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Abstract. This paper reports on the unsupervised analysis of seismic signals 
recorded in Italy, respectively on the Vesuvius volcano, located in Naples, and 
on the Stromboli volcano, located North of Eastern Sicily. The Vesuvius dataset 
is composed of earthquakes and false events like thunders, man-made quarry 
and undersea explosions. The Stromboli dataset consists of explosion-quakes, 
landslides and volcanic microtremor signals. The aim of this paper is to apply 
on these datasets three projection methods, the linear Principal Component 
Analysis (PCA), the Self-Organizing Map (SOM), and the Curvilinear 
Component Analysis (CCA), in order to compare their performance. Since 
these algorithms are well known to be able to exploit structures and organize 
data providing a clear framework for understanding and interpreting their 
relationships, this work examines the category of structural information that 
they can provide on our specific sets. Moreover, the paper suggests a 
breakthrough in the application area of the SOM, used here for clustering 
different seismic signals. The results show that, among the three above 
techniques, SOM better visualizes the complex set of high-dimensional data 
discovering their intrinsic structure and eventually appropriately clustering the 
different signal typologies under examination, discriminating the explosion-
quakes from the landslides and microtremor recorded at the Stromboli volcano, 
and the earthquakes from natural (thunders) and artificial (quarry blasts and 
undersea explosions) events recorded at the Vesuvius volcano.   
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1   Introduction 

Dimension reduction techniques, used for analyzing and visualizing complex sets of 
data, can be distinguished into two classes: the linear ones, like Principal Component 
Analysis (PCA) [4] or the classical Multidimensional Scaling (MDS) [10], and the 
nonlinear methods, like the Self-Organizing Map (SOM) [6] or nonlinear variants of 
MDS, as the recently proposed Curvilinear Component Analysis (CCA) [1]. 
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PCA is able to perform eigenvalue decomposition on the data, detecting linear 
dependencies between vectors of features which constitute the dataset of interest. 
However, this linear detection may be a limitation when it is necessary to capture 
higher order structure in the data. To this intent, the Self-Organizing Map (SOM) is 
one of the most powerful projection methods since it can transform input data of 
arbitrary dimension into a low dimensional topology preserving map. However, the 
obtained fixed topological structure can represent a prior constraint. When no 
matching takes place between the discovered and the intrinsic structure of the input 
data, this technique leads to sub-optimal mappings. In this case, in order to obtain a 
more consistent representation of the input data, it is suggested to use the CCA 
algorithm that has proved to be successful for several applications [1]. However, this 
work will show that, for the proposed discrimination task, SOM performs better than 
CCA, and that CCA does not outperform PCA. 

This paper deals with the unsupervised analysis and discrimination of seismic 
signals associated to the activity of two high risk volcanoes, the Vesuvius and the 
Stromboli. The Vesuvius is located in Naples, a very populated area in which 
volcano-tectonic earthquakes and transient signals due to external sources (man-made 
explosions, thunders, etc) are daily observed by the experts and classified through 
procedures based on the visual analysis of the spectral and temporal features of the 
detected signals. The automation of these procedures is strongly desirable in order to 
identify a more robust description of earthquakes with respect to the signals generated 
by external sources and to avoid human inconsistencies which can affect the quality 
of the classification.  

Likewise, the Stromboli volcano, one of the Aeolian Islands in the Tyrrhenian Sea, 
has a permanent eruptive activity, called Strombolian activity, continuously 
monitored by a broadband network of digital stations. In this case, the seismicity is 
characterized by explosion-quakes and microtremor. In Dec. 2002 there was a big 
landslide that generated a small tsunami, creating the necessity to automatically 
discriminate among these different typologies of events. 
An automatic high-performance strategy for discriminating among different seismic 
signals could not only drastically reduce the probability of false event detections but 
also decrease the workload of the community involved in the seismological 
monitoring of the areas. In previous works [2,9] we have already faced this problem 
using a supervised learning algorithm that was able to implement a very good 
discrimination on both datasets described above. However, a supervised analysis 
requires a correctly labeled dataset and this is not always obtainable, above all when 
there are several and continuous changing events. Thus, the approach here proposed 
to automatically classify these signals and still overcome the heavy labeling, is based 
on unsupervised techniques that should be able to visualize the intrinsic data structure 
and cluster together similar events. 

