340 research outputs found

    Quality assurance of the VELO modules and analysis of the Bd->K*\mu^+\mu^- rare decay on LHCb

    Get PDF
    The LHCb experiment is a high energy physics detector at the Large Hadron Collider. The experiment has been designed and built to search for new physics in the b hadron sector. This thesis discusses a contribution to the detector construction and preparatory studies for a rare decay analysis. Quality assurance of the silicon modules of LHCb vertex detector One of the critical components of the LHCb experiment is the silicon vertex locator (VELO), which is used to measure the decay distance of the bb-hadrons and is a principal component of the tracking of the experiment. This thesis describes the quality assurance tests of the VELO silicon modules. A facility was designed to operate the VELO modules in vacuum and thermally stress the modules. To verify the suitability of the modules for the experiment a range of studies were performed including measurements of the silicon leakage current and the identification of bad channels through a noise analysis. A full set of 42 modules (and spares) suitable for use in the experiment were successfully tested. Analysis of the Bd→K∗μ+μ−B_d\rightarrow K^* \mu^{+}\mu^{-} decay The Bd→K∗μ+μ−B_d\rightarrow K^* \mu^{+}\mu^{-} decay is a flavour changing neutral current process which occurs only via loop diagrams. This is a rare process with a measured branching ratio of \\1.10−0.26+0.29×10−6\rm 1.10^{+0.29}_{-0.26} \times 10^{-6}. The Bd→K∗μ+μ−B_d\rightarrow K^* \mu^{+}\mu^{-} rare decay is sensitive to new physics (NP) effects. Through the measurement of the so-called forward backward asymmetry distribution a clear signature of NP can be found in this channel. The estimated number of signal events expected per year in LHCb (2fb−1\rm 2 fb^-1) was estimated to be 7.0±0.1×103\rm 7.0\pm0.1\times 10^{3}. The sensitivity to the zero point of the forward backward asymmetry was calculated as 0.4 GeV2/c4\rm 0.4~GeV^{2}/c^{4}, assuming the estimated annual yield. Degradation of the sensitivity due to background events was estimated to be ∼10−15%\rm \sim10-15\%. Potential systematic effects due to acceptance and background mismeasurement are also presented. The results on the forward backward asymmetry were obtained using a non-parametric unbinned method

    Quality assurance of the VELO modules and analysis of the Bd->K*\mu^+\mu^- rare decay on LHCb

    Get PDF
    The LHCb experiment is a high energy physics detector at the Large Hadron Collider. The experiment has been designed and built to search for new physics in the b hadron sector. This thesis discusses a contribution to the detector construction and preparatory studies for a rare decay analysis. Quality assurance of the silicon modules of LHCb vertex detector One of the critical components of the LHCb experiment is the silicon vertex locator (VELO), which is used to measure the decay distance of the bb-hadrons and is a principal component of the tracking of the experiment. This thesis describes the quality assurance tests of the VELO silicon modules. A facility was designed to operate the VELO modules in vacuum and thermally stress the modules. To verify the suitability of the modules for the experiment a range of studies were performed including measurements of the silicon leakage current and the identification of bad channels through a noise analysis. A full set of 42 modules (and spares) suitable for use in the experiment were successfully tested. Analysis of the Bd→K∗μ+μ−B_d\rightarrow K^* \mu^{+}\mu^{-} decay The Bd→K∗μ+μ−B_d\rightarrow K^* \mu^{+}\mu^{-} decay is a flavour changing neutral current process which occurs only via loop diagrams. This is a rare process with a measured branching ratio of \\1.10−0.26+0.29×10−6\rm 1.10^{+0.29}_{-0.26} \times 10^{-6}. The Bd→K∗μ+μ−B_d\rightarrow K^* \mu^{+}\mu^{-} rare decay is sensitive to new physics (NP) effects. Through the measurement of the so-called forward backward asymmetry distribution a clear signature of NP can be found in this channel. The estimated number of signal events expected per year in LHCb (2fb−1\rm 2 fb^-1) was estimated to be 7.0±0.1×103\rm 7.0\pm0.1\times 10^{3}. The sensitivity to the zero point of the forward backward asymmetry was calculated as 0.4 GeV2/c4\rm 0.4~GeV^{2}/c^{4}, assuming the estimated annual yield. Degradation of the sensitivity due to background events was estimated to be ∼10−15%\rm \sim10-15\%. Potential systematic effects due to acceptance and background mismeasurement are also presented. The results on the forward backward asymmetry were obtained using a non-parametric unbinned method.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‾t\overline{t}, W+bb‾W+b\overline{b} and W+cc‾W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓνW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Measurement of the J/ψ pair production cross-section in pp collisions at s=13 \sqrt{s}=13 TeV

