12,145 research outputs found

    Chemical composition of stellar populations in Omega Centauri

    Full text link
    We derive abundances of Fe, Na, O, and s-elements from GIRAFFE@VLT spectra for more than 200 red giant stars in the Milky Way satellite Omega Centauri. Our preliminary results are that: (i) we confirm that Omega Centauri exibiths large star-to-star metallicity variations (∼\sim 1.4 dex); (ii) the metallicity distribution reveals the presence of at least five stellar populations with different [Fe/H]; (iii) a clear Na-O anticorrelation is clearly observed for the metal-poor and metal-intermediate populations while apparently the anticorrelation disappears for the most metal-rich populations. Interestingly the Na level grows with iron.Comment: 2 pages, 2 figures. To appear in the proceedings of IAU Symp. 268 "Light elements in the Universe" (C. Charbonnel, M. Tosi, F. Primas, C. Chiappini, eds., Cambridge Univ. Press

    Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating

    Full text link
    We characterize the mechanical quality factor of micro-oscillators covered by a highly reflective coating. We test an approach to the reduction of mechanical losses, that consists in limiting the size of the coated area to reduce the strain and the consequent energy loss in this highly dissipative component. Moreover, a mechanical isolation stage is incorporated in the device. The results are discussed on the basis of an analysis of homogeneous and non-homogeneous losses in the device and validated by a set of Finite-Element models. The contributions of thermoelastic dissipation and coating losses are separated and the measured quality factors are found in agreement with the calculated values, while the absence of unmodeled losses confirms that the isolation element integrated in the device efficiently uncouples the dynamics of the mirror from the support system. Also the resonant frequencies evaluated by Finite-Element models are in good agreement with the experimental data, and allow the estimation of the Young modulus of the coating. The models that we have developed and validated are important for the design of oscillating micro-mirrors with high quality factor and, consequently, low thermal noise. Such devices are useful in general for high sensitivity sensors, and in particular for experiments of quantum opto-mechanics

    Detection of weak stochastic force in a parametrically stabilized micro opto-mechanical system

    Full text link
    Measuring a weak force is an important task for micro-mechanical systems, both when using devices as sensitive detectors and, particularly, in experiments of quantum mechanics. The optimal strategy for resolving a weak stochastic signal force on a huge background (typically given by thermal noise) is a crucial and debated topic, and the stability of the mechanical resonance is a further, related critical issue. We introduce and analyze the parametric control of the optical spring, that allows to stabilize the resonance and provides a phase reference for the oscillator motion, yet conserving a free evolution in one quadrature of the phase space. We also study quantitatively the characteristics of our micro opto-mechanical system as detector of stochastic force for short measurement times (for quick, high resolution monitoring) as well as for the longer term observations that optimize the sensitivity. We compare a simple, naive strategy based on the evaluation of the variance of the displacement (that is a widely used technique) with an optimal Wiener-Kolmogorov data analysis. We show that, thanks to the parametric stabilization of the effective susceptibility, we can more efficiently implement Wiener filtering, and we investigate how this strategy improves the performance of our system. We finally demonstrate the possibility to resolve stochastic force variations well below 1% of the thermal noise

    A unique model for the variety of multiple populations formation(s) in globular clusters: a temporal sequence

    Get PDF
    We explain the multiple populations recently found in the 'prototype' Globular Cluster (GC) NGC 2808 in the framework of the asymptotic giant branch (AGB) scenario. The chemistry of the five -or more- populations is approximately consistent with a sequence of star formation events, starting after the supernovae type II epoch, lasting approximately until the time when the third dredge up affects the AGB evolution (age ~90-120Myr), and ending when the type Ia supernovae begin exploding in the cluster, eventually clearing it from the gas. The formation of the different populations requires episodes of star formation in AGB gas diluted with different amounts of pristine gas. In the nitrogen-rich, helium-normal population identified in NGC 2808 by the UV Legacy Survey of GCs, the nitrogen increase is due to the third dredge up in the smallest mass AGB ejecta involved in the star formation of this population. The possibly-iron-rich small population in NGC 2808 may be a result of contamination by a single type Ia supernova. The NGC 2808 case is used to build a general framework to understand the variety of 'second generation' stars observed in GCs. Cluster-to-cluster variations are ascribed to differences in the effects of the many processes and gas sources which may be involved in the formation of the second generation. We discuss an evolutionary scheme, based on pollution by delayed type II supernovae, which accounts for the properties of s-Fe-anomalous clusters.Comment: 20 pages, 7 figures, in press on MNRA

    An ultra-low dissipation micro-oscillator for quantum opto-mechanics

    Full text link
    Generating non-classical states of light by opto-mechanical coupling depends critically on the mechanical and optical properties of micro-oscillators and on the minimization of thermal noise. We present an oscillating micro-mirror with a mechanical quality factor Q = 2.6x10^6 at cryogenic temperature and a Finesse of 65000, obtained thanks to an innovative approach to the design and the control of mechanical dissipation. Already at 4 K with an input laser power of 2 mW, the radiation-pressure quantum fluctuations become the main noise source, overcoming thermal noise. This feature makes our devices particularly suitable for the production of pondero-motive squeezing.Comment: 21 pages including Supplementary Informatio

    Four stellar populations and extreme helium variation in the massive outer-halo globular cluster NGC 2419

