9 research outputs found

    Microbial Communities of Peaty Permafrost Tundra Soils along the Gradient of Environmental Conditions and Anthropogenic Disturbance in Pechora River Delta in the Eastern European Arctic

    No full text
    Microbial communities play crucial roles in the global carbon cycle, particularly in peatland and tundra ecosystems experiencing climate change. The latest IPCC assessments highlight the anthropogenic changes in the Arctic peatlands and their consequences due to global climate change. These disturbances could trigger permafrost degradation and intensification of the biogeochemical processes resulting in greenhouse gas formation. In this study, we describe the variation in diversity and composition of soil microbial communities from shallow peat tundra sites with different anthropogenic loads and applied restoration interventions in the landscape of remnant fragments of terraces in the Pechora River delta, the Russian Arctic, Nenets Autonomous Okrug. The molecular approaches, including quantitative real-time PCR and high-throughput Illumina sequencing of 16S RNA and ITS, were applied to examine the bacterial and fungal communities in the soil samples. Anthropogenic disturbance leads to a significant decrease in the representation of Acidobacteria and Verrucomicrobia, while the proportion and diversity of Proteobacteria increase. Fungal communities in undisturbed sites may be characterized as monodominant, and anthropogenic impact increases the fungal diversity. Only the verrucomicrobial methanotrophs Methyloacifiphilaceae were found in the undisturbed sites, but proteobacterial methanotrophs Methylobacterium-Methylorubrum, as well as different methylotrophs affiliated with Methylophilaceae, and Beijerinckiaceae (Methylorosula), were detected in disturbed sites

    Characterization of Enrichment Cultures of Anammox, Nitrifying and Denitrifying Bacteria Obtained from a Cold, Heavily Nitrogen-Polluted Aquifer

    No full text
    Anammox bacteria related to Candidatus Scalindua were recently discovered in a cold (7.5 °C) aquifer near sludge repositories containing solid wastes of uranium and processed polymetallic concentrate. Groundwater has a very high level of nitrate and ammonia pollution (up to 10 and 0.5 g/L, respectively) and a very low content of organic carbon (2.5 mg/L). To assess the potential for bioremediation of polluted groundwater in situ, enrichment cultures of anammox, nitrifying, and denitrifying bacteria were obtained and analyzed. Fed-batch enrichment of anammox bacteria was not successful. Stable removal of ammonium and nitrite (up to 100%) was achieved in a continuous-flow reactor packed with a nonwoven fabric at 15 °C, and enrichment in anammox bacteria was confirmed by FISH and qPCR assays. The relatively low total N removal efficiency (up to 55%) was due to nonstoichiometric nitrate buildup. This phenomenon can be explained by a shift in the metabolism of anammox bacteria towards the production of more nitrates and less N2 at low temperatures compared to the canonical stoichiometry. In addition, the too high an estimate of specific anammox activity suggests that N cycle microbial groups other than anammox bacteria may have contributed significantly to N removal. Stable nitrite production was observed in the denitrifying enrichment culture, while no “conventional” nitrifiers were found in the corresponding enrichment cultures. Xanthomonadaceae was a common taxon for all microbial communities, indicating its exclusive role in this ecosystem. This study opens up new knowledge about the metabolic capabilities of N cycle bacteria and potential approaches for sustainable bioremediation of heavily N-polluted cold ecosystems

    Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia)

    No full text
    Bitter-1 is a shallow hypersaline soda lake in Kulunda Steppe (Altai region, Russia). During a study period between 2005 and 2016, the salinity in the littoral area of the lake fluctuated within the range from 85 to 400 g/L (in July of each year). Light-dependent nitrogen fixation occurred in this lake up to the salt-saturating conditions. The rates increased with a decrease in salinity, both under environmental conditions and in laboratory simulations. The salinities below 100 g/L were favorable for light-dependent nitrogen fixation, while the process was dramatically inhibited above 200 g/L salts. The analysis of nifH genes in environmental samples and in enrichment cultures of diazotrophic phototrophs suggested that anaerobic fermenting and sulfate-reducing bacteria could participate in the dark nitrogen fixation process up to soda-saturating conditions. However, we cannot exclude the possibility that haloalkaliphilic nonheterocystous cyanobacteria (Euhalothece sp. and Geitlerinema sp.) and anoxygenic purple sulfur bacteria (Ectothiorhodospira sp.) might also play a role in the process at light conditions. The heterocystous cyanobacterium Nodularia sp. develops at low salinity (below 80 g/L) that is not characteristic for Bitter-1 Lake and thus does not make a significant contribution to the nitrogen fixation in this lake.Accepted Author ManuscriptBT/Environmental Biotechnolog

    Draft Genome Sequence of the Anoxygenic Filamentous Phototrophic Bacterium Oscillochloris trichoides subsp. DG-6 â–ż

    No full text
    Oscillochloris trichoides is a mesophilic, filamentous, photoautotrophic, nonsulfur, diazotrophic bacterium which is capable of carbon dioxide fixation via the reductive pentose phosphate cycle and possesses no assimilative sulfate reduction. Here, we present the draft genome sequence of Oscillochloris trichoides subsp. DG-6, the type strain of the species, which has permitted the prediction of genes for carbon and nitrogen metabolism and for the light-harvesting apparatus
    corecore