In the following, the Vesuvius and Stromboli datasets are described first. Then, the 
analysis methods used to preprocess the seismic data are introduced. Section 4 
presents the mathematical basics of the three models under study and the obtained 
results are discussed in Section 5. Section 6 is dedicated to conclusions and remarks. 
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2   The Vesuvius and the Stromboli Datasets 

The Vesuvius dataset includes 961 events, recorded by four stations (CPV, NL9, 
TRZ, and BKE). For the CPV station, situated on the coast of the Gulf of Naples, we 
have 144 earthquakes and 247 man-made undersea explosions. For the NL9 station, 
placed in Nola, there are 109 earthquakes and 114 man-made quarry explosions. For 
the TRZ station, located at the basis of the Vesuvius, 104 events are earthquakes and 
103 man-made quarry explosions. Finally, for the BKE station, located up on the 
Vesuvius crater, there are 72 earthquakes and 68 thunders. Each 22s-long signal  is 
described by a vector of 2200 components due to the 100 Hz sampling rate. The 
labeling made by the experts identified a total of 429 earthquakes, 247 undersea 
explosions, 114 quarry blasts at the NL9 station, 103 quarry blasts at the TRZ station, 
and 68 thunders, representing the five classes to discriminate. 

The Stromboli monitoring network is composed of 13 digital stations, which 
acquire the data using a sampling rate of 50 Hz and transmit them to the Monitoring 
Center in Naples (more details are on line at www.ov.ingv.it/stromboli/). The 
examined dataset contains 1159 records, coming from 5 seismic stations (STR1, 
STRA, STR8, STR5, STRB), and in particular consists of three classes of signals, with 
430 explosion-quakes, 267 landslides and 462 microtremor signals. Each 24s-long 
record is described by a vector of 1200 components due to the 50 Hz sampling rate. 

3   Data Preprocessing 

In order to be able to discriminate among seismic, natural and artificial events, it 
would be suitable to have a signal representation containing both frequency and 
temporal information. Such a representation is justified by the fact that the experts 
exploit both these attributes for a visual classification of the seismic signals and is 
further confirmed by previous works [2,9] based on supervised techniques, in which 
optimal discrimination performance has been reached.  

In this paper, the signal spectral content is obtained using the Linear Predictive 
Coding (LPC) algorithm [8], while a discrete waveform parameterization gives the 
amplitude-versus-time information. For both datasets each recording is processed on a 
short-time basis, dividing it into a certain number of analysis windows, whose length 
is fixed taking into account all the frequencies of interest in the signal. 

The LPC algorithm works modeling each signal sample sn as a linear combination 
of its p past values, i.e. formally: 

Gscs
p

k knkn +=∑ = −1
 (1) 

where ck are the prediction coefficients, which efficiently encode the frequency 
features, G is the gain and p indicates the model order. The ck estimation is realized 
by an optimization procedure which tries to minimize the error between the real value 
of the signal sample at time t and its LPC estimate. 

The correct value for p is problem dependent. However, it must be a good trade off 
between the compactness and the significance of the data representation. In this paper, 
the p value for the Stromboli data was settled to p = 6 since this value proved to be 
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effective in a previous work [2]. Likewise, for the Vesuvius dataset, it was settled 
exploiting the good results obtained in [9], where it was fixed to p = 6 in order to 
allow the two-class discrimination at each station. In our case the task is more 
complex, having five classes of signals, thus it has been increased to p = 10.  

The time domain information, added to the spectral content of each event, is 
computed as the properly normalized difference between the maximum and the 
minimum signal amplitude in a 1s-long analysis window. As a final step, the resulting 
feature vectors for both datasets were logarithmically normalized since this operation 
improves the clustering for both CCA and SOM strategy. 

