40 research outputs found

    Health and economic burden of respiratory syncytial virus (RSV) disease and the cost-effectiveness of potential interventions against RSV among children under 5 years in 72 Gavi-eligible countries.

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) frequently causes acute lower respiratory infection in children under 5, representing a high burden in Gavi-eligible countries (mostly low-income and lower-middle-income). Since multiple RSV interventions, including vaccines and monoclonal antibody (mAb) candidates, are under development, we aim to evaluate the key drivers of the cost-effectiveness of maternal vaccination and infant mAb for 72 Gavi countries. METHODS: A static Multi-Country Model Application for RSV Cost-Effectiveness poLicy (MCMARCEL) was developed to follow RSV-related events monthly from birth until 5 years of age. MCMARCEL was parameterised using country- and age-specific demographic, epidemiological, and cost data. The interventions' level and duration of effectiveness were guided by the World Health Organization's preferred product characteristics and other literature. Maternal vaccination and mAb were assumed to require single-dose administration at prices assumed to align with other Gavi-subsidised technologies. The effectiveness and the prices of the interventions were simultaneously varied in extensive scenario analyses. Disability-adjusted life years (DALYs) were the primary health outcomes for cost-effectiveness, integrated with probabilistic sensitivity analyses and Expected Value of Partially Perfect Information analysis. RESULTS: The RSV-associated disease burden among children in these 72 countries is estimated at an average of 20.8 million cases, 1.8 million hospital admissions, 40 thousand deaths, 1.2 million discounted DALYs, and US611milliondiscounteddirectcosts.StrategymAbismoreeffectiveduetoitsassumedlongerdurationofprotectionversusmaternalvaccination,butitwasalsoassumedtobemoreexpensive.Givenallparameteriseduncertainty,theoptimalstrategyofchoicetendstochangeforincreasingwillingnesstopay(WTP)valuesperDALYavertedfromthecurrentsituationtomaternalvaccination(atWTP>US611 million discounted direct costs. Strategy 'mAb' is more effective due to its assumed longer duration of protection versus maternal vaccination, but it was also assumed to be more expensive. Given all parameterised uncertainty, the optimal strategy of choice tends to change for increasing willingness to pay (WTP) values per DALY averted from the current situation to maternal vaccination (at WTP > US1000) to mAB (at WTP > US$3500). The age-specific proportions of cases that are hospitalised and/or die cause most of the uncertainty in the choice of optimal strategy. Results are broadly similar across countries. CONCLUSIONS: Both the maternal and mAb strategies need to be competitively priced to be judged as relatively cost-effective. Information on the level and duration of protection is crucial, but also more and better disease burden evidence-especially on RSV-attributable hospitalisation and death rates-is needed to support policy choices when novel RSV products become available

    Mutational Activation of ras Genes is Absent in Pediatric Osteosarcoma

    Get PDF
    Activation of ras oncogenes is found in human cancers; overall it is observed in 15% of all neoplasms. The purpose of this study was to assess the extent of involvement of ras oncogenes in osteosarcoma. Tumor samples from a series of 49 pediatric patients diagnosed with osteosarcoma and treated at our institution were evaluated. Paraffin-embedded tumor samples from diagnostic biopsies, from tumor en bloc resection tissue after neoadjuvant chemotherapy, and samples from metastases were examined in search of point mutations in H, K, and N-ras genes at codons 12 and 61 by means of polymerase chain reaction (PCR), slot-blotting, and radioactive labeled specific DNA probes. A total of 92 archival samples were studied. No point mutations activating these genes were found. These findings suggest that the activation by point mutations at codons 12 and 61 of the H, K, and N-ras genes does not play a role in the pathogenesis of human osteosarcoma. Since no point mutations in codons 12 and 61 were detected, it was not possible to establish any correlation between the ras genes and clinical or histologic finding

    Insights from quantitative and mathematical modelling on the proposed 2030 goal for gambiense human African trypanosomiasis (gHAT)

