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ARTICLE

p38-MK2 signaling axis regulates RNA metabolism
after UV-light-induced DNA damage
Marina E. Borisova1, Andrea Voigt1, Maxim A.X. Tollenaere2, Sanjeeb Kumar Sahu1, Thomas Juretschke1,

Nastasja Kreim1, Niels Mailand 3, Chunaram Choudhary4, Simon Bekker-Jensen2, Masato Akutsu5,

Sebastian A. Wagner 6,7,8 & Petra Beli 1

Ultraviolet (UV) light radiation induces the formation of bulky photoproducts in the DNA that

globally affect transcription and splicing. However, the signaling pathways and mechanisms

that link UV-light-induced DNA damage to changes in RNA metabolism remain poorly

understood. Here we employ quantitative phosphoproteomics and protein kinase inhibition to

provide a systems view on protein phosphorylation patterns induced by UV light and uncover

the dependencies of phosphorylation events on the canonical DNA damage signaling by

ATM/ATR and the p38 MAP kinase pathway. We identify RNA-binding proteins as primary

substrates and 14-3-3 as direct readers of p38-MK2-dependent phosphorylation induced by

UV light. Mechanistically, we show that MK2 phosphorylates the RNA-binding subunit of the

NELF complex NELFE on Serine 115. NELFE phosphorylation promotes the recruitment of 14-

3-3 and rapid dissociation of the NELF complex from chromatin, which is accompanied by

RNA polymerase II elongation.
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U ltraviolet (UV) light is a natural source of DNA damage
that triggers the formation of cyclobutane–pyrimidine
dimers and 6–4 pyrimidine–pyrimidone photoproducts.

UV-light-induced DNA damage is recognized and repaired by the
components of the global genome or transcription-coupled (TC)
nucleotide excision repair (NER) pathway in human cells1. The
formation of single-stranded DNA during NER and stalled
replication forks activate the protein kinase Ataxia telangiectasia
and Rad3 related (ATR) and its downstream target Checkpoint
kinase 1 (Chk1), which in turn phosphorylate a number of pro-
teins to activate cell cycle checkpoints2. In addition to ATR, the
mitogen-activated protein kinase 14 (MAPK14, also known as
p38 MAPK), is activated in human cells after exposure to UV
light3,4. The p38 MAPK (of which the α isoform is highly
expressed in most human cell types) is a central transducer of
cellular stress signaling that is activated by different stress-
inducing agents, as well as extracellular signaling molecules such
as hormones and cytokines3,4. Depending on the stimuli and cell
type, upstream kinases MKK3, MKK4, and MKK6 activate p38 by
phosphorylation on threonine 180 and tyrosine 1825. In response
to stress, p38 phosphorylates and activates ~ 10 downstream
kinases, including MK2/3/5, MSK1/2, and MNK1/23,4. Recent
studies provided evidence for an extensive interplay between UV-
light-induced DNA damage and cellular RNA metabolism:
exposure of human cells to UV light globally impacts on different
RNA metabolic processes, including transcription, splicing, and
translation6–12. Moreover, components of the transcriptional
machinery were shown to be phosphorylated after UV light13.
Regulation of transcription in response to environmental cues
and during development is achieved through the release of paused
RNA polymerase II (RNA pol II) from promoter-proximal
sites of defined sets of genes14,15. UV light has been shown to
affect both transcriptional initiation and elongation in human
cells12,16–19. Although the components and the regulatory
mechanisms of DNA repair are relatively well established, the
understanding of the signaling pathways and molecular
mechanisms that orchestrate the complex changes in transcrip-
tion and RNA metabolism in general after UV-light-induced
DNA damage is only beginning to emerge.

Here we employ quantitative mass spectrometry (MS)-based
proteomics to provide a global view on phosphorylation-
dependent signaling induced by UV light. We define the cel-
lular phosphorylation events dependent on the ATM/ATR and
the p38 MAPK pathway, and determine functional contributions
of these pathways to the UV-light-induced DNA damage
response. Whereas ATM/ATR primarily phosphorylate proteins
involved in DNA repair and cell cycle regulation, the p38-MK2
signaling axis phosphorylates a multitude of RNA-binding pro-
teins. We show that MK2-dependent phosphorylation of cellular
proteins triggers the recruitment of 14-3-3 dimers. Mechan-
istically, we demonstrate that p38-MK2-dependent phosphor-
ylation of the negative elongation factor (NELF) complex
promotes its rapid release from chromatin, which correlates with
RNA pol II elongation. The presented datasets of p38-MK2/3-
dependent phosphorylation sites and 14-3-3 binding proteins will
facilitate further studies regarding the roles of p38-MK2/3 sig-
naling axis in the regulation of the cellular RNA metabolism in
response to UV light.

Results
p38 signaling has a broad regulatory scope after UV light. We
aimed to employ quantitative phosphoproteomics to decipher the
signaling downstream of the p38 MAP kinase activated after UV
light exposure. We first used western blotting to examine the
dynamics of p38 activation after UV light (40 J/m2, 1 h recovery)

and found that p38 activation peaked between 30 and 60 min
after irradiation, and gradually decreased being almost unde-
tectable 4 h post irradiation (Fig. 1a). Phosphorylation of p38
increased in a dose-dependent manner and was detectable after
irradiation of cells with 10 J/m2 (Supplementary Figure 1a). In
addition to UV light, treatment of cells with UV light mimetic
drug 4-NQO and oxidative stress-inducing agent H2O2 resulted
in rapid phosphorylation of p38 (Fig. 1b). In contrast, double-
strand DNA break-inducing agents and the replication stress-
inducing agent hydroxyurea did not lead to marked activation of
p38 early after treatment, although these drugs activated the
canonical DNA damage response detected by Chk1 phosphor-
ylation (Fig. 1b). In accordance with previous findings20, specific
inhibition of phosphoinositide 3-kinase-like kinases ATM, ATR,
or DNA-PKcs did not affect p38 activation after UV light, sug-
gesting that parallel activation of the ATR-Chk1-dependent
canonical DNA damage signaling and p38 MAPK regulates early
response of cells to UV light (Supplementary Figure 1b). Che-
mical inhibition of p38 significantly sensitized U2OS cells to
different doses of UV light, indicating that p38 promotes cellular
survival after UV light exposure (Supplementary Figure 1c). We
performed proteome-wide identification of p38-dependent
phosphorylation after UV light to define signaling downstream
of p38. To this end, we employed titanium dioxide (TiO2)-
based enrichment of phosphorylated peptides followed by peptide
identification using ultra-high performance liquid
chromatography-tandem MS (LC-MS/MS). Stable isotope label-
ing with amino acids in cell culture (SILAC) was used to relatively
quantify the abundance of the phosphorylated peptides in dif-
ferent experimental conditions. Light-labeled cells were mock-
treated and used as control, medium-labeled cells were irradiated
with UV light (40 J/m2, 1 h recovery), and heavy-labeled cells
were pretreated with the specific p38 inhibitor SB203580 followed
by irradiation with UV light (Fig. 1c).

