93 research outputs found

    “Little Brothers” By Agniia Barto: Gender and Ideology in Soviet Era Picture Books, 1920s-1930s

    Get PDF
    In the early 1920s, Soviet children’s literature was to provide the blueprint for becoming model citizens of this newly formed society. It became the precursor to the new two-fold ideological discourse: depicting life of Soviet children as paradise, while condemning children’s hardship and exploitation of their less fortunate counterparts abroad. Such educational and ideological tendencies are prominent in Agniia Barto’s poem, “Little Brothers” (1928), as it visually and textually represented the theme of internationalism, which was to nurture and shape a feeling of unity in struggle, as well as compassion toward the fates of foreign children. I will explore the existing imbalance between the verbal and visual messages and demonstrate how the attention of a young reader was constantly shifted from the ideologically correct verbal message to the engaging exotic picture of foreign surroundings, thus subordinating ideology to the entertainment value of these books

    Aesopian Language of Soviet Era Children\u27s Literature: Translation, Adaptation, and Animation of Western Classics

    Get PDF
    Soviet writers frequently used social critique encapsulated in the form of children’s stories since the beginnings of Soviet children’s literature in 1918. Translation became one outlet for Soviet authors, who for political reasons were pushed to the outskirts of the Soviet literary scene. Russian children’s authors adopted a special form of retelling the stories by retaining the plot line, but by tweaking the characters and original settings to make them more recognizable by the Russian readers. This art of retelling and resettling of western characters onto Soviet surroundings created a space for social critique that was distinguishable to a skillful adult reader. The story that enjoyed the most popularity was Boris Zakhoder’s adaptation of A.A. Milne’s Winnie-the-Pooh (1960). The central inquiries for my project will focus on how foreign classics were adapted and how they were converted into voice of freedom, democracy, and creative imagination through different media (animation)

    Perinatal hypoxia: different effects of the inhibitors of GABA transporters GAT1 and GAT3 on the initial velocity of [3H]GABA uptake by cortical, hippocampal, and thalamic nerve terminals

    Get PDF
    Aim To analyze the effects of highly selective blocker GAT1, NO-711, and substrate inhibitor GAT3, β-alanine, on the initial velocity of [3H]GABA uptake by cortical, hippocampal, and thalamic nerve terminals (synaptosomes) after perinatal hypoxia. Methods Animals were divided into two groups: control (n = 17) and hypoxia (n = 12). Rats in the hypoxia group underwent hypoxia and seizures (airtight chamber, 4% O2 and 96% N2) at the age of 10-12 postnatal days and were used in the experiments 8-9 weeks after hypoxia. Results In cortical synaptosomes, the effects of NO-711 (30 μΜ) and β-alanine (100 μΜ) on [3H]GABA uptake were similar in control and hypoxia groups. In hippocampal synaptosomes, NO-711 inhibited 84.3% of the initial velocity of [3H]GABA uptake in normal conditions and 80.1% after hypoxia, whereas the effect of β-alanine was increased after hypoxia from 14.4% to 22.1%. In thalamic synaptosomes, the effect of NO-711 was decreased by 79.6% in controls and by 70.9% in hypoxia group, whereas the effect of β-alanine was increased after hypoxia from 20.2% to 30.2%. Conclusions The effectiveness of β-alanine to influence GABA uptake was increased in hippocampal and thalamic nerve terminals as a result of perinatal hypoxia and the effectiveness of NO-711 in thalamic nerve terminals was decreased. These results may indicate changes in the ratio of active GAT1/GAT3 expressed in the plasma membrane of nerve terminals after perinatal hypoxia. We showed a possibility to modulate non-GAT1 GABA transporter activity in different brain regions by exogenous and endogenous β-alanin

    The absence of a mature cell wall sacculus in stable Listeria monocytogenes L-form cells is independent of peptidoglycan synthesis

    Get PDF
    L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan

    Recovery of the Peptidoglycan Turnover Product Released by the Autolysin Atl in Staphylococcus aureus Involves the Phosphotransferase System Transporter MurP and the Novel 6-phospho-N-acetylmuramidase MupG