4   PCA, SOM and CCA Description 

The three clustering techniques here presented make different assumptions about the 
representational structure used to define clusters and on the similarity measures which 
describe the relationships between objects and clusters. 

PCA finds the axes of maximum variance of the input data and represents them by 
a linear projection onto the subspace spanned by the principal axes [4]. 

CCA [1] instead performs a nonlinear dimensionality reduction and representation 
in two steps: (1) a vector quantization (VQ) of the input data into k quantized n-
dimensional prototypes and (2) a nonlinear projection of these quantized vectors onto 
a p-dimensional output space. The nonlinear mapping is obtained by minimizing the 
cost function:   

∑∑ −=
i j

ijijij YFYXE ),()(2/1 2 λ
 

(2) 

where Xij=d(xi,xj) and Yij=d(yi,yj) are the Euclidean distances between the quantized 
and the output vectors, respectively, and F(Yij,λ)=exp(-Yij/λ) is a weighting function 
that favors the preservation of the data topology depending on the λ value.  

The Kohonen Self-Organizing Map (SOM) performs a non-linear mapping of an n-
dimensional input space onto a two-dimensional regular grid of processing units 
known as neurons. A prototype vector is associated to each node. The fitting of the 
prototype of each node is carried out by a sequential regression process that 
minimizes the differences between each input vector and the corresponding winning 
node’s prototype (see [6] for mathematical details). However, contrarily to the CCA, 
the SOM clustering is not critically dependent on its parameters. In our tests, the 
SOM parameters have been settled in agreement with the prescriptions reported in [5]. 
The SOM algorithm realizes two important actions: a clustering of the input data into 
nodes and a local spatial ordering of the map, i.e. the prototypes are ordered on the 
grid so that similar inputs fall in topographically close nodes. This ordering facilitates 
the understanding of data structures. Moreover, displaying on the map the Euclidean 
distances between prototype vectors of neighboring nodes through grey levels, the 
SOM gives a good representation of the cluster structure, graphically depicting the 
data density too. 



 Models for Identifying Structures in the Data: A Performance Comparison 279 

5   Results 

The three models above described were applied on the two datasets under 
examination using a bi-dimensional output representation. Figure 1 displays  the PCA 
clustering for the Vesuvius and the Stromboli. The legends are made exploiting the 
labeling performed by the experts. Thus, for the Vesuvius data (Fig. 1A), the stars 
indicate volcanic earthquakes recorded by all the four stations; the empty circles and 
diamonds are quarry explosions at the NL9 and TRZ stations respectively; the empty 
down-triangles are thunders and the empty squares undersea explosions. For the 
Stromboli dataset (Fig. 1B), the empty squares indicate landslides while the empty 
circles and the up-triangles are explosion-quakes and microtremor respectively. 
Observing Figure 1 we note that the PCA projection mixes the different signals all 
together and does not discriminate among them. This because PCA is not able to 
capture the peculiar characteristics of our data, probably not related to the maximum 
variance directions. 

 
A B 

 

Fig. 1. PCA projection: for the Vesuvius set (A) the stars indicate earthquakes, the empty 
circles and diamonds quarry blasts at the NL9 and TRZ stations respectively, the empty down-
triangles are thunders and the empty squares undersea explosions. For the Stromboli set (B) the 
empty squares indicate landslides while the empty circles and the empty up-triangles are 
explosion-quakes and microtremor respectively.  

Figure 2 shows the bi-dimensional CCA representation for the Vesuvius data. In 
particular, figure 2A shows the dydx plot obtained with appropriate values for the η 
and λ parameters, and figure 2B displays the resulting CCA projection. 

Figure 3 displays the CCA results for the Stromboli volcano. Figure 3A visualizes 
the dydx plot with suitable values for the η and λ parameters, and Figure 3B shows 
the bi-dimensional CCA projection on these data. As we can observe, the CCA does 
not allow to discriminate among the classes of signals under examination probably 
because the principal curvilinear components are not discriminative of our typologies 
of signals, thus the resulting clustering shows several overlaps among them (see in 
particular Figures 2B and 3B). Finally, the SOM results on the Vesuvius (Figure 4) 
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Fig. 2. The CCA results on the Vesuvius dataset. The dydx plot (A), obtained using appropriate 
values for η and λ parameters, and the two-dimensional CCA projection (B) are shown. 