    Full text link
    Recent work revealed that both the helium variation within globular clusters (GCs) and the relative numbers of first and second-generation stars (1G, 2G) depend on the mass of the host cluster. Precise determination of the internal helium variations and of the fraction of 1G stars are crucial constraints to the formation scenarios of multiple populations (MPs). We exploit multi-band Hubble Space Telescope photometry to investigate MPs in NGC 2419, which is one of the most-massive and distant GCs of the Galaxy, almost isolated from its tidal influence. We find that the 1G hosts the ~37% of the analyzed stars, and identified three populations of 2G stars, namely 2GA, 2GB, and 2GC, which comprise the ~20%, ~31% and ~12% of stars, respectively. We compare the observed colors of these four populations with the colors derived from appropriate synthetic spectra to infer the relative helium abundances. We find that 2GA, 2GB, and 2GC stars are enhanced in helium mass fraction by deltaY ~0.01, 0.06, and 0.19 with respectto 1G stars that have primordial helium (Y=0.246). The high He enrichment of 2GC stars is hardly reconcilable with most of the current scenarios for MPs. Furthermore, the relatively larger fraction of 1G stars (~37%) compared to other massive GCs is noticeable. By exploiting literature results, we find that the fractions of 1G stars of GCs with large perigalactic distance are typically higher than in the other GCs with similar masses. This suggests that NGC 2419, similarly to other distant GCs, lost a lower fraction of 1G stars.Comment: 10 pages, 8 figures, submitted to MNRAS January 22n

    Extended main sequence turnoff as a common feature of Milky Way open clusters

    Get PDF
    We present photometric analysis of twelve Galactic open clusters and show that the same multiple-population phenomenon observed in Magellanic Clouds (MCs) is present in nearby open clusters. Nearly all the clusters younger than ∼\sim2.5 Gyr of both MCs exhibit extended main-sequence turnoffs (eMSTOs) and all the cluster younger than ∼\sim700 Myr show broadened/split main sequences (MSs). High-resolution spectroscopy has revealed that these clusters host stars with a large spread in the observed projected rotations. In addition to rotation, internal age variation is indicated as a possible responsible for the eMSTOs, making these systems the possible young counterparts of globular clusters with multiple populations. Recent work has shown that the eMSTO+broadened MSs are not a peculiarity of MCs clusters. Similar photometric features have been discovered in a few Galactic open clusters, challenging the idea that the color-magnitude diagrams (CMDs) of these systems are similar to single isochrones and opening new windows to explore the eMSTO phenomenon. We exploit photometry+proper motions from Gaia DR2 to investigate the CMDs of open clusters younger than ∼\sim1.5 Gyr. Our analysis suggests that: (i) twelve open clusters show eMSTOs and/or broadened MSs, that cannot be due neither to field contamination, nor binaries; (ii) split/broadened MSs are observed in clusters younger than ∼\sim700 Myr, while older objects display only an eMSTO, similarly to MCs clusters; (iii) the eMSTO, if interpreted as a pure age spread, increases with age, following the relation observed in MCs clusters and demonstrating that rotation is the responsible for this phenomenon.Comment: 17 pages, 42 figures, 1 table, accepted for publication in ApJ (31/10/2018

    Dynamical two-mode squeezing of thermal fluctuations in a cavity opto-mechanical system

    Full text link
    We report the experimental observation of two-mode squeezing in the oscillation quadratures of a thermal micro-oscillator. This effect is obtained by parametric modulation of the optical spring in a cavity opto-mechanical system. In addition to stationary variance measurements, we describe the dynamic behavior in the regime of pulsed parametric excitation, showing enhanced squeezing effect surpassing the stationary 3dB limit. While the present experiment is in the classical regime, our technique can be exploited to produce entangled, macroscopic quantum opto-mechanical modes

    Fertilizer Nitrogen and Morphogenetic Response in Avena Sativa and Lolium Multiflorum

    Get PDF
    A field experiment was carried out at the EEA Balcarce, INTA, Argentina (37° 45’LS, 58° 18’LW) to determine whether Leaf Appearance Rate (LAR) was affected by N fertilization in Italian ryegrass (Lolium multiflorum Lam.) and forage oats (Avena sativa). N treatments (0, 50, 100, 150, 200 and 250 kg N ha-1) were applied in winter 1995, after a defoliation. Subsequently, number of leaves per tiller was determined on 45 labelled tillers in each treatment twice a week. LAR was calculated as the slope of the linear regression of number of leaves on thermal time (air temperature, base 0 °C). Leaf appearance was more rapid with N fertilization in ryegrass, but was not in oats. In situations in which N applied did not affect LAR similar phyllochrons of 112 (± 4,6) and 113 (± 3,6) GDD leaf1 were found for Italian ryegrass and oats, respectively

    Frequency noise cancellation in optomechanical systems for ponderomotive squeezing

    Full text link
    Ponderomotive squeezing of the output light of an optical cavity has been recently observed in the MHz range in two different cavity optomechanical devices. Quadrature squeezing becomes particularly useful at lower spectral frequencies, for example in gravitational wave interferometers, despite being more sensitive to excess phase and frequency noise. Here we show a phase/frequency noise cancellation mechanism due to destructive interference which can facilitate the production of ponderomotive squeezing in the kHz range and we demonstrate it experimentally in an optomechanical system formed by a Fabry-P\'{e}rot cavity with a micro-mechanical mirror.Comment: 11 pages, 9 figures. Physical explanation expanded. Modified figure
    • …
    corecore