    Get PDF
    The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 \sqrt{s}=13 TeV, corresponding to an integrated luminosity of 279 ±11 pb−1^{−1}. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of J/ψJ/\psi pairs is measured using a data sample of pppp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 TeV\sqrt{s} = 13 \,{\mathrm{TeV}}, corresponding to an integrated luminosity of 279±11 pb−1279 \pm 11 \,{\mathrm{pb^{-1}}}. The measurement is performed for J/ψJ/\psi mesons with a transverse momentum of less than 10 GeV/c10 \,{\mathrm{GeV}}/c in the rapidity range 2.0<y<4.52.0<y<4.5. The production cross-section is measured to be 15.2±1.0±0.9 nb15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψJ/\psi pair are measured and compared to theoretical predictions

    Measurement of the B0s→μ+μ− Branching Fraction and Effective Lifetime and Search for B0→μ+μ− Decays

    Get PDF
    A search for the rare decays Bs0→μ+μ- and B0→μ+μ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4  fb-1. An excess of Bs0→μ+μ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→μ+μ-)=(3.0±0.6-0.2+0.3)×10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→μ+μ- effective lifetime, τ(Bs0→μ+μ-)=2.04±0.44±0.05  ps, is reported. No significant excess of B0→μ+μ- decays is found, and a 95% confidence level upper limit, B(B0→μ+μ-)<3.4×10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays Bs0→μ+μ−B^0_s\to\mu^+\mu^- and B0→μ+μ−B^0\to\mu^+\mu^- is performed at the LHCb experiment using data collected in pppp collisions corresponding to a total integrated luminosity of 4.4 fb−1^{-1}. An excess of Bs0→μ+μ−B^0_s\to\mu^+\mu^- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→μ+μ−)=(3.0±0.6−0.2+0.3)×10−9{\cal B}(B^0_s\to\mu^+\mu^-)=\left(3.0\pm 0.6^{+0.3}_{-0.2}\right)\times 10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→μ+μ−B^0_s\to\mu^+\mu^- effective lifetime, τ(Bs0→μ+μ−)=2.04±0.44±0.05\tau(B^0_s\to\mu^+\mu^-)=2.04\pm 0.44\pm 0.05 ps, is reported. No significant excess of B0→μ+μ−B^0\to\mu^+\mu^- decays is found and a 95 % confidence level upper limit, B(B0→μ+μ−)<3.4×10−10{\cal B}(B^0\to\mu^+\mu^-)<3.4\times 10^{-10}, is determined. All results are in agreement with the Standard Model expectations

    Measurements of prompt charm production cross-sections in pp collisions at s=5 \sqrt{s}=5 TeV

    Get PDF
    Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 5 5\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.33 8.60\pm0.33\,pb−1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D∗+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0 < y < 4.5 and transverse momentum ranges 0<pT<10 GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10 GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D∗+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8 GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \begin{equation*} \sigma(pp\rightarrow D^0 X) = 1190 \pm 3 \pm 64\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^+ X) = 456 \pm 3 \pm 34\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D_s^+ X) = 195 \pm 4 \pm 19\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^{*+} X)= 467 \pm 6 \pm 40\,\mu\text{b} \end{equation*} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pp collisions at the LHC at a centre-of-mass energy of 5 TeV. The data sample corresponds to an integrated luminosity of 8.60 ± 0.33 pb−1^{−1} collected by the LHCb experiment. The production cross-sections of D0^{0}, D+^{+}, Ds+_{s}^{+} , and D∗+^{∗+} mesons are measured in bins of charm meson transverse momentum, pT_{T}, and rapidity, y. They cover the rapidity range 2.0 < y < 4.5 and transverse momentum ranges 0 < pT_{T} < 10 GeV/c for D0^{0} and D+^{+} and 1 < pT_{T} < 10 GeV/c for Ds+_{s}^{+} and D∗+^{∗+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1 < pT_{T} < 8 GeV/c are determined to be σ(pp→D0X)=1004±3±54μb,σ(pp→D+X)=402±2±30μb,σ(pp→Ds+X)=170±4±16μb,σ(pp→D∗+X)=421±5±36μb, \begin{array}{l}\sigma \left( pp\to {D}^0X\right)=1004\pm 3\pm 54\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{+}X\right)=402\pm 2\pm 30\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}_s^{+}X\right)=170\pm 4\pm 16\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{\ast +}X\right)=421\pm 5\pm 36\mu \mathrm{b},\end{array} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 5 5\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.33 8.60\pm0.33\,pb−1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D∗+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0<y<4.5 and transverse momentum ranges 0<pT<10 GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10 GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D∗+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8 GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively

    stairs and fire

    Get PDF
    • …
    corecore