    Get PDF
    Gambiense human African trypanosomiasis (gHAT) is a parasitic, vector-borne neglected tropical disease that has historically affected populations across West and Central Africa and can result in death if untreated. Following from the success of recent intervention programmes against gHAT, the World Health Organization (WHO) has defined a 2030 goal of global elimination of transmission (EOT). The key proposed indicator to measure achievement of the goal is to have zero reported cases. Results of previous mathematical modelling and quantitative analyses are brought together to explore both the implications of the proposed indicator and the feasibility of achieving the WHO goal. Whilst the indicator of zero case reporting is clear and measurable, it is an imperfect proxy for EOT and could arise either before or after EOT is achieved. Lagging reporting of infection and imperfect diagnostic specificity could result in case reporting after EOT, whereas the converse could be true due to underreporting, lack of coverage, and cryptic human and animal reservoirs. At the village-scale, the WHO recommendation of continuing active screening until there are three years of zero cases yields a high probability of local EOT, but extrapolating this result to larger spatial scales is complex. Predictive modelling of gHAT has consistently found that EOT by 2030 is unlikely across key endemic regions if current medical-only strategies are not bolstered by improved coverage, reduced time to detection and/or complementary vector control. Unfortunately, projected costs for strategies expected to meet EOT are high in the short term and strategies that are cost-effective in reducing burden are unlikely to result in EOT by 2030. Future modelling work should aim to provide predictions while taking into account uncertainties in stochastic dynamics and infection reservoirs, as well as assessment of multiple spatial scales, reactive strategies, and measurable proxies of EOT

    Economic evaluation of disease elimination : an extension to the net-benefit framework and application to human African trypanosomiasis

    Get PDF
    The global health community has earmarked a number of diseases for elimination or eradication, and these goals have often been praised on the premise of long-run cost savings. However, decision makers must contend with a multitude of demands on health budgets in the short or medium term, and costs per case often rise as the burden of a disease falls, rendering such efforts beyond the cost-effective use of scarce resources. In addition, these decisions must be made in the presence of substantial uncertainty regarding the feasibility and costs of elimination or eradication efforts. Therefore, analytical frameworks are necessary to consider the additional effort for reaching global goals, like elimination or eradication, that are beyond the cost-effective use of country resources. We propose a modification to the net-benefit framework to consider the implications of switching from an optimal strategy, in terms of cost-per-burden averted, to a strategy with a higher likelihood of meeting the global target of elimination or eradication. We illustrate the properties of our framework by considering the economic case of efforts to eliminate the transmission of gambiense human African trypanosomiasis (gHAT), a vector-borne, parasitic disease in West and Central Africa, by 2030

    The Relationship Between Blood Sample Volume and Diagnostic Sensitivity of Blood Culture for Typhoid and Paratyphoid Fever: A Systematic Review and Meta-Analysis.

    Get PDF
    BACKGROUND: Blood culture is the standard diagnostic method for typhoid and paratyphoid (enteric) fever in surveillance studies and clinical trials, but sensitivity is widely acknowledged to be suboptimal. We conducted a systematic review and meta-analysis to examine sources of heterogeneity across studies and quantified the effect of blood volume. METHODS: We searched the literature to identify all studies that performed blood culture alongside bone marrow culture (a gold standard) to detect cases of enteric fever. We performed a meta-regression analysis to quantify the relationship between blood sample volume and diagnostic sensitivity. Furthermore, we evaluated the impact of patient age, antimicrobial use, and symptom duration on sensitivity. RESULTS: We estimated blood culture diagnostic sensitivity was 0.59 (95% confidence interval [CI], 0.54-0.64) with significant between-study heterogeneity (I2, 76% [95% CI, 68%-82%]; P < .01). Sensitivity ranged from 0.51 (95% CI, 0.44-0.57) for a 2-mL blood specimen to 0.65 (95% CI, 0.58-0.70) for a 10-mL blood specimen, indicative of a relationship between specimen volume and sensitivity. Subgroup analysis showed significant heterogeneity by patient age and a weak trend towards higher sensitivity among more recent studies. Sensitivity was 34% lower (95% CI, 4%-54%) among patients with prior antimicrobial use and 31% lower after the first week of symptoms (95% CI, 19%-41%). There was no evidence of confounding by patient age, antimicrobial use, symptom duration, or study date on the relationship between specimen volume and sensitivity. CONCLUSIONS: The relationship between the blood sample volume and culture sensitivity should be accounted for in incidence and next-generation diagnostic studies

    Cost-effectiveness modelling to optimise active screening strategy for gambiense human African trypanosomiasis in endemic areas of the Democratic Republic of Congo

    Get PDF
    Background: Gambiense human African trypanosomiasis (gHAT) has been brought under control recently with village-based active screening playing a major role in case reduction. In the approach to elimination, we investigate how to optimise active screening in villages in the Democratic Republic of Congo, such that the expenses of screening programmes can be efficiently allocated whilst continuing to avert morbidity and mortality. Methods: We implement a cost-effectiveness analysis using a stochastic gHAT infection model for a range of active screening strategies and, in conjunction with a cost model, we calculate the net monetary benefit (NMB) of each strategy. We focus on the high-endemicity health zone of Kwamouth in the Democratic Republic of Congo. Results: High-coverage active screening strategies, occurring approximately annually, attain the highest NMB. For realistic screening at 55% coverage, annual screening is cost-effective at very low willingness-to-pay thresholds (20.4 per disability adjusted life year (DALY) averted), only marginally higher than biennial screening (14.6 per DALY averted). We find that, for strategies stopping after 1, 2 or 3 years of zero case reporting, the expected cost-benefits are very similar. Conclusions: We highlight the current recommended strategy—annual screening with three years of zero case reporting before stopping active screening—is likely cost-effective, in addition to providing valuable information on whether transmission has been interrupted

    The impact of maternal RSV vaccine to protect infants in Gavi-supported countries: Estimates from two models.

    Get PDF
    BACKGROUND: Interventions to protect young infants against respiratory syncytial virus (RSV) are in advanced phases of development and are expected to be available in the foreseeable future. Gavi, the Vaccine Alliance, included maternal vaccines and infant monoclonal antibodies for RSV as part of the 2018 vaccine investment strategy (VIS) and decided to support these products subject to licensure, World Health Organization prequalification, Strategic Advisory Group of Experts recommendation, and meeting the financial assumptions used as the basis of the investment case. Impact estimates reported in this manuscript were used to inform the Gavi VIS. METHODS: We compared two independent vaccine impact models to evaluate a potential maternal RSV vaccine's impact on infant health in 73 Gavi-supported countries. Key inputs were harmonized across both models. We analyzed various scenarios to evaluate the effect of uncertain model parameters such as vaccine efficacy, duration of infant protection, and infant disease burden. Estimates of averted cases, severe cases, hospitalizations, deaths, and disability-adjusted life years (DALYs) were calculated over the 2023-2035 horizon. FINDINGS: A maternal RSV vaccine with 60% efficacy offering 5 months of infant protection implemented across 73 low- and middle-income countries could avert 10.1-12.5 million cases, 2.8-4.0 million hospitalizations, 123.7-177.7 thousand deaths, and 8.5-11.9 million DALYs among infants under 6 months of age for the duration of analysis (2023-2035). Maternal RSV vaccination was projected to avert up to 42% of estimated RSV deaths among infants under 6 months in year 2035. Alternative scenario analyses with higher disease burden assumptions showed that a maternal vaccine could avert as many as 325-355 thousand deaths among infants under 6 months. INTERPRETATION: RSV maternal immunization is projected to substantially reduce mortality and morbidity among young infants if introduced across Gavi-supported countries. FUNDING: This work was supported by Bill & Melinda Gates Foundation, Seattle, WA, and Respiratory Syncytial Virus Consortium in Europe. The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation or of the Respiratory Syncytial Virus Consortium. LW is supported by Research Foundation-Flanders (1234620 N)

    Repurposing Know-how for Drug Development: Case Studies from the Swiss Tropical and Public Health Institute

    Get PDF
    In pursuing novel therapeutic solutions, drug discovery and development rely on efficiently utilising existing knowledge and resources. Repurposing know-how, a strategy that capitalises on previously acquired information and expertise, has emerged as a powerful approach to accelerate drug discovery and development processes, often at a fraction of the costs of de novo developments. For 80 years, collaborating within a network of