximised, by infinite weight decay independent of the true noise level, A 0 . 

We therefore suggest that the noise sensitivity method proposed by Grossman and 

Lapedes (94) is not suited to choosing regularization parameters. However, provided 

that the models are optimally regularized it does provide a novel approach to architec-

ture selection. 

6.3 Cross-validation, CV(1) 

As we saw in section 5.3 the leave-one-out cross-validation error is equivalent to the 

generalization error on average. Thus, in the thermodynamic limit, if self averaging 

holds, the cross-validatory error coincides with the generalization error and thus cross-

validation will always optimise generalization performance. In terms of selecting a 

model architecture, however, one should still be cautious. This is because, if inappro-

priately regularized, the true model may well perform worse than the alternatives and 

thus may not be chosen by CV(1). This was noted by Plutowski et al. (94) who pointed 

out that CV(1) may pick the more complex model if it performed better in terms of 

the cross-validated error. 

In particular, this will occur in the data limited regime (small a), if the true model 

is significantly under-regularized with respect to the overly parameterised models. In-

deed, this is what we found above when considering the noise sensitivity signature. 

Furthermore, this is likely to be the case for any model selection criterion based on 

measures of prediction accuracy, since in general even the true model will perform 
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badly if poorly regularized and presented with only a few noisy examples. 

Given the need to use the optimal regularizer, in the current example, one could 

either use the evidence procedure (see section 3.6 ) or CV(1), which both choose the 

optimal weight decay in the thermodynamic limit. Moreover, we argued in section 2.4 

that fixing the hyper-parameters using the evidence procedure is equivalent to the full 

hierarchical Bayesian calculation in the thermodynamic limit. If this is so then the 

advice to integrate out the hyper-parameters seems sound in light of the preceding 

discussion. When they are not equivalent, it is an open question as to whether ML 

II or the full hierarchical Bayes approach is to be preferred. 

6.4 Evidence 

Finally, we ask whether we can identify the true model architecture by comparing the 

evidence for the competing models, P(D I M 2 ). That is, we consider the Bayes factor 

(see equation 1.7) for the models, M1 and M2, 

P(DIM1) 
By 

P(D I M2) 	
(6.7) 

Recall that the model specification M i  includes the hyper-parameters. In particular, we 

want to know which of these probabilities is the greater. In section 3.6, for the system of 

current concern, we calculated the average of the free energy f = - in P(D I M) (see 

equation 3.6) and thus we concentrate on the normalised logarithm of the Bayes factor, 

In B.F . We note that model M1 is preferred if this quantity is positive and model M2 

if it is negative. The chief difficulty here is the calculation of the determinants of the 

response function matrices gj which appear in the free energy. However, as outlined 

in appendix 6.6 the appropriate quantities can at least be calculated numerically. 

Applying the Bayes factor (equation 6.7) to the the determination of the number 

of segments of our piece-wise linear student we find that as with the noise sensitivity 

method and CV(1) the results depend on the regularization parameters of each model. 

Evaluation of In By in the case where the linear model M 1  is optimally regularized 

shows that the evidence favours the linear model irrespective of the regularization of 

the piece-wise linear model M2. In this case the linear model also achieves the lowest 

generalization error and thus the evidence not only favours the correct architecture but 

also the best generalizer. However, when the linear model is sub-optimally regularized 

the situation is more complicated. Figure 6.3(a) shows for a = 0.5 the normalised 

logarithm of Bayes' factor versus the weight decay setting of the linear model, A, when 

the piece-wise linear model is optimally regularized. In the instance shown the optimal 
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Figure 6.3. Model determination from the evidence: Graph (a) shows the normalised 
logarithm of the Bayes factor (equation 6.7) for fixed a versus the weight decay of 
the linear model, A, in the case where the piece-wise linear model (M2) is optimally 
regularized. In the scenario depicted a = 0.5 and the noise to signal ratio A0  = 0.01. 
The evidence favours model M1 when -' 1nBF > 0 and model M2 when lnBF <0. 
Graph (b) shows the difference in generalization errors, I g  = €9 (M2) —f 9 (Mi) versus 
the model M1 weight decay (A) in the same case. We see that for small and large A the 
evidence favours the best generalizer whilst the for an intermediate range the evidence 
favours model M2 whilst model M1 has lower generalization error. 

weight decay is A0  = 0.01, but the evidence favours the linear model for a range of values 

around this. However, for weight decay parameters A > 0.06 the evidence favours 

the piece-wise linear model. Figure 6.3(b) shows the difference in the generalization 

error of model M2 less that of model M1, & g  = €g (M2) - Cg (Ml) in the same 

case. We see that for small values of the weight decay the linear student has a lower 

generalization error than the piece-wise linear model. Thus, the evidence favours the 

correct architecture and the best generalizer for small A. However, when the linear 

weight decay A is between 0.06 and 0.08 the evidence favours the piece-wise linear 

model whilst the linear model is the best generalizer. For larger values of the linear 

student weight decay, A, the evidence favours the model M2 which is also the superior 

generalizer. Furthermore, although we have shown only the a = 0.5 case, this picture 

holds for a wide range of a investigated. 

