33 research outputs found

    Influence of glyceryl guaiacolate ether on anesthetics in tilapia compared to benzocaine and eugenol

    Get PDF
    ABSTRACT Objective. The study aimed to investigate the effectiveness of glyceryl guaiacolate ether (GGE) and compare the times of induction, recovery, hematological changes, total protein and glycaemia among anesthetics in Nile tilapia, Oreochromis niloticus. Materials and methods. A total of 60 tilapia distributed in 3 aquariums (N=20) were used, which formed the group benzocaine (100 mg/L), eugenol (50 mg/L) and guaiacol glyceryl ether (9.000 mg/L). After the induction of anesthesia fish blood samples were collected to determine the complete hemogram and glycemia. Then the animals were placed in aquariums with running water for assessing the anesthesia recovery. Results. It was verified that GGE showed longer induction and recovery times as well a significant increase (p0.05). An increase in the number of monocytes in the group treated with benzocaine (p <0.05) was observed in the analysis of the hematological parameters with no difference between groups for other variables. Conclusions. Eugenol and benzocaine allow rapid induction and recovery in Nile tilapia, without evidence of stress during handling and GGE showed high induction and recovery times, being inadequate for anesthetic use in Nile tilapia

    Influence of glyceryl guaiacolate ether on anesthetics in tilapia compared to benzocaine and eugenol

    No full text
    Objective. The study aimed to investigate the effectiveness of glyceryl guaiacolate ether (GGE) and compare the times of induction, recovery, hematological changes, total protein and glycaemia among anesthetics in Nile tilapia, Oreochromis niloticus. Materials and methods. A total of 60 tilapia distributed in 3 aquariums (N=20) were used, which formed the group benzocaine (100 mg/L), eugenol (50 mg/L) and guaiacol glyceryl ether (9.000 mg/L). After the induction of anesthesia fish blood samples were collected to determine the complete hemogram and glycemia. Then the animals were placed in aquariums with running water for assessing the anesthesia recovery. Results. It was verified that GGE showed longer induction and recovery times as well a significant increase (p0.05). An increase in the number of monocytes in the group treated with benzocaine (p <0.05) was observed in the analysis of the hematological parameters with no difference between groups for other variables. Conclusions. Eugenol and benzocaine allow rapid induction and recovery in Nile tilapia, without evidence of stress during handling and GGE showed high induction and recovery times, being inadequate for anesthetic use in Nile tilapia

    Influence of glyceryl guaiacolate ether on anesthetics in tilapia compared to benzocaine and eugenol

    No full text
    Objective. The study aimed to investigate the effectiveness of glyceryl guaiacolate ether (GGE) and compare the times of induction, recovery, hematological changes, total protein and glycaemia among anesthetics in Nile tilapia, Oreochromis niloticus. Materials and methods. A total of 60 tilapia distributed in 3 aquariums (N=20) were used, which formed the group benzocaine (100 mg/L), eugenol (50 mg/L) and guaiacol glyceryl ether (9.000 mg/L). After the induction of anesthesia fish blood samples were collected to determine the complete hemogram and glycemia. Then the animals were placed in aquariums with running water for assessing the anesthesia recovery. Results. It was verified that GGE showed longer induction and recovery times as well a significant increase (p0.05). An increase in the number of monocytes in the group treated with benzocaine (p<0.05) was observed in the analysis of the hematological parameters with no difference between groups for other variables. Conclusions. Eugenol and benzocaine allow rapid induction and recovery in Nile tilapia, without evidence of stress during handling and GGE showed high induction and recovery times, being inadequate for anesthetic use in Nile tilapia

    Desmosomal junctions are necessary for adult sinus node function

    No full text
    AIMS: Current mechanisms driving cardiac pacemaker function have focused on ion channel and gap junction channel function, which are essential for action potential generation and propagation between pacemaker cells. However, pacemaker cells also harbour desmosomes that structurally anchor pacemaker cells to each other in tissue, but their role in pacemaker function remains unknown. METHODS AND RESULTS: To determine the role of desmosomes in pacemaker function, we generated a novel mouse model harbouring cardiac conduction-specific ablation (csKO) of the central desmosomal protein, desmoplakin (DSP) using the Hcn4-Cre-ERT2 mouse line. Hcn4-Cre targets cells of the adult mouse sinoatrial node (SAN) and can ablate DSP expression in the adult DSP csKO SAN resulting in specific loss of desmosomal proteins and structures. Dysregulation of DSP via loss-of-function (adult DSP csKO mice) and mutation (clinical case of a patient harbouring a pathogenic DSP variant) in mice and man, respectively, revealed that desmosomal dysregulation is associated with a primary phenotype of increased sinus pauses/dysfunction in the absence of cardiomyopathy. Underlying defects in beat-to-beat regulation were also observed in DSP csKO mice in vivo and intact atria ex vivo. DSP csKO SAN exhibited migrating lead pacemaker sites associated with connexin 45 loss. In vitro studies exploiting ventricular cardiomyocytes that harbour DSP loss and concurrent early connexin loss phenocopied the loss of beat-to-beat regulation observed in DSP csKO mice and atria, extending the importance of DSP-associated mechanisms in driving beat-to-beat regulation of working cardiomyocytes. CONCLUSION: We provide evidence of a mechanism that implicates an essential role for desmosomes in cardiac pacemaker function, which has broad implications in better understanding mechanisms underlying beat-to-beat regulation as well as sinus node disease and dysfunction
    corecore