We quantified 13,091 phosphorylation sites, of which 10,448
were identified in 2 independent replicate experiments (Fig. 1d
and Supplementary Data 1). We observed an excellent quanti-
tative reproducibility between the replicate experiments (Supple-
mentary Figure 1d,e). To determine significantly regulated
phosphorylation sites after UV light exposure and sites that are
affected by p38 inhibition, we applied a moderated t-test (limma
algorithm) (Supplementary Figure 1f,g). This analysis revealed
that 538 (4.1%) and 153 (1.2%) out of 13,091 phosphorylation
sites were significantly upregulated and downregulated, after
irradiation of cells with UV light, respectively (p-value < 0.01,
moderated t-test) (Fig. 1d and Supplementary Data 1). Notably,
UV-light-induced phosphorylation of 138 phosphorylation sites
(25.6%) significantly decreased after p38 inhibition, indicating
that phosphorylation of these sites is dependent on p38 activity
(Fig. 1d). Transient knockdown of p38 using small interfering
RNA (siRNA) also decreased the phosphorylation of these sites
demonstrating that the phosphorylation indeed occurs in a p38-
dependent manner (Supplementary Figure 1h). Analysis of amino
acid sequence surrounding UV-light-upregulated phosphoryla-
tion sites revealed a significant overrepresentation of glutamine
(Q) in + 1 position, a S/TQ sequence motif that is known to be
recognized by ATM/ATR/DNA-PKcs21,22 (Fig. 1e). To compare
the regulatory function of p38 and ATR after UV light, we
extracted all UV-light-induced phosphorylation sites that con-
form to the S/TQ motif. Phosphorylation of 89 S/TQ sites (17%)
increased in abundance after UV light (Fig. 1f). The fraction of S/
TQ sites within p38-dependent sites was similar to the fraction of
S/TQ sites in all quantified phosphorylation sites, indicating that
p38-dependent phosphorylation does not target the S/TQ motif
(Fig. 1f). In contrast, UV-light-upregulated, p38-dependent
phosphorylation occurred within a specific sequence motif that
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Fig. 1 Phosphoproteomics reveals a broad scope of p38 signaling after UV light. a U2OS cells were treated with UV light (40 J/m2) and left to recover for
the indicated times. Total cell lysates were resolved on SDS-PAGE and activation of p38, JNK1, and Chk1 was monitored with phospho-specific antibodies. b
U2OS cells were left untreated or treated with UV light (40 J/m2, 1 h recovery), 4-nitroquinoline 1-oxide (4-NQO, 20 µM, 1 h), neocarzinostatin (400 µg/
ml, 1 h), etoposide (10 µM, 1 h), camptothecin (10 µM, 1 h), H2O2 (2mM, 1 h), and hydroxyurea (2mM, 1 h). Total cell lysates were resolved on SDS-PAGE
and blotted with the indicated antibodies. c Schematic representation of the strategy used to identify UV-light-induced, p38-dependent phosphorylation
sites. SILAC-labeled U2OS cells were mock-treated (Light), irradiated with UV light (40 J/m2, 1 h recovery) (Medium), or pretreated with the p38 inhibitor
(SB203580, 10 µM, 1 h) or transfected with p38 siRNA, and irradiated with UV light (40 J/m2, 1 h recovery) (Heavy). Phosphorylated peptides were
enriched using TiO2 and peptide samples were analyzed by LC-MS/MS. d The bar graph shows the number of significantly up-, non-, and downregulated
UV-light-induced phosphorylation sites after p38 inhibition identified from two replicate experiments (p-value < 0.01, moderated t-test). Significantly
regulated phosphorylation sites were calculated as shown in Supplementary Figure 1f, g. e Sequence motif analysis of 538 UV-light-induced
phosphorylation sites. The iceLogo plot shows frequency of six amino acids flanking phosphorylated residue. The frequencies of amino acids surrounding
phosphorylated residues in UV-light-induced phosphorylation sites was compared with frequencies in all quantified phosphorylation sites. A significant
overrepresentation of phosphorylation sites conforming to the ATM/ATR/DNA-PKcs motif (S/TQ) is observed among UV-light-induced sites. f The bar
graph shows the absolute number and percentage of S/TQ sites among all quantified phosphorylation sites, UV-light-upregulated sites, UV-light-
upregulated, p38-independent sites, and UV-light-upregulated, p38-dependent sites. g Sequence motif analysis of 138 UV-light-induced, p38-dependent
phosphorylation sites. The analysis was done as described in Fig. 1e
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is defined by a glutamine (Q) in position – 2, arginine (R) in – 3,
and leucine (L) in – 5 (LXRQXS/T) (Fig. 1g). This motif differs
from the p38 motif previously determined using peptide library
screening (GPQS/TPI)23, suggesting that the majority of p38-
dependent phosphorylation sites induced after UV light are
substrates of kinases acting downstream of p38 rather than p38
itself.

MK2/3 are key transducers of p38-dependent signaling. To
determine the contribution of the downstream effector kinases to
p38-dependent phosphorylation after UV light, we employed
SILAC labeling and MS to compare UV light upregulated

phosphorylation sites after chemical inhibition of p38 or joint
inhibition of MK2, 3, and 5, thereby inhibiting one signaling axis
that is activated downstream of p38 (Fig. 2a and Supplementary
Figure 2a). Phosphorylation site abundance after p38 and MK2/3/
5 inhibition correlated, thus demonstrating that much of the p38-
dependent phosphorylation is dependent on the MK2/3/5 signal-
ing axis (Fig. 2b). Importantly, identification of significantly
downregulated phosphorylation sites after p38 or MK2/3/5
inhibition showed that nearly 60% of UV-light-upregulated, p38-
dependent phosphorylation sites also depend on MK2/3/5 (Fig. 2c
and Supplementary Data 2). MK2 and 3 share ~ 65% sequence
similarity and previous studies reported that these kinases can
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function redundantly, although MK2 tends to show higher
activity in cells24. To further discriminate the contribution of
MK2/3 and MK5 to UV-light-induced phosphorylation, we
transiently knocked down MK2/3 or MK5 and monitored
phosphorylation of proteins after UV light. These analyses
demonstrated that MK2/3 double knockdown decreased the
phosphorylation of a majority of MK2/3/5 inhibitor-dependent
sites, establishing that MK2 and MK3 are the key transducers of
p38 signaling after UV light (Supplementary Data 3). The pre-
viously identified p38-dependent sequence motif represents a
combination of sequences that are recognized by p38 and its
downstream kinases that are activated after UV light (Fig. 1g).
Analysis of the sequences surrounding phosphorylation sites that
are dependent on both p38 and MK2/3/5 revealed an enrichment
of the same motif (LXRQXS/T), demonstrating that this motif is
recognized by MK2/3/5 (Fig. 2d). This result is in agreement with
a previous study that determined the optimal motif for MK2
in vitro using peptide library screening23. Sites phosphorylated
independently of MK2/3/5 occurred within an entirely different
motif with aspartic acid enriched in position + 2 and + 4, argi-
nine in – 3, and isoleucine in + 5 (RXXS/TXDXDI), which likely
represents the motif recognized by downstream p38 effectors
other than MK2/3/5 that are activated after UV light (Fig. 2e).
The motif phosphorylated by MK2/3/5 resembles the motif that
can be recognized by proteins of the 14-3-3 family23,25. It was
previously shown that MK2-dependent phosphorylation of spe-
cific substrates can lead to the recruitment of 14-3-3 proteins in
response to UV light exposure26–28. Therefore, we investigated
whether 14-3-3 binding to proteins phosphorylated by p38-MK2
acts as a general regulatory mechanism in cells exposed to UV
light. We employed SILAC labeling and MS to compare the
interaction profile of 14-3-3 in cells irradiated with UV light and
in cells pretreated with the p38 inhibitor and subsequently irra-
diated with UV light (Supplementary Figure 2b). Notably, this
analysis revealed that nearly 30% of identified 14-3-3 interactors
bind to 14-3-3 after UV light in a p38-dependent manner (Fig. 2f
and Supplementary Data 4). This group of proteins contained a
number of RNA-binding proteins, including TNS1, RBM7,
NELFE, EIF4G1, CPSF1, SMC1A, and ZNF106 (Fig. 2g, h and
Supplementary Data 4).

p38-MK2/3 signaling axis phosphorylates RNA-binding pro-
teins. Identification of UV-light-induced p38-dependent phos-
phorylation sites delivered an unbiased view on the cellular
proteins regulated by p38. Notably, Gene Ontology enrichment
analysis revealed that proteins with p38-dependent

phosphorylation sites are involved in the regulation of messenger
RNA stability, gene expression, nuclear-transcribed mRNA poly
(A) tail shortening, and translation, and bind to RNA (Fig. 3a). In
agreement, p38-dependent phosphorylation sites occurred on
proteins in the nucleolus, cytoplasmic stress granules, and focal
adhesions, showing that p38 regulates proteins in the nucleus and
cytoplasm (Fig. 3a). RNA binding was also the most significantly
enriched term among all proteins containing UV-light-
upregulated sites, demonstrating that UV-light-induced phos-
phorylation of RNA-binding proteins, which is predominantly
executed by the p38-MK2/3 signaling axis, is a hallmark of the
cellular response to UV light (Supplementary Figure 3a). Proteins
containing UV-light-induced S/TQ phosphorylation sites that are
likely direct substrates of ATR are involved in DNA repair and
cell cycle, and primarily localized in the nucleus (Fig. 3b). MLH1,
PMS2, NBN, FANCI, TOPBP1, RAD1, and Chk1 display UV-
light-upregulated phosphorylation on S/TQ sites and are engaged
in functional networks involved in DNA damage repair and
signaling (Supplementary Figure 3b). In addition, proteins pre-
viously not linked to DNA repair also contain UV-light-induced
S/TQ phosphorylation, suggestive of their function in the DNA
damage response (Supplementary Figure 3b). In contrast, pro-
teins with p38-dependent phosphorylation sites are engaged in
functional networks involved in the regulation of RNA metabo-
lism, but not DNA repair (Fig. 3c). Among the proteins with p38-
dependent phosphorylation sites were subunits of the NELF
(NELFE and NELFA) and SMN complex (GEMIN5 and DDX20),
proteins involved in the degradation of ARE-containing mRNA
(PARN, KHSRP, and ZFP36), mRNA polyadenylation (WDR33
and SYMPK), and translation (EIF5, EIF4G1, SRP54, and
DHX29) (Fig. 3c).