Thus, we have seen in the case of the evidence that the regularization of the models 

under comparison is of crucial importance. Indeed, as we found with the NSS and with 

CV(1) unless the models are optimally regularized the evidence is not guaranteed to 

choose the correct model. We note that although we were unable to investigate the 

large a limit, Gelfand and Dey (94) demonstrated that in the case of nested models the 
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evidence will asymptotically favour the correct model architecture and may also fail 

to optimise generalization performance. Furthermore, Meir and Fontanari (93) reveal, 

in the thermodynamic limit, that minimization of the stochastic complexity reliably 

chooses the correct model from a nested class only asymptotically. 

6.5 Comparison and summary 

To summarise, we applied the noise sensitivity signature approach to the case of linear 

and piece-wise linear models. In particular, we found that in the case of a piece-wise 

linear student learning a linear teacher this method can be used to select the ap-

propriate student architecture when the competing models are optimally regularized. 

However, we argued that, in general, one could not set regularization parameters op-

timally through consideration of the NSS and indeed, in the example considered here 

this was found to be the case. In the case of optimally regularized models both CV(1) 

and the Bayes factor can also be used to select the optimal architecture. 

Furthermore, in the learning scenario studied here we found that all three model 

selection methods were not guaranteed to select the true architecture when the compet-

ing models were sub-optimally regularized. In addition, we found that model selection 

based on the NSS and the evidence could, in this case, not only pick the full model, 

M2, but also the model with the lowest generalization ability. In contrast, since we 

are working in the thermodynamic limit, leave-one-out cross-validation always picks 

the optimal generalizer. Thus, our results suggest that when comparing models one 

should optimise the regularization of each model first. Then through comparison of 

these regularized models one can contrast different architectures. In fact, one might 

interpret this as an argument for hierarchical Bayes, in that one should integrate out 

the hyper-parameters in the models before one can compare the different architectures. 

6.6 Appendix: Bayes' factor 

In this appendix we discuss the calculation of the Bayes factor (equation 6.7) or rather, 

as discussed in section 6.4 we will examine its normalised logarithm, 

lnBF=lnP(DIMl)-1nP(VIM2) . 	 (6.8) 

Thus, since we are conducting our analysis in the thermodynamic limit we need to 

calculate the data average of the free energy given in equation (3.6) for the models 

M1 and M2. With the exception of the determinants of the matrices 9k  all the 
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terms in the resulting expression can be written as functions of the response functions 

Gk = < tr gk >p(-D ). The determinants themselves are given by applying the 

identity (4.A13) given in appendix 4.8.1. Individually, these integrals diverge, but they 

can be re-written as follows, 

lndetgk(Ak) = L 	tr gk(\)dA - f 	dA' 

f
"k 1

tr gk(A) 
-

T dA 
- 	

1 dA' . 	(6.9) 

Since the first integral in the second line does not diverge and the last of these terms 

is simply in A then the average normalised logarithm of the determinant also depends 

on the response function Gk and can thus be calculated, at least numerically. 



Chapter 7 

Summary and outlook 

We now briefly summarize our results drawing attention to connections between them. 

Finally we conclude by discussing future topics of research which suggest themselves. 

We began in chapter 2 by defining the learning scenario via a cost function pe-

nalizing complexity. Langevin dynamics based on this cost function were interpreted 

within the Bayesian framework outlined in chapter 1. The model selection problem was 

thus cast in terms of the setting of hyper-parameters parametrising the prior and the 

noise model. Since we choose to make predictions based on the conditional predictive 

distribution, performance was controlled by selection of these hyper-parameters. This 

learning algorithm was the main focus of attention throughout the thesis. 

In chapters 2 and 3 we were primarily concerned with the effects of a mismatch 

between Bayesian model specifications and the underlying data generating process. 

Indeed, despite our assumptions, in real problems the data is highly unlikely to have 

been generated by an artificial neural network. In both chapters the principal method 

of model selection investigated was the evidence procedure. 

In chapter 2 we considered the case in which the student was not sufficiently power-

ful to model the teacher. Given that one is constantly attempting to avoid over-fitting 

this is very likely to be the case in practice. The learning scenario considered allowed us 

to interpolate between the learnable linear case and an unrealizable case in which the 

teacher was a non-linear function. Our analysis was conducted in the thermodynamic 

limit and average case; if self averaging holds then fluctuations around this average van-

ish in this limit. Comparison of the hyper-parameters derived from the evidence with 

the optimal assignments revealed that the evidence procedure was sub-optimal in the 

unrealizable non-linear case. Furthermore, we noted that the CV(1) assignments were 

optimal in the thermodynamic limit. However, as Mackay has suggested, the failure of 
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the evidence to identify the optimal rule is indicative of the fact that our model assump-

tions are inadequate. The evidence procedure thus offers us the opportunity to discover 

this and improve our model. The robustness of a Bayesian procedure to changes in the 

prior assumptions is generally considered desirable. In terms of performance we inves-

tigated the robustness of the evidence procedure to changes in the validity of the prior 

assumptions, once again in the thermodynamic limit. We concluded that in terms of 

expected generalization performance the evidence assignments are remarkably robust. 