    Get PDF
    The peptidoglycan of the bacterial cell wall undergoes a permanent turnover during cell growth and differentiation. In the Gram-positive pathogen Staphylococcus aureus, the major peptidoglycan hydrolase Atl is required for accurate cell division, daughter cell separation and autolysis. Atl is a bifunctional N-acetylmuramoyl-L-alanine amidase/endo-β-N-acetylglucosaminidase that releases peptides and the disaccharide N-acetylmuramic acid-β-1,4-N-acetylglucosamine (MurNAc-GlcNAc) from the peptido-glycan. Here we revealed the recycling pathway of the cell wall turnover product MurNAc-GlcNAc in S. aureus. The latter disaccharide is internalized and concomitantly phosphorylated by the phosphotransferase system (PTS) transporter MurP, which had been implicated previously in the uptake and phosphorylation of MurNAc. Since MurP mutant cells accumulate MurNAc-GlcNAc and not MurNAc in the culture medium during growth, the disaccharide represents the physiological substrate of the PTS transporter. We further identified and characterized a novel 6-phospho-N-acetylmuramidase, named MupG, which intracellularly hydrolyses MurNAc 6-phosphate-GlcNAc, the product of MurP-uptake and phosphorylation, yielding MurNAc 6-phosphate and GlcNAc. MupG is the first characterized representative of a novel family of glycosidases containing domain of unknown function 871 (DUF871). The corresponding gene mupG (SAUSA300_0192) of S. aureus strain USA300 is the first gene within a putative operon that also includes genes encoding the MurNAc 6-phosphate etherase MurQ, MurP, and the putative transcriptional regulator MurR. Using mass spectrometry, we observed cytoplasmic accumulation of MurNAc 6-phosphate-GlcNAc in ΔmupG and ΔmupGmurQ markerless non-polar deletion mutants, but not in the wild type or in the complemented ΔmupG strain. MurNAc 6-phosphate-GlcNAc levels in the mutants increased during stationary phase, in accordance with previous observations regarding peptidoglycan recycling in S. aureus

    The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases

    Get PDF
    Endo-β-N-acetylmuramidases, commonly known as lysozymes, are well-characterized antimicrobial enzymes that catalyze an endo-lytic cleavage of peptidoglycan; i.e., they hydrolyze the β-1,4-glycosidic bonds connecting N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). In contrast, little is known about exo-β-N-acetylmuramidases, which catalyze an exo-lytic cleavage of β-1,4-MurNAc entities from the non-reducing ends of peptidoglycan chains. Such an enzyme was identified earlier in the bacterium Bacillus subtilis, but the corresponding gene has remained unknown so far. We now report that ybbC of B. subtilis, renamed namZ, encodes the reported exo-β-N-acetylmuramidase. A ΔnamZ mutant accumulated specific cell wall fragments and showed growth defects under starvation conditions, indicating a role of NamZ in cell wall turnover and recycling. Recombinant NamZ protein specifically hydrolyzed the artificial substrate para-nitrophenyl β-MurNAc and the peptidoglycan-derived disaccharide MurNAc-β-1,4-GlcNAc. Together with the exo-β-N-acetylglucosaminidase NagZ and the exo-muramoyl-L-alanine amidase AmiE, NamZ degraded intact peptidoglycan by sequential hydrolysis from the non-reducing ends. A structure model of NamZ, built on the basis of two crystal structures of putative orthologs from Bacteroides fragilis, revealed a two-domain structure including a Rossmann-fold-like domain that constitutes a unique glycosidase fold. Thus, NamZ, a member of the DUF1343 protein family of unknown function, is now classified as the founding member of a new family of glycosidases (CAZy GH171; www. cazy.org/GH171.html). NamZ-like peptidoglycan hexosaminidases are mainly present in the phylum Bacteroidetes and less frequently found in individual genomes within Firmicutes (Bacilli, Clostridia), Actinobacteria, and γ-proteobacteria

    p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage

    Get PDF
    UV-light-induced DNA damage affects RNA metabolism but the underlying signalling pathways are largely unexplored. Here, the authors show that UV light triggers p38-MK2-mediated phosphorylation of the NELF complex, promoting its release from chromatin and concurrent transcriptional elongation

    Photosynthetic Antenna Size Regulation as an Essential Mechanism of Higher Plants Acclimation to Biotic and Abiotic Factors: The Role of the Chloroplast Plastoquinone Pool and Hydrogen Peroxide

    Get PDF
    The present chapter describes the mechanisms of reactive oxygen species formation in photosynthetic reactions and the functional significance of reactive oxygen species as signal messengers in photosynthetic cells of plants. Attention is given to the acclimation mechanisms of higher plants to abiotic and biotic factors such as increased light, drought, soil salinity and colonization of plants by rhizosphere microorganisms. Special attention is paid to the reactions of reactive oxygen species with the components of the chloroplasts plastoquinone pool leading to production of hydrogen peroxide as a signal molecule, which is involved in acclimation of plants to these stress conditions. The chapter also presents the data demonstrating that regulation of the size of the light-harvesting antenna of photosystem II is one of the universal mechanisms of the structural and functional reorganization of the photosynthetic apparatus of higher plants exposed to the abiotic and biotic factors. These data were obtained for both model Arabidopsis (Arabidopsis thaliana) plants as well as for agricultural barley (Hordeum vulgare) plants. It is hypothesized that hydrogen peroxide, produced with involvement of the plastoquinone pool components, plays the role of a signaling molecule for regulation of the photosystem II antenna size in higher plants when environmental conditions change
    • …
    corecore