479 research outputs found

    Phase rigidity breaking in open Aharonov-Bohm ring coupled to a cantilever

    Full text link
    The conductance and the transmittance phase shifts of a two-terminal Aharonov-Bohm (AB) ring are analyzed in the presence of mechanical displacements due to coupling to an external can- tilever. We show that phase rigidity is broken, even in the linear response regime, by means of inelastic scattering due to phonons. Our device provides a way of observing continuous variation of the transmission phase through a two-terminal nano-electro-mechanical system (NEMS). We also propose measurements of phase shifts as a way to determine the strength of the electron-phonon coupling in NEMS.Comment: 7 pages, 8 figure

    Anomalous bond stretching phonons as a probe of charge fluctuations in perovskites

    Full text link
    Important information on momentum resolved low energy charge response can be extracted from anomalous properties of bond stretching in plane phonons observed in inelastic neutron and X-ray scattering in cuprates and some other perovskites. We discuss a semiphenomenological model based on coupling of phonons to a single charge mode. The phonon dispersion and linewidth allow to locate the energy of the charge excitation in the mid infrared part of the spectrum and to determine some of its characteristics. New experiments on oxygen isotope substitution could allow to achieve a more detailed description. Corresponding relations following from the model can be used for the interpretation of experiments and as test of the model.Comment: presented at the M2S-HTSC-VIII conference in Dresde

    Models for Identifying Structures in the Data: A Performance Comparison

    Get PDF
    This paper reports on the unsupervised analysis of seismic signals recorded in Italy, respectively on the Vesuvius volcano, located in Naples, and on the Stromboli volcano, located North of Eastern Sicily. The Vesuvius dataset is composed of earthquakes and false events like thunders, man-made quarry and undersea explosions. The Stromboli dataset consists of explosion-quakes, landslides and volcanic microtremor signals. The aim of this paper is to apply on these datasets three projection methods, the linear Principal Component Analysis (PCA), the Self-Organizing Map (SOM), and the Curvilinear Component Analysis (CCA), in order to compare their performance. Since these algorithms are well known to be able to exploit structures and organize data providing a clear framework for understanding and interpreting their relationships, this work examines the category of structural information that they can provide on our specific sets. Moreover, the paper suggests a breakthrough in the application area of the SOM, used here for clustering different seismic signals. The results show that, among the three above techniques, SOM better visualizes the complex set of high-dimensional data discovering their intrinsic structure and eventually appropriately clustering the different signal typologies under examination, discriminating the explosionquakes from the landslides and microtremor recorded at the Stromboli volcano, and the earthquakes from natural (thunders) and artificial (quarry blasts and undersea explosions) events recorded at the Vesuvius volcano

    Automatic Classification of Seismic Signals at Mt. Vesuvius Volcano, Italy, Using Neural Networks

    Get PDF
    We present a new strategy for reliable automatic classification of local seismic signals and volcano-tectonic earthquakes (VT). The method is based on a supervised neural network in which a new approach for feature extraction from short period seismic signals is applied. To reduce the number of records required for the analysis we set up a specialized neural classifier, able to distinguish two classes of signals, for each of the selected stations. The neural network architecture is a multilayer perceptron (MLP) with a single hidden layer. Spectral features of the signals and the parameterized attributes of their waveform have been used as input for this network. Feature extraction is done by using both the linear predictor coding technique for computing the spectrograms, and a function of the amplitude for characterizing waveforms. Compared to strategies that use only spectral signatures, the inclusion of properly normalized amplitude features improves the performance of the classifiers, and allows the network to better generalize. To train the MLP network we compared the performance of the quasi-Newton algorithm with the scaled conjugate gradient method. We found that the scaled conjugate gradient approach is the faster of the two, with quite equally good performance. Our method was tested on a dataset recorded by four selected stations of the Mt. Vesuvius monitoring network, for the discrimination of low magnitude VT events and transient signals caused by either artificial (quarry blasts, underwater explosions) and natural (thunder) sources. In this test application we obtained 100% correct classification for one of the possible pairs of signal types (VT versus quarry blasts). Because this method was developed independently of this particular discrimination task, it can be applied to a broad range of other applications

    Monitoring of a methane-seeping pockmark by cabled benthic observatory (Patras Gulf, Greece)

    Get PDF
    A new seafloor observatory, the gas monitoring module (GMM), has been developed for continuous and long-term measurements of methane and hydrogen sulphide concentrations in seawater, integrated with temperature (T), pressure (P) and conductivity data at the seafloor. GMM was deployed in April 2004 within an active gas-bearing pockmark in the Gulf of Patras (Greece), at a water depth of 42 m. Through a submarine cable linked to an onshore station, it was possible to remotely check, via direct phone connection, GMM functioning and to receive data in nearreal time. Recordings were carried out in two consecutive campaigns over the periods April–July 2004, and September 2004–January 2005, amounting to a combined dataset of ca. 6.5 months. This represents the first long-term monitoring ever done on gas leakage from pockmarks by means of CH4+H2S+T+P sensors. The results show frequent T and P drops associated with gas peaks, more than 60 events in 6.5 months, likely due to intermittent, pulsation-like seepage. Decreases in temperature in the order of 0.1–1°C (up to 1.7°C) below an ambient T of ca. 17°C (annual average) were associated with short-lived pulses (10–60 min) of increased CH4+H2S concentrations. This seepage “pulsation” can either be an active process driven by pressure build-up in the pockmark sediments, or a passive fluid release due to hydrostatic pressure drops induced by bottom currents cascading into the pockmark depression. Redundancy and comparison of data from different sensors were fundamental to interpret subtle proxy signals of temperature and pressure which would not be understood using only one sensor.Published297-302JCR Journalreserve

    Measuring GNSS ionospheric total electron content at Concordia, and application to L-band radiometers

    Get PDF
    <p>In the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC) and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS) ionospheric scintillation and TEC monitor (GISTM) receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions), there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX) will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.</p

    MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines

    Get PDF
    MicroRNA (miR)-199b-5p has been shown to regulate Hes-1, a downstream effector of the canonical Notch and noncanonical SHH pathways, whereby it impairs medulloblastoma (MB) cancer stem cells (CSCs) through a decrease in the CD133+/CD15+ cell population. Here, we have developed stable nucleic acid lipid particles (SNALPs) that encapsulate miR-199b-5p. The efficacy of the miR- 199b-5p delivery by these SNALPs is demonstrated by significant impairment of Hes-1 levels and CSC markers in a range of different tumorigenic cell lines: colon (HT- 29, CaCo-2, and SW480), breast (MDA-MB231T and MCF-7), prostate (PC-3), glioblastoma (U-87), and MB(Daoy, ONS-76, and UW-228). After treatment with SNALP miR-199b-5p, there is also impairment of cell pro- liferation and no signs of apoptosis, as measured by cas- pases 3/7 activity and annexin V fluorescence cell sorter analyses. These data strengthen the importance of such carriers for miRNA delivery, which show no cytotoxic effects and provide optimal uptake into cells. Thus, efficient target downregulation in different tumorigenic cell lines will be the basis for future preclinical studies
    • …
    corecore