NELFE transiently interacts with 14-3-3 after UV light. We
identified the RNA-binding subunit of the NELF complex NELFE
as a substrate of p38-MK2-dependent phosphorylation after UV
light. The NELF complex inhibits transcriptional elongation of
RNA pol II in Drosophila and mammalian cells. Productive RNA
pol II elongation into the gene body is achieved by phosphor-
ylation of the C-terminal domain of RNA pol II on serine 2, as
well as NELFE by P-TEFb complex containing cyclin T and
CDK929,30. Affinity purification of NELFE showed that UV light
induces the binding of NELFE to different 14-3-3 proteins
(Fig. 4a). To examine whether UV-light-induced interaction
between NELFE and 14-3-3 is dependent on NELFE phosphor-
ylation, we performed pull downs from cells treated with the p38
or MK2/3/5 inhibitor before irradiation with UV light. Notably,

Fig. 2 MK2/3 are key transducers of p38 signaling after UV light. a Schematic representation of the strategy used to identify UV-light-induced, MK2/3/5-
dependent phosphorylation sites. SILAC-labeled U2OS cells were mock-treated (Light), pretreated with the p38 inhibitor (Medium) or the MK2/3/5
inhibitor (Heavy), and subsequently irradiated with UV light (40 J/m2, 1 h recovery). The phosphoproteome analysis was performed as described in Fig. 1c.
b The scatter plot shows the logarithmized SILAC ratios of quantified phosphorylation sites. The color-coding indicates the density. A majority of UV-light-
induced, p38-dependent phosphorylation sites significantly decreased in abundance also after MK2/3/5 inhibition, whereas a smaller fraction of sites
decreased in abundance only after p38 inhibition. c The bar graph shows the percentage of UV-light-upregulated, p38-dependent sites that are up-, non-,
or downregulated after MK2/3/5 inhibition. Nearly 60% of p38-dependent phosphorylation sites are also dependent on MK2/3/5. d Sequence motif
analysis of p38- and MK2/3/5-dependent phosphorylation sites. The analysis was done as described in Fig. 1e. The sequence surrounding the
phosphorylated residue shows an enrichment of glutamine (Q) in position – 2, arginine (R) in – 3, and leucine (L) in – 5. e Sequence motif analysis of p38-
dependent, MK2/3/5-independent sites phosphorylation sites. The analysis was done as described in Fig. 1e. The sequence surrounding the
phosphorylated residue shows an enrichment of aspartic acid (D) in position + 2, + 4, and arginine (R) in – 3. f The scatter plot shows the logarithmized
SILAC ratios of quantified proteins. 14-3-3 interaction partners and p38-dependent interactions are indicated in light and dark red, respectively. Three
hundred and eighty-four proteins were significantly enriched in 14-3-3 pull downs after UV light (p-value < 0.05, moderated t-test). One hundred and eight
out of 384 proteins (28%) bound to 14-3-3 in a p38-dependent manner. g The bar plot shows the number of proteins with the indicated Gene Ontology
(GO)-molecular function terms that were enriched among p38-dependent 14-3-3 interaction partners. h The table shows selected RNA-binding proteins
that were identified as p38-dependent interaction partners of 14-3-3. The UniProt ID, protein name, gene name, position(s), and sequence window of UV-
light-induced phosphorylation sites identified in phosphoproteomics screen is indicated
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the binding between NELFE and 14-3-3 was completely abolished
after p38 or MK2/3/5 inhibition (Fig. 4b). Knockdown of p38 or
MK2 also inhibited the binding between NELFE and 14-3-3,
demonstrating that MK2 and not MK3 or MK5 is responsible for
the phosphorylation of NELFE in U2OS cells (Fig. 4c). The
interaction between NELFE and 14-3-3 after UV light and its
dependency on p38 was also validated in HaCaT, HEK293T, and
RPE-1 cells, demonstrating that this interaction is not restricted

to U2OS cells (Supplementary Figure 4a). UV-light-induced, p38-
dependent phosphorylation of NELFE could also be readily
detected by western blotting using phospho-specific antibodies
recognizing the 14-3-3-binding motif (Fig. 4d). To investigate
whether P-TEFb, which phosphorylates the NELF complex in
unperturbed cells, has a role in regulating the interaction between
NELFE and 14-3-3 after cellular stress, we inhibited its activity
using 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB).

Number of upregulated sites

1 2 3

ARHGEF2

RACGAP1

TUBA1C

TUBA4A

CUX1

DEPDC1B

MAP1B

BRPF3

TUBA1B

PCM1

PSMD11
KHSRP

HSPB1

PARN

ZFP36
PAK2

NIFK

WDR33

RPL24

DNTTIP2

PLEC

SYMPK
SRP54

EIF4G1

NELFE

SSRP1

YBX1

NUF2

NUP107

DDX20

NELFA

EIF5

GEMIN5

RANBP1

TNKS1BP1

NCBP2

NUP214

KPNA2

GGA1

GGA2DAB2

TJP1

EZR

PNN

AHNAK

EPS15

SRRM2

c

RNA-binding proteins

−2 0 2 4

4

6

8

10

12

14

log2(enrichment)

−
lo

g 1
0(
q

)
Poly(A) RNA binding

Regulation of
mRNA stability

Gene
expression

Nucleolus
Focal adhesion

Integral component
of membrane

6

Cellular component disassembly
involved in execution phase of apoptosis

Cytoplasmic stress granule

Apoptotic chromosome
condensation

Nuclear-transcribed mRNA poly(A) tail shortening
Translation factor activity, RNA binding

Proteins with UV-upregulated/p38-dependent sites

7

8

9

3 4 5 6 7 8

3

4

5

6

log2(enrichment)

−
lo

g 1
0(
q

)

Mitotic cell cycle

DNA repair

Poly(A) RNA binding Cellular component disassembly involved
in execution phase of apoptosis

RNA splicing Establishment or maintenance
of microtubule cytoskeleton polarity

Nucleotide binding
Programmed cell death

DNA strand elongation involved in DNA replication
Chromosome

Chromatin binding

Cell division Cohesin core heterodimer

Proteins with UV-upregulated S/TQ-sites

GO molecular function

GO cellular component

GO biological process

FAM195A

RHBDF2

MTDH

TWF1

SSFA2

TRA2A

ARHGEF28

UBAP2L (2)

SRCAP

KIFAP3

SIPA1

TAB3

ITGA3

LIMD1 (2)

ATXN2L

RBM7 (2)

NUDCD1

REPS1LSM14A

MEF2DDHX29

SERBP1

TOP2A

SZRD1

TMEM63B

LEMD2

PRIMPOL

MAP2K2

MOV10

R3HDM2

EIF4ENIF1

RPS6KA4 (3)

CAAP1

XAB2

PHF3

COBLL1

CRYAB

PLEKHG3

EEF1D (2)

MAGEC1

KDM3B

CORO7

LIMA1

LSM1

OTUD7B STYX

RBM14 (2)

TRIM28

PRRC2A

PEA15

CEP170 (3)

ZNF43

ICE1

UBXN7

NAB2

SASH1

ZMYM4

WBP11

DCUN1D5

TACC1

TRRAP (2)

R3HDM1

UBXN2B

HUWE1 (2)

BAIAP2

CCDC43

GART

CCDC6

ARID1A

SPATA2LFAM134C

HAUS6

NOSIP

TSC2COG3

GTF3C2 OGTACIN1 STXBP4

MK2/3-dependent sites

MK5-dependent sites

a b

Fig. 3 p38 phosphorylates RNA-binding proteins after UV light. a GO terms significantly enriched among proteins with UV-light-upregulated, p38-
dependent phosphorylation sites. The dot plot shows significantly enriched GO terms associated with proteins containing p38-dependent phosphorylation
sites compared with proteins with non-regulated phosphorylation sites. The significance of the enrichment of a specific term was determined using Fisher’s
exact test. P-values were corrected for multiple hypotheses testing using the Benjamini and Hochberg FDR. b GO terms significantly enriched among
proteins with UV-light-upregulated, S/TQ phosphorylation sites. The dot plot shows significantly overrepresented GO terms associated with proteins
containing S/TQ phosphorylation sites compared with proteins with non-regulated phosphorylation sites. The analysis was done as described in Fig. 3a. c
Analysis of functional interactions among proteins with UV-light-upregulated, p38-dependent phosphorylation sites. The functional interactions were
obtained from the STRING database and visualized using Cytoscape. Proteins with UV-light-upregulated, p38-dependent sites that do not form a functional
network are indicated on the right and proteins annotated with “RNA-binding” GO-molecular function term are indicated in green. Proteins with MK2/3-
dependent phosphorylation sites are indicated with circles and proteins with MK5-dependent sites with crosses
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Inhibition of P-TEFb did not inhibit but rather augmented
NELFE interaction with 14-3-3 (Fig. 4e). NELFE interaction with
14-3-3 occurred already 15 min after UV light exposure and
peaked 30–60 min post irradiation, indicating that NELFE bind-
ing to 14-3-3 is dynamic and has a role early after exposure of
cells to UV light (Fig. 4f). The interaction of NELFE with 14-3-3
also occurs after oxidative stress that leads to rapid activation of
p38 (Fig. 1b and Supplementary Figure 4b). It was recently shown
that XPC knockdown decreases the activation of p38 after UV
light31. Notably, we found that knockdown of CSB or XPC
resulted in decreased binding of 14-3-3 to NELFE, which is in

agreement with the reduced activation of p38 in these cells and
suggests that the interaction is partially dependent on the DNA
damage recognition by the NER machinery (Fig. 4g).

NELFE phosphorylation by MK2 regulates its binding to 14-3-
3. We found that NELFE was phosphorylated on eight serine
residues after UV light (Supplementary Data 1 and 2). Notably,
UV-light-induced phosphorylation of NELFE on serine 49, 51,
115, and 251 was dependent on p38 and MK2 (Fig. 5a). In
accordance with our data that NELFE binds to 14-3-3 after UV
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light, computational analysis of the sequence surrounding these
phosphorylation sites predicted that serine 51, 115, and 251 reside
within 14-3-3-binding motifs (Fig. 5b)32. To determine the
importance of the identified phosphorylation sites for UV-light-
induced binding of NELFE to 14-3-3, we mutated serine 49/51,
115, and 251 to alanine and performed pull downs using GST-14-
3-3 and lysates expressing NELFE serine-to-alanine mutants.
Wild-type green fluorescent protein (GFP)-NELFE was efficiently
pulled down using GST-14-3-3, whereas the S115A mutant of
NELFE did not interact with GST-14-3-3 (Fig. 5c). NELFE S49/
51A and S251A bound weaker to GST-14-3-3, indicating that
these phosphorylation sites also contribute to the interaction
(Fig. 5c). Serine 115 phosphorylation of NELFE increased twofold
and phosphorylation site occupancy analysis revealed that this
phosphorylation affects nearly the complete cellular pool of
NELFE after UV light, indicative of the physiological importance
of this modification (Fig. 5d,e and Supplementary Figure 5a). The
absolute occupancy of phosphoserine 49, 51, and 251 was lower
than phosphoserine 115, but substantially increased after UV
light, in line with the results that these phosphorylation sites also
contribute to the binding between NELFE and 14-3-3 (Fig. 5e).
Recombinant MK2 could also phosphorylate NELFE on serine 51,
115, and 251 in vitro (Supplementary Figure 5b). To confirm that
serine 115 phosphorylation is required for binding of NELFE to
14-3-3, we compared the interaction partners of GFP-tagged
wild-type NELFE and S115A mutant after UV light. Indeed, this
experiment showed that endogenous 14-3-3 does not bind to
NELFE S115A mutant (Fig. 5f). Interestingly, serine 115 in
NELFE is highly conserved in evolution, suggesting that phos-
phorylation of this residue is of regulatory importance also in
other organisms (Supplementary Figure 5c). To investigate
whether the binding between NELFE and 14-3-3 after UV light is
direct, we synthesized a biotinylated phospho-peptide centered
around serine 115 and performed pull downs with recombinant
14-3-3. We could observe binding of 14-3-3 to the phosphory-
lated peptide, whereas no binding was detected if the peptide was
dephosphorylated before the pull down (Fig. 5g).

To further investigate the binding mode of NELFE and 14-3-3,
we determined the crystal structure by molecular replacement
using the previously reported 14-3-3 epsilon structure as a search
model (PDB: 2BR9). The crystal structure of 14-3-3 epsilon in
complex with the phosphorylated NELFE peptide revealed that
the overall structure of the nine helices (αA to αI) of 14-3-3 and
the peptide orientation were similar as previously reported for
complexes of 14-3-3 epsilon and other phospho-peptides33

(Fig. 5h). It was shown that 14-3-3 proteins form hetero and/or
homo dimers, and that 14-3-3 epsilon preferentially forms hetero

dimers34. Although the asymmetric unit of the crystal contained
one 14-3-3 epsilon and one phosphorylated peptide (Fig. 5h,
Yellow), 14-3-3 epsilon forms homo dimers with symmetry-
related neighboring molecules in the crystal (Fig. 5h and
Supplementary Figure 5d, Cyan). We observed a decrease in
binding between NELFE and 14-3-3 upon mutation of serine 49/
51 and serine 251 to alanine, which suggests that one of these
phosphorylation sites serves as a secondary binding surface for
the 14-3-3 homo or hetero dimer in vivo. Interestingly, we also
found that the NELFA subunit of the NELF complex contains a
UV-light-induced, p38-dependent phosphorylation site that is
predicted to bind 14-3-3 and could thus provide an alternative
secondary binding surface for the 14-3-3 dimer. As reported for
other 14-3-3-phospho-peptide complexes, the N-terminal four
helices, αA, αB, αC, and αD, are essential and two salt bridges
between Arg19 on one molecule and Glu92 on another are the
driving force for the 14-3-3 dimer formation35. In addition,
Tyr85 sitting under the conserved lysine position on αD forms an
accessorial hydrogen bond with Glu22, supporting homo dimer
formation in the crystal (Supplementary Figure 5d,e). 14-3-3
epsilon has a peptide-binding groove, composed of αC, αE, αG,
and αI that catches the phosphorylated peptide. Especially the
conserved triad of Arg57, Arg130, and Tyr131 produces a
positively charged patch, directly interacting with the phosphate
group of the phosphorylated peptide (Fig. 5h). In addition, a few
hydrogen bonds and salt bridges between the main chain of the
phosphorylated peptide and 14-3-3 epsilon contribute to the
complex formation and adjust its relative orientation (Fig. 5h).

p38 promotes dissociation of the NELF complex from chro-
matin. To study the functional consequence of p38-dependent
phosphorylation of NELFE and its possible impact on tran-
scription after UV light, we analyzed whether the composition of
the chromatin proteome is altered upon inhibition of p38. To this
end, we isolated chromatin-associated proteins from cells and
used SILAC-based quantitative MS to monitor the p38-dependent
changes in the chromatin proteome after UV light (Supplemen-
tary Figure 6a,b). We identified 48 proteins that were recruited to
and 44 that dissociated from chromatin after exposure of cells to
UV light (p-value < 0.01, moderated t-test, Supplementary
Data 5). In addition to DNA repair factors, which comprised a
large group of proteins that were enriched on chromatin, we also
found a significant enrichment of 24 proteins annotated with the
Gene Ontology (GO) term “RNA-binding” on chromatin (Sup-
plementary Data 5). In particular, this group included 14 proteins
functioning in the ribosome biogenesis and annotated with the

Fig. 4 UV-light-induced phosphorylation of NELFE by MK2 leads to 14-3-3 binding. a Identification of p38-dependent NELFE interaction partners after UV
light. SILAC-labeled U2OS cells expressing GFP-NELFE were mock-treated or irradiated with UV light. Cells were lysed and protein extracts were incubated
with GFP Trap agarose. Enriched proteins were resolved on SDS-PAGE and digested in-gel into peptides. Peptides were extracted from gel and analyzed by
LC-MS/MS. The scatter plot shows the logarithmized SILAC ratios of proteins quantified in the pull down. The color coding indicates the density. b NELFE
interaction with 14-3-3 after UV light is p38- and MK2/3/5-dependent. U2OS cells expressing Flag-Strep-14-3-3 or an empty vector were mock-treated,
irradiated with UV light or pretreated with the p38 or MK2/3/5 inhibitor, and then irradiated with UV light. Cells were lysed and protein extracts were
incubated with StrepTactin sepharose. Enriched proteins were resolved by SDS-PAGE and selected proteins were detected with the indicated antibodies. c
NELFE interaction with GST-14-3-3 is abolished in p38 and MK2 knockdown cells. U2OS cells were transfected with non-targeting, p38, or MK2-targeting
siRNA and then irradiated with UV light. Cells were lysed and protein extracts were incubated with recombinant GST-14-3-3. Enriched proteins were
resolved by SDS-PAGE and NELFE was detected using a specific antibody. d NELFE is phosphorylated after UV light on a 14-3-3-binding motif. GFP-NELFE
was pulled down using GFP Trap agarose. Phosphorylation of NELFE was detected using antibodies recognizing the 14-3-3 motif. NELFE knockdown was
used as control. e NELFE interacts with 14-3-3 after inhibition of P-TEFb. U2OS cells were treated with the p38 inhibitor or P-TEFb inhibitor 5,6-dichloro-1-
β-D-ribofuranosylbenzimidazole (DRB) and then irradiated with UV light. After cell lysis, protein extracts were incubated with the recombinant GST-14-3-3.
f Dynamics of NELFE interaction with 14-3-3 after UV light. U2OS cells were exposed to UV light and left to recover for the indicated time points. After cell
lysis, protein extracts were incubated with the recombinant GST-14-3-3. g NELFE interaction with 14-3-3 is partially dependent on the NER machinery.
U2OS cells were transfected with a non-targeting siRNA or siRNA targeting XPC or CSB and then irradiated with UV light. After cell lysis, protein extracts
were incubated with the recombinant GST-14-3-3

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03417-3

8 NATURE COMMUNICATIONS |  (2018) 9:1017 | DOI: 10.1038/s41467-018-03417-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


c

e

a b

d

f g

Phosphorylation site

O
cc

up
an

cy
 (

%
)

0

20

40

60

80

100

S49 S51 S115 S251

Untreated

UV

NELFE (UniProt ID: P18615)

U
V

/C
tr

p3
8i

 +
 U

V
/C

tr

0 100 200 300

Amino acid

4

0

–4

4

0

–4

CC RD RD−repeat RRM

Position UV/Ctr 14-3-3
Motif

Sequence window

S49
S51
S115
S131
S139
S251
T272
S281
S353

3.28
3.03
1.47
1.37
2.33
1.21
0.98
1.06

–1.15

0.73
0.64
0.32
0.45
2.49

–1.30
0.80
1.54

–0.40

+
+

+

QGGVKRSLSEQPV
GVKRSLSEQPVMD
PFQRSISADDDLQ
RRPQRKSLYESFV
YESFVSSSDRLRE
PFRRSDSFPERRA
VYGEDMTPTLLRG
LLRGAFSPFGNII
SLAVQNSPKGCHR

p38i+UV/Ctr

h
14-3-3E

NELFE 

αC
αEαF

αG

αI

R57

Y131

R130

E183

N227

N176

pS115

A116

I114

S113

NELFE 

14-3-3E

Untreated UV p38i + UV

752 754 756 758

0e+00

2e+07

4e+07

m/z
R

el
at

iv
e 

ab
un

da
nc

e

751.81
752.3

752.81

754.82

755.32

755.82

756.32

756.81

757.31

757.81

758.31

NELFE pS115
SIS(ph)ADDDLQESSR
m/z 751.803957, 2+

lo
g 2S

IL
A

C
 r

at
io

−2 0 2 4 6

−4

−2

2

4

NELFE

YWHAB

YWHAG
YWHAE

YWHAZ
YWHAH

NELFB
0

log2(NELFE WT/vector)

lo
g 2(

N
E

LF
E

 S
11

5A
/W

T
)

GFP-NELFE interactome
(WT vs S115A)

GST-14-3-3 pull down

GFP (NELFE)

GFP (NELFE)

pChk1 (S345)

Ponceau

GST (14-3-3)

Inputs

– + + + + + UV
WT
S49/51A
S115A

S49/51/115A

+ + – – – –
– – + – – –
– – – + – –

– – – – – +
S251A– – – – + –

+ +

+ +

+

+

+

–

–

–––

14-3-3 (pan)

14-3-3E

NELFE peptide

Phosphatase

Pull downInput

70

53

70

53

30

Fig. 5 NELFE phosphorylation on S115 is required for the interaction with 14-3-3. a Schematic representation of NELFE domain organization and
phosphorylation sites that were identified by phosphoproteomics. The SILAC ratios quantified for phosphorylation sites on NELFE after UV light and p38
inhibition are indicated. UV-light-induced, p38-dependent phosphorylation sites are labeled in red. b The table shows all phosphorylation sites identified on
NELFE by phosphoproteomics. The position, SILAC ratios, 14-3-3 binding prediction and sequence window are indicated. UV-light-induced, p38-dependent
phosphorylation sites are labeled in red. c Serine 115 phosphorylation is required for the interaction of NELFE and 14-3-3. U2OS cells expressing GFP-tagged
wild-type NELFE or NELFE serine-to-alanine mutants were irradiated with UV light. Protein extracts were incubated with GST-14-3-3 and enriched proteins
were resolved on SDS-PAGE. d Mass spectrometric parent ion scan of the peptide SISADDDLQESSR corresponding to S115 in NELFE. The SILAC triplet
shows the relative abundance and mass to charge (m/z) of the phosphorylated peptide in mock-treated cells and cells irradiated with UV light without or
with pretreatment with the p38 inhibitor. e Absolute occupancy of serine 49, 51, 115, and 251 phosphorylation in NELFE in undamaged cells and after UV
light was determined by MS. f NELFE S115A mutant does not bind to 14-3-3. SILAC-labeled cells overexpressing GFP-tagged wild-type NELFE or NELFE
S115A mutant were irradiated with UV light. UV-light-irradiated U2OS cells overexpressing GFP alone were used as control. Cells were lysed and protein
extracts were incubated with GFP Trap agarose. The scatter plot shows the logarithmized SILAC ratios of quantified proteins. The color-coding indicates
the density. g Recombinant 14-3-3 binds to phosphorylated NELFE peptide. Biotinylated phosphorylated NELFE peptide corresponding to serine 115 was
bound to NeutrAvidin agarose. Phosphorylated and dephosphorylated peptide were incubated with purified 14-3-3. h Structure of 14-3-3 epsilon in complex
with NELFE phosphorylated peptide QPFQRSI(p)SADDDLQE. Structure of the 14-3-3 epsilon in cartoon representation (Yellow and Cyan) and NELFE
phosphorylated peptide in ball and stick model (Green). The inset on the right shows the 14-3-3 epsilon–NELFE phosphorylated peptide interaction
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GO term “maturation of SSU-rRNA from tricistronic rRNA
transcript (SSU-rRNA, 5.8 S rRNA, LSU-rRNA)” (Fig. 6a). Well-
known DNA repair factors were recruited to chromatin after
exposure of cells with UV light, including RPA1/2, PCNA, XPA,
MSH2/6, PMS1, MLH1, and FANCD2 (Fig. 6b). Some DNA
repair factors including Chk1, DDB1/2, and CCAR2 were
excluded from chromatin in response to UV light; however, the
recruitment or removal of DNA repair factors was not affected by
p38 inhibition (Fig. 6b). UV light resulted in the rapid dissocia-
tion of some RNA-binding proteins from chromatin including all
components of the NELF complex (Fig. 6c). As previously
reported, we also observed UV light and p38-dependent removal
of the NEXT complex subunits RBM7 and ZCCH8 from
chromatin26,36. Notably, inhibition of p38 abolished UV-light-
induced dissociation of NELF complex from chromatin (Fig. 6c, d
and Supplementary Figure 6c). UV light exposure resulted in
NELFE dissociation from chromatin that was dependent on p38
activity also in the human keratinocyte cell line (HaCaT) (Sup-
plementary Figure 6d). Monitoring the levels of NELFE on
chromatin at different time points post UV light irradiation
revealed that NELFE levels on chromatin returned to normal as
cells recovered from DNA damage 48 h after irradiation (Fig. 6e
and Supplementary Figure 6e). In line with this, we found that
inhibiting NELFE recovery on chromatin by transient knock-
down resulted in the increased sensitivity of cells to UV-light-
induced DNA damage (Fig. 6f).

NELFE release is accompanied by transcriptional elongation.
The NELF complex interacts with RNA pol II at promoter-
proximal sites to inhibit transcriptional elongation15. To further
study whether NELF complex dissociation from chromatin after
UV light correlates with changes in RNA pol II chromatin-
binding genome-wide, we performed chromatin immunopreci-
pitation sequencing (ChIP-seq) of RNA pol II in untreated cells
and after UV light exposure (40 J/m2, 1 h recovery). As expected,
in untreated cells we could detect a clear enrichment of RNA pol
II around transcription start sites (TSSs) (Fig. 7a). Exposure of
cells to UV light resulted in a slight decrease in RNA pol II
enrichment at TSSs that can occur as consequence of RNA pol II
degradation, inhibition of transcriptional initiation, or enhanced
RNA pol II release into downstream regions caused by the NELF
complex dissociation from chromatin (Fig. 7a). In line with our
results, a recent study that analyzed transcription in cells exposed
to UV light reported a reduction of nascent transcripts in
promoter-proximal regions12. We first tested whether NELF
complex dissociation from chromatin leads to degradation of
RNA pol II by quantifying the levels of different RNA pol II
subunits on chromatin by SILAC-based MS. UV light did not
result in a decreased level of RNA pol II on chromatin 1 h post-
irradiation (Supplementary Figure 7a). On the contrary, the levels
of RNA pol II on chromatin slightly increased at this time point
(Supplementary Figure 7a). To test whether UV light leads to
RNA pol II release into downstream regions of genes, we calcu-
lated the RNA pol II release ratio (polymerase release ratio, PRR)
that is defined as a ratio of the RNA pol II signal intensity in
downstream regions of genes to the signal intensity at promoters
(Supplementary Figure 7b)37. From the RNA pol II ChiP-seq, we
calculated PRRs for 6,898 RNA pol II target genes in U2OS cells.
These analyses revealed a significant increase in the PRR of 2,123
genes after UV light at 1 h time point post irradiation compared
with mock-treated cells (Fig. 7b and Supplementary Data 6). In
contrast, only 25 genes showed a decrease of the PRR when
applying the same significance threshold (Supplementary Data 6).
In support of these results, reanalysis of the nascent RNA-
sequencing (RNA-seq) from Williamson et al.12 also revealed a

general increase in PRRs after UV light irradiation (Supplemen-
tary Figure 7c). Gene-set enrichment analysis revealed that genes
with upregulated PRRs after UV light are involved in telomere
maintenance, RNA metabolism, cell cycle, DNA repair, and RAS/
ERK signaling (Fig. 7c, d and Supplementary Figure 7d). Notably,
a comparison of these genes with NELFE targets determined by
ChIP-seq in HeLa cells38 identified that 70% of genes that dis-
played an increase in the PRR after UV light are also bound by
NELFE (Supplementary Figure 7e). Taken together, our results
demonstrate that UV light exposure of human cells results in
increased RNA pol II elongation in a subset of genes, which
temporally correlates with the p38-MK2-dependent NELF
complex release from chromatin (Fig. 7e and Supplementary
Figure 7f).

Discussion
Exposure of human cells to UV light induces the formation of
bulky UV photo-products that interfere with DNA replication
and transcription1. To maintain genome stability, cells need to
coordinate DNA repair with cell cycle progression, DNA repli-
cation, and RNA metabolism.

Protein phosphorylation dependent on ATR-Chk1 plays an
integral role in DNA repair and cell cycle checkpoint activation
after UV light2; however, the function of other kinase-dependent
signaling pathways remains poorly understood. In this study, we
demonstrate that UV light triggers widespread and rapid phos-
phorylation of RNA-binding proteins that is dependent on the
p38 MAPK pathway and directly mediated by the p38 effector
kinase MK2. We identify 138 sites present on 122 proteins that
are phosphorylated in a p38-MK2-dependent manner. Moreover,
we show that many of these phosphorylation sites serve as plat-
form for the recruitment of 14-3-3 proteins. Previous studies
reported that phosphorylation of specific proteins by MK2 after
UV light can lead to binding of 14-3-3 and thereby regulate cell
cycle, turnover of non-coding RNA, and remodeling of centriolar
satellites26–28. We establish now that p38-MK2-dependent
recruitment of 14-3-3 to RNA-binding proteins provides a
broad regulatory mechanism functioning rapidly upon exposure
of cells to UV light.

It was previously shown that UV light globally affects different
levels of RNA metabolism, including transcription, RNA splicing,
and translation6. However, the signaling pathways and mechan-
isms that regulate RNA metabolism after UV light remain poorly
understood. Recent studies that employed nascent RNA-seq to
monitor transcription after UV light reported changes in tran-
scriptional elongation12,18,19. Many of the identified p38-MK2
protein substrates are functioning in the regulation of transcrip-
tion: we show that the NELF complex is a substrate of p38-MK2-
dependent phosphorylation after exposure of cells to UV light. In
human cells, the NELF complex (comprising the four subunits
NELFA, NELFB, NELFCD, and NELFE) inhibits RNA pol II
elongation shortly after initiation to induce promoter-proximal
pausing15. Promoter-proximal pausing was suggested to occur in
many, if not all, genes; however, it seems to have a particularly
important role in the regulation of developmental and stimuli-
induced genes39–44. Phosphorylation of the RNA-binding subunit
NELFE on S115 by MK2 promotes its binding to 14-3-3 and
dissociation of the NELF complex from chromatin that is
accompanied by RNA pol II elongation in genes functioning in
telomere maintenance, RNA metabolism, cell cycle, and DNA
repair. Knockdown of NELFE subunit of the NELF complex was
shown to result in global RNA pol II elongation in unstressed
primary cells and in cancer cells45,46. In agreement with our
results, a recent study reported that UV light triggers RNA pol II
elongation and transcription of active genes, which leads to
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Fig. 6 p38-dependent phosphorylation of NELFE promotes its dissociation from chromatin. a Chromatin-associated proteins were extracted from
untreated, UV-light-treated, and p38i, UV-light-treated U2OS cells, and analyzed by SILAC-based quantitative mass spectrometry. The bar plot shows the
GO-BP (biological process) terms associated with proteins specifically enriched on or removed from chromatin after UV light (40 J/m2, 1 h recovery). The
significance of the enrichment of a specific term was determined using Fisher’s exact test. P-values were corrected for multiple hypotheses testing using
the Benjamini and Hochberg FDR. b The bar plot shows selected proteins associated with DNA repair and cell cycle that are significantly recruited or
removed from chromatin after UV light. The error bars show the mean and SD of SILAC ratios quantified from three replicate experiments. Two-sided
Student’s t-test was used to assess the significance. c The NELF complex subunits are removed from chromatin in a UV light and p38-dependent manner.
The bar plot shows selected proteins whose removal from chromatin after UV light is dependent on p38. The error bars show the mean and SD of SILAC
ratios quantified from three replicate experiments. Two-sided Student’s t-test was used to assess the significance. d NELFE dissociates from chromatin
after UV light. Chromatin protein fractions from differentially treated U2OS cells were resolved by SDS-PAGE and subjected to western blotting with the
indicated antibodies (left). The levels of NELFE on chromatin were quantified from three replicate experiments and normalized to MCM7 levels (right). The
error bars show the mean and SD of SILAC ratios quantified from three replicate experiments. Two-sided Student’s t-test was used to assess the
significance (***p-value < 0.001, **p-value < 0.01). e Dynamics of NELFE removal from chromatin. Chromatin protein fractions from differentially treated
U2OS cells were resolved by SDS-PAGE and subjected to western blotting with the indicated antibodies. The error bars show the mean and SD of SILAC
ratios quantified from three replicate experiments. Two-sided Student’s t-test was used to assess the significance (**p-value < 0.01). f Knockdown of
NELFE reduced the ability of U2OS cells to form colonies after UV light. The error bars show the mean and SD of results obtained in three replicate
experiments performed in three technical replicates. Two-sided Student’s t-test was used to assess the significance (***p-value < 0.001, **p-value < 0.01)
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enhanced DNA damage sensing by RNA pol II and DNA repair
through the TC-NER pathway19. In addition to the NELF com-
plex, we found that other proteins involved in transcriptional
elongation, including TRIM28 and LARP747,48, are phosphory-
lated by p38, suggesting that multiple p38-MK2-mediated
phosphorylation-dependent events cooperate to regulate RNA
pol II elongation after UV light. Moreover, NELFE ADP-
ribosylation has been shown to promote RNA pol II elongation
in unstressed cells45. It is possible that different posttranslational

modifications of NELFE, including phosphorylation and ADP-
ribosylation, regulate RNA pol II elongation in response to UV
light. Dissociation of the NELF complex from chromatin by a
different mechanism mediated by enhancer RNAs was shown to
promote the induction of immediate early genes in response to an
increase in neuronal activity40.

Our study links NELF complex regulation with the cellular
response to UV-light-induced DNA damage. The NELF complex
was recently associated with the double-strand break (DSB) repair
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pathway49: NELFE and NELFA, but not the other subunits of the
complex, were shown to be recruited to DSBs to repress tran-
scription and promote DNA repair, suggesting that the NELF
complex and transcriptional elongation is differentially regulated
depending on the type of DNA damage.

Taken together, in this study we chart a map of phosphor-
ylation events induced in human cells after irradiation with UV
light and establish the dependencies of this phosphorylation on
the canonical DNA damage signaling and the p38-MK2 signaling
axis. The provided datasets of UV-light-induced phosphorylation
sites and p38-dependent 14-3-3 interactions will enable further
studies focusing on the functions of the p38-MK2 pathway in the
regulation of different RNA metabolic processes after UV light.

Methods
Cell culture. U2OS, HEK293T, RPE-1, and HaCaT cells were obtained from ATCC
or DSMZ and cultured in Dulbecco's Modified Eagle Medium supplemented with
10% fetal bovine serum, L-glutamine, penicillin, and streptomycin. Cells were
routinely tested for mycoplasma infection with a PCR-based method. For SILAC
labeling, cells were cultured in media containing either L-arginine and L-lysine,
L-arginine [13C6] and L-lysine [2H4] or L-arginine [13C615N4] and L-lysine
[13C6-15N2] (Cambridge Isotope Laboratories)50. All cells were cultured at 37 °C
in a humidified incubator containing 5% CO2. Cells were transfected with siRNAs
using Lipofectamine RNAiMAX (Life Technologies) according to the manu-
facturer’s instructions. The complete list of siRNA sequences and oligos used in
this study can be found in Supplementary Tables 1 and 2, respectively.

Cell lysis for phosphoproteomics. Cells were pretreated with 10 µM of p38
inhibitor SB203580 (Selleckchem) or MK2/3/5 inhibitor PF-3644022 (Sigma-
Aldrich) for 1 h before irradiation with UV light (40 J/m2). After 1 h recovery
period, cells were washed with ice-cold phosphate-buffered saline (PBS). Cells were
lysed in modified RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA,
1% NP-40, 0.1% sodium deoxycholate) supplemented with protease inhibitors
(Complete protease inhibitor cocktail tablets, Roche Diagnostics), 1 mM sodium
orthovanadate, 5 mM β-glycerophosphate, and 5 mM sodium flouride (all from
Sigma). Subsequently, lysates were cleared by centrifugation at 16,000 × g for 15
min and protein concentrations were estimated using QuickStart Bradford Protein
assay (BioRad).

MS sample preparation. Phosphoproteome analysis was performed exactly as
described previously51. Briefly, proteins were precipitated in fourfold excess of ice-
cold acetone and subsequently re-dissolved in denaturation buffer (6 M urea, 2 M
thiourea in 10 mM HEPES pH 8.0). Cysteines were reduced with 1 mM dithio-
threitol (DTT) and alkylated with 5.5 mM chloroacetamide. Proteins were digested
with endoproteinase Lys-C (Wako Chemicals) and sequencing grade-modified
trypsin (Sigma). Protease digestion was stopped by addition of trifluoroacetic acid
to 0.5% and precipitates were removed by centrifugation. Peptides were purified
using reversed-phase Sep-Pak C18 cartridges (Waters) and eluted in 50% acet-
onitrile. For the enrichment of phosphorylated peptides, 5 mg of peptides in
binding buffer (50% acetonitrile, 6% trifluoroacetic acid in H2O) were incubated
with 10 mg of TiO2 spheres (GL Sciences) for 1 h. The beads were washed twice in
binding buffer and subsequently peptides were eluted using elution buffer (10%
NH4OH, 25% acetonitrile in H2O). The eluates were concentrated to remove
NH4OH and peptides were fractionated in six fractions using micro-column-based
strong-cation exchange chromatography52 and desalted on reversed-phase C18
StageTips53.

MS analysis. Peptide fractions were analyzed on a quadrupole Orbitrap mass
spectrometer (Q Exactive or Q Exactive Plus, Thermo Scientific) equipped with a
UHPLC system (EASY-nLC 1000, Thermo Scientific) as described54,55. Peptide
samples were loaded onto C18 reversed-phase columns (15 cm length, 75 µm inner
diameter, 1.9 µm bead size) and eluted with a linear gradient from 8 to 40%
acetonitrile containing 0.1% formic acid in 2 h. The mass spectrometer was
operated in data-dependent mode, automatically switching between MS and MS2

acquisition. Survey full scan MS spectra (m/z 300–1700) were acquired in the
Orbitrap. The 10 most intense ions were sequentially isolated and fragmented by
higher-energy C-trap dissociation (HCD)56. An ion selection threshold of 5,000
was used. Peptides with unassigned charge states, as well as with charge states less
than + 2 were excluded from fragmentation. Fragment spectra were acquired in the
Orbitrap mass analyzer.

Peptide identification. Raw data files were analyzed using MaxQuant (develop-
ment version 1.5.2.8)57. Parent ion and MS2 spectra were searched against a
database containing 88,473 human protein sequences obtained from the Uni-
ProtKB released in December 2016 using Andromeda search engine58. Spectra
were searched with a mass tolerance of 6 p.p.m. in MS mode, 20 p.p.m. in HCD
MS2 mode, strict trypsin specificity, and allowing up to three miscleavages.
Cysteine carbamidomethylation was searched as a fixed modification, whereas
protein N-terminal acetylation, methionine oxidation, and phosphorylation of
serine, threonine, and tyrosine were searched as variable modifications. Site loca-
lization probabilities were determined by MaxQuant using the posttranslational
modification scoring algorithm57,59. The dataset was filtered based on posterior
error probability to arrive at a false discovery rate of below 1% estimated using a
target-decoy approach60. Only phosphorylated peptides with a minimum score of
40 and delta score of 6 are reported and used for the analyses.

Phosphorylation site occupancy analysis. SILAC-labeled U2OS cells ectopically
expressing GFP-NELFE (light) were mock treated or irradiated with UV light
(medium and heavy). GFP-NELFE was enriched using GFP Trap agarose as
described above, except that the washing was done with 8M urea followed by
washes with PBS. GFP-NELFE enriched from heavy-labeled SILAC condition was
dephosphorylated with five units of Antarctic Phosphatase for 2 h at room tem-
perature, whereas GFP-NELFE enriched from light- and medium-labeled cells was
mock treated. GFP-NELFE-bound agarose beads from different SILAC conditions
were washed three times with PBS and combined after the last wash. Raw data were
analyzed with MaxQuant and site occupancies were calculated based on the ratio of
the corresponding unmodified peptides in phosphatase treated and untreated
samples using the following formula ((1 – 1/ratio) × 100%) as described
previously61.

Extraction of chromatin-associated proteins. Cells were washed with ice-cold
PBS and collected using a cell scraper. Cells were lysed in Fractionation buffer A
(10 mM HEPES pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 0.34 M glucose, 10% glycerol,
1 mM DTT, 0.1% Triton X-100) supplemented with protease and phosphatase
inhibitors. Nuclei were pelleted by centrifugation at 1,300 × g for 5 min and
resuspended in Fractionation buffer B (3 mM EDTA, 0.2 mM EGTA, 1 mM DTT).
After incubation, samples were centrifuged at 1700 × g for 5 min and the chromatin
pellet was dissolved in the modified RIPA buffer containing 450 mM NaCl.
Digestion with Benzonase Nuclease was used to release chromatin bound proteins.
The lysates were cleared by centrifugation at 16,000 × g for 10 min.

Computational analysis of proteomics data. Statistical analysis was performed
using the R software environment. Correlation coefficient (ρ) and significance were
determined using Spearman’s rank method. Differences in SILAC ratio variance
were assessed using the Siegel–Tukey test. Statistical significance was calculated
using Wilcoxon’s rank-sum test. Functional protein interaction network analysis

Fig. 7 UV light leads to an increase in transcriptional elongation. a Metagene analysis showing total RNA pol II occupancy measured by ChIP-seq in mock-
treated U2OS cells and cells irradiated with UV light (40 J/m2, 1 h recovery). All TSSs bound by RNA pol II in untreated cells and after UV light exposure
were used for the analysis. Metagene analysis shows an average of two independent replicate ChIP-seq experiments. b Exposure of U2OS cells with UV
light (40 J/m2, 1 h recovery) promotes the release of RNA pol II into downstream regions of genes. The box plot shows the calculated RNA pol II release
ratios (PRRs) in untreated cells and in cells irradiated with UV light. The average PRRs were calculated from two independent replicate experiments. The
lower and upper hinges represent the first and third quartiles (25th and 75th percentiles, respectively). The line in the center of the box corresponds to the
median of the data range. P-value was calculated using the Wilcoxon’s rank-sum test with continuity correction. c REACTOME terms significantly enriched
among genes with UV light upregulated PRRs. The bar plot shows significantly overrepresented REACTOME terms associated with genes containing
upregulated PRR compared with all RNA pol II bound genes. The significance of the enrichment of a specific term was determined using a hypergeometric
test. P-values were corrected for multiple hypotheses testing using the Benjamini and Hochberg FDR. d UCSC Genome Browser tracks displaying the
density of RNA pol II around the PLK3 and RPL11 gene in untreated cells and after exposure of cells with UV light. e Model for the NELF complex regulation
by p38-MK2. Exposure of human cells to UV light leads to rapid activation of p38 and its downstream effector kinase MK2. MK2 triggers widespread
phosphorylation of RNA-binding proteins, including the NELF complex subunit NELFE. Site-specific NELFE phosphorylation on S115 induces its transient
interaction with 14-3-3. NELFE phosphorylation leads to dissociation of NELFE from chromatin that is accompanied by RNA pol II elongation
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was performed using interaction data from the STRING database62. Only inter-
actions with a score > 0.7 are represented in the networks. Cytoscape version 3.1.1
was used for visualization of protein interaction networks63.

Cell viability assays. Cell viability assay was performed using the CellTiter-Blue
Cell Viability Assay (Promega) according to the manufacturer’s instructions.

Colony formation assays. Cells were plated at low density 24 h after transfection
with siRNA. Seventy-two hours post transfection, growth medium was aspirated,
cells were washed with PBS, and irradiated with UV light using a custom-built
UVC light irradiation chamber. Colonies were stained with 0.4% Coomassie
Brilliant Blue in 20% ethanol solution and colonies containing at least 10 cells were
counted 12–14 days after irradiation. The number of colonies formed after UV
light was normalized to untreated control cells.

Pull-down assays. Cell lysates were prepared as described in the Cell lysis section.
Twenty-five microliters of pre-equilibrated StrepTactin sepharose beads (IBA) or
20 µL of GFP Trap agarose (Chromotek) were added to the cleared lysate and
incubated 1 h in the cold room on a rotation wheel. The beads were washed six
times with modified RIPA buffer supplemented with protease and phosphatase
inhibitors. In case of SILAC pull downs, beads from each SILAC condition were
pooled after the fifth wash. Bound proteins were eluted in NuPAGE LDS Sample
Buffer (Life Technologies) supplemented with 1 mM DTT, heated at 70 °C for 10
min, alkylated by addition of 5.5 mM chloroacetamide for 30 min, and loaded onto
4–12% gradient SDS-polycrylamide gel electrophoresis (PAGE) gels. Proteins were
stained using the Colloidal Blue Staining Kit (Life Technologies) and digested in-
gel using trypsin. Peptides were extracted from gel and desalted on reversed-phase
C18 StageTips. Alternatively, proteins were transferred onto nitrocellulose mem-
brane for western blotting.

Peptide pull downs. Biotinylated NELFE peptide (QPFQRSIpSADDLQE) was
synthesized (GenScript) and bound to NeutrAvidin agarose. Peptide-bound agar-
ose was mock-treated or subjected to dephosphorylation with λ-phosphatase.
Subsequently, bound peptides were incubated with 1 µg of recombinant 14-3-3 for
3 h in the cold room. Pull downs were washed three times with buffer containing
1 × PBS, 300 mM NaCl, 0.1% Triton X-100, 2 mM DTT supplemented with pro-
tease and phosphatase inhibitors.

Purification of GST-14-3-3 and GST pull-down assays. Escherichia coli were
transformed with a plasmid encoding GST-14-3-3 and protein expression was
induced by addition of 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 4
h at 25 °C. Cells were collected by centrifugation and lysed in Lysis buffer (50 mM
Tris pH 7.5, 150 mM NaCl) supplemented with protease inhibitors, 200 µg/ml
lysozyme, and 1 µg/ml Benzonase Nuclease. The lysates were incubated with
Glutathione Sepharose 4B (GE Healthcare) for 3 h at 4 °C. Beads were washed six
times with PBS and re-suspended in PBS supplemented with 5% glycerol. For GST
pulldowns, 5 µg of GST-14-3-3 protein was incubated with 1 mg of protein extract
for 2 h in the cold room. Pull downs were washed five times with modified RIPA
buffer.

Protein purification for crystallization studies. The 14-3-3 epsilon was expressed
in E. coli BL21 DE3 using the pET expression system. Cells were grown at 37 °C to
an OD600nm of 0.5, followed by induction with 0.5 mM IPTG and further incu-
bation at 25 °C for 16 h. Cells were lysed by sonication in buffer A (25 mM Tris,
200 mM NaCl, pH 8.5) and the supernatant was collected by centrifugation
(15,000 × g, 4 °C, 40 min). The expressed protein was purified using TALON Metal
Affinity Resin (Clontech), cleaved by TEV protease, and further purified by size
exclusion chromatography (HiLoad 16/600 Superdex 75 column, GE Life Sciences)
in 25 mM Tris, 200 mM NaCl, pH 8.5.

Structure determination. The 14-3-3 epsilon and synthesized NELFE phospho-
peptide (QPFQRSI(p)SADDDLQE, GenScript) were mixed to a molar ratio of 1:5
for crystallization. The crystals of 14-3-3 epsilon in complex with NELFE phos-
phorylated peptide were obtained using 40% pentaerythritol propoxylate, 0.2 M
sodium thiocyanate, 0.1 M HEPES pH 7.0, as a reservoir solution by the sitting-
drop vapor diffusion method at 293 K. Diffraction data were collected at the Swiss
Lightsource SLS, beam line PXIII, and processed with XDS64. The crystal structure
was determined by molecular replacement using the 14-3-3 epsilon structure (PDB:
2BR9) as search model. Manual model building and refinement were done with
Coot, CCP4 software suite, and Phenix65–67. The final statistics of the refined
models are shown in Supplementary Table 3.

SDS-PAGE and western blotting. Proteins were resolved on 4-12% gradient SDS-
PAGE gels (NuPAGE Bis-Tris Precast Gels, Life Technologies) and transferred
onto nitrocellulose membranes. Membranes were blocked using 10% skimmed
milk solution in PBS supplemented with 0.1% Tween-20. The list of antibodies
used in this study and conditions can be found in Supplementary Table 4.

Secondary antibodies coupled to horseradish peroxidase (Jackson ImmunoR-
esearch Laboratories) were used for immunodetection. The detection was per-
formed with SuperSignal West Pico Chemiluminescent Substrate (Thermo
Scientific). Uncropped scans of all western blots can be found in Supplementary
Figure 8.

In vitro kinase assay. Ectopically expressed GFP-tagged NELFE was pulled down
from total cell lysates using GFP Trap agarose. Beads were washed extensively with
modified RIPA lysis buffer supplemented with 1M NaCl and once with kinase
buffer (25 mM HEPES pH 7.2, 25 mM MgCl, 2 mM DTT). Reactions were initiated
by adding 400 ng recombinant MK2 (Abcam) and 25 mM ATP to each sample and
then incubated for 30 min at 30 °C with gentle shaking. Samples were then resolved
on SDS–PAGE and digested in-gel using trypsin. Peptides were extracted from the
gel and peptide fractions were analyzed by LC-MS/MS.

ChIP sequencing. ChIP was done according to the protocol described by Arrigoni
et al.68 Cells (2 × 107) were crosslinked in growth medium containing 1% for-
maldehyde for 5 min at room temperature, neutralized with 0.125 M glycine, and
washed twice with PBS. Cell pellet was resuspended in Farnham buffer (5 mM
PIPES pH 8.0, 85 mM KCl, 0.5% IGEPAL CA-630) and incubated for 15 min at 4 °
C with rotation. Cells were sonicated in 1 ml AFA tubes (Covaris, 520080) using a
Covaris S220 focused ultrasonicator (duty factor: 2%, cycles/burst: 200, intensity: 2,
water temperature 4 °C). The sonication was stopped when more than 70% of
nuclei were isolated (240 s). NEXON-isolated nuclei were washed twice with
Farnham buffer and resuspended in 1 ml shearing buffer (10 mM Tris-HCl pH 8.0,
0.1% SDS, 1 mM EDTA) supplemented with inhibitors and sheared for 7 min to a
fragment size distribution of 100–800 bp (Covaris S220 focused ultrasonicator;
duty factor: 5%, cycles/burst: 200, intensity: 4, water temperature: 4 °C). Precleared
chromatin (150 µg) was incubated overnight at 4 °C with 5 μg of RNA pol II
antibody followed by 3 h incubation with 20 µl Dynabeads Protein G (Invitrogen).
Beads were washed twice with Wash buffer 1 (10 mM Tris-HCl pH 8.0, 100 mM
NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% sodium deoxycholate, 0.5% N-Laur-
oylsarcosine), twice with Wash buffer 2 (0.25 M LiCl, 1% IGEPAL CA-630, 1%
sodium deoxycholate, 1 mM EDTA) and the bound chromatin was eluted in 1%
SDS, 0.1 M NaHCO3. Crosslinks were reversed by incubation at 65 °C overnight
with gentle shaking. Subsequently, chromatin was incubated with RNase A (0.2
mg/ml) for 30 min at 37 °C and then with proteinase K (50 μg/ml) for 3 h at 55 °C.
DNA was purified by phenol–chloroform extraction followed by ethanol pre-
cipitation and recovered in 30 μl (IP samples) or 50 μl (inputs) RNase-free water.
Real-time PCR on the ChIP-ed material was performed using SYBR Green (ABI).

Next-generation sequencing data analysis. The samples were sequenced on an
Illumina Nextseq with 67 bp in length. Reads were mapped against GCRh37 with
Bowtie 2 (version 2.2.9, -N 0 -L 32 --fr --local --maxins 1000 --minins 0). Post-
processing was done using SAM tools (version 1.3.1). Peaks were called using
MACS2 (version 2.1.1) with default parameters for Human. Afterwards a DiffBind
(version 2.0.6 with DESeq2 1.12.4) analysis was performed to detect differentially
bound regions for the control condition versus the UV condition. The peaks used
for the analysis were the union of intersected peaks per condition. PRRs were
calculated as follows: for each gene the TSS region was defined as – 300 bp
upstream to 1000 bp downstream and the downstream region defined as 1000 bp
downstream to 3 kb downstream (2 kb length). The PRR ratio was calculated as the
log2 ratio between the enrichment in the downstream region toward the enrich-
ment in the TSS. Only genes with more than 3 kb in length were considered for the
analysis. The PRRs were filtered based on the highest signal on the TSS in the
untreated condition. GRO-Seq data were obtained from GSE91011 for untreated
(GSM2419224) and 2 h UV treatment condition (GSM2419225). The raw data
were processed the same way as the RNA pol II ChIP-seq data including the
calculation of the PRRs. The signal at the TSS was required to have a coverage of 1
RPKM in untreated and 2 h UV treatment condition to be included in the analysis.
GO term analysis was performed using ClusterProfiler (version 3.0.5, minGSize=
3, maxGSize= 1000) and the Reactome analysis using ReactomePA (version 1.16.2,
minGSize= 10) after obtaining EntrezIDs using biomaRt69–71. The background
used for the analysis were all RNA pol II-bound genes identified by ChiP-seq.

Data availability. The MS proteomics data were deposited to the Proteo-
meXchange Consortium (http://proteomecentral.proteomexchange.org) via the
PRIDE partner repository72 with the dataset identifier PXD004255 [https://www.
ebi.ac.uk/pride/archive/projects/PXD004255]. The genomics data were deposited
in NCBI’s Gene Expression Omnibus73 (https://www.ncbi.nlm.nih.gov/geo/) and
are accessible through GEO Series accession number GSE100580 [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100580]. The crystal structure of 14-
3-3 epsilon in a complex with NELFE phospho-peptide reported in this study is
deposited in PDB with the accession code 6EIH [http://www.rcsb.org/structure/
6EIH]. All other data supporting the findings of this study are available from the
corresponding author on reasonable request.
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