A B 

 

Fig. 3. The CCA results for the Stromboli volcano. The dydx plot (A), obtained using specific 
values for η and λ parameters, and the bi-dimensional CCA visualization (B) are displayed. 

and Stromboli (Figure 5) datasets are presented. Each node in both maps is a 
prototype vector whose size represents the number of feature vectors associated to 
that prototype.  

The distances among the prototypes are visualized on the map using a grey level 
scale, so that large distances between two prototypes correspond to dark grey color 
levels on the grid, indicating that the two prototypes and the associated feature vectors 
are very different. The classes of events are shown on the map using different 
symbols. Thus, in Figure 4 the stars indicate earthquakes, the circles and diamonds 
specify quarry blasts at the NL9 and TRZ stations respectively, the down-triangles 
represent thunders and the squares are undersea explosions. Overlapped symbols 
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indicate that different types of signals belong to the same node. In Figure 4, it is 
possible to see that each class of signals is clustered on a particular zone of the map 
and the overlaps between classes are less than those obtained with the PCA or the 
CCA algorithms. In Figure 5, the squares indicate landslides, the circles are 
explosion-quakes and the up-triangles represent microtremor signals. From the 
Figure, it is possible to distinguish a dark gray boundary between explosion-quakes 
and the other two classes, which instead appear closer to each other. This means that 
explosion-quakes are well separated from landslides and microtremor, while the less 
marked distances between these last two types of events suggest that they share 
similar features. 

 

 

 
 

  earthquakes 
  undersea explosions  
  quarry NL9 

explosions 
  thunders 
  quarry TRZ 

explosions 

Fig. 4. The SOM map (with 26x12=312 nodes) for the Vesuvius dataset. The stars indicate 
earthquakes, the circles and diamonds represent the NL9 and TRZ quarry blasts respectively, 
the down-triangles specify thunders and the squares are undersea explosions. 

 

Fig. 5. The SOM map (with 31x13=403 nodes) for the Stromboli dataset. The up-triangles 
indicate microtremor signals, the circles are explosion-quakes and the squares specify 
landslides. 
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Thus, the results reported in Figures 4 and 5 show that the clusters visualized by 
the SOM better correspond to the classes of signals identified by the experts. 

6   Conclusions and Remarks 

In the previous section, three unsupervised projection techniques have been applied to 
two different datasets composed respectively by five and three classes of seismic 
events and encoded through features vectors containing both spectral and time domain 
information. Our aim was to try to identify among them the one that better represents 
on a bi-dimensional plane the data structure, such that the resulting clustering can be 
helpful for the automatic labeling of the events under study. The unsupervised 
techniques considered were the PCA, the CCA and the SOM. 

These techniques work without assumption about the data distribution and no 
external information, like class labels, is provided to obtain the final output. The 
analysis is unsupervised, and the possible class labels have been used only afterwards 
to aid in the results’ interpretation, without affecting the structures discovered by the 
methods. 

It has been shown that, among the above techniques, the SOM algorithm, 
exploiting information on the local topology of the vector prototypes, gives the best 
performance being able to group the 5 classes of events for the Vesuvius dataset, and 
the 3 classes of signals for the Stromboli volcano in separated clusters with minor 
overlaps than those obtained either with the PCA and/or the CCA algorithm. The poor 
performance of the PCA algorithm can be due to the difficulty of this linear algorithm 
to capture the peculiar characteristics of our dataset which may not be related to the 
maximum variance directions. Moreover, the poorer performance of the CCA 
algorithm seems to be attributed to its critical dependence on the choice of the 
parameter λ and on its decreasing time-speed. This could be overcame introducing the 
CCA with geodetic (curvilinear) distance, also called Curvilinear Distance Analysis 
(CDA) [7] that has proved, in many cases, to perform better than the CCA and to be 
not critically dependent from the choice of the λ value. A further work could be to 
check the above hypothesis. 
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