Thus, even in the unrealizable case the evidence procedure might be considered as an 

alternative to the computationally expensive cross-validation. 

In chapter 3 we investigated the performance of the evidence procedure assignments 

in the case where the student is more than able to represent the teacher. We considered, 

in the thermodynamic limit, a piece-wise linear student learning a linear teacher. We 

found that the evidence procedure identified the optimal hyper-parameters for the 

piece-wise linear student, despite the fact that the generalization error of this student 

was higher than that of the linear student. Thus, our results suggest that the evidence 

procedure is more sensitive to unrealizability than to over-realizability. However, they 

also suggest that overly powerful models, even when optimally regularized, perform 

worse than the true model and as we noted this may have some relevance to the work 

of Neal (94). 

To this point we had studied model selection in supervised learning using average 

case analyses in the thermodynamic limit. In chapters 4 and 5 we sought to understand 

how one could expect model selection procedures to perform in practice. To this end 

we considered the first order finite size corrections to the thermodynamic limit and as 

in earlier chapters we considered the problem of setting the regularization parameters 

in our penalty based algorithm. 

Initially, we explored these issues in terms of the evidence procedure assignments 

revealing that even in the learnable linear case these assignments were not optimal in 

general. We found the evidence procedure to be inconsistent in terms of weight de-

cay assignment and that the degradation in performance associated with the evidence 

procedure was an order 0(11N) quantity for large systems. However, in the noiseless 

limit we found a phase transition in behaviour as the number of training examples, c, 

increased, above which the evidence assignments were seen to be optimal. Nonethe-

less, even for small noise the degradation in performance resulting from the use of the 

evidence procedure was seen to be considerable, particularly as a -* 0. Using numer-

ical simulations of small systems we found qualitatively the same behaviour as that 

suggested by our finite size corrections. 
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In chapter 5 we switched attention to model selection based on test set and cross-

validatory estimates of the generalization error. In the former we considered how best 

to partition the data base of examples into training and testing subsets. We found that 

the optimal partition resulted in a degradation in performance which was an order 

of magnitude, O(v'IW), larger than that associated with the evidence assignments. 

Furthermore, due to the difficulty in identifying this optimal partition, we noted that 

in practice the performance associated with the test set assignments was likely to be 

even worse. Examination of the leave-one-out cross-validatory assignments revealed a 

performance degradation of the same order as the evidence procedure. Thus, CV(1) 

makes better use of the test set than the naive approach, albeit at added computational 

cost. In fact, we saw that, in general, the performance associated with CV(1) was 

also superior to that obtained by the evidence procedure although, again, this was 

achieved through greater computational effort; simulation results for low dimensional 

systems supported this assertion. However, our finite size corrections showed that the 

evidence procedure and CV(1) were indistinguishable, in performance terms, both 

asymptotically (i.e. a —+ oo) and in the noiseless limit, for a > 1. Thus, in such 

instances the less computationally intense evidence procedure should be used. 

In chapter 6 we focused our attention on the problem of architecture selection. In 

particular, this issue was explored in the scenario in which the number of segments 

had to be chosen for a piece-wise linear student learning from examples generated 

by a linear teacher. We discussed a method of model selection based on the noise 

sensitivity signature, NSS, and found it to provide a novel method for architecture 

selection. Furthermore, we considered the utility of CV(1) and the evidence in this 

situation. We found that all three methods could choose the over-parameterised model 

in cases where the models were inappropriately regularized. Moreover, in such cases 

use of the evidence or of the NSS could result in the selection of the model with the 

worse generalization ability. These results suggest that models should be optimally 

regularized to allow fair comparison of different architectures. 

Our aim in this thesis was to investigate some of the strengths and weaknesses 

associated with various model selection criteria. This we have done but many open 

questions remain. The most obvious of these is to what extent our results, derived in 

relatively simple learning scenarios, will carry over to more general cases. For example, 

from general arguments, it seems that the evidence procedure will be optimal on average 

in the realisable case. However, whilst we have considered the important question as to 

the effects of over and under realizability in some simple cases, the degree of robustness 

in evidence based model selection in general is not clear. Furthermore, our finite 

size corrections revealed subtleties in behaviour which are not apparent in standard 
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analytical approaches. However, it is not clear to what extent these results will be 

applicable in general and should be treated with care when applied to real training 

scenarios. Indeed, it seems probable that such questions will depend crucially on the 

particular circumstances involved, and perhaps no general statements can be made, at 

least not on the basis of analysis of specific learning scenarios. It would nonetheless 

be interesting to extend the work of this thesis to examine more complex learning 

scenarios in order to assess the generality of our results. Amongst possible avenues 

are the extension of penalty based approaches to layered neural networks such as the 

committee machine. Moreover, methods of model selection such as CV(1) or those 

based on the NSS could be applied in the on-line training scenario taking advantage 

of recent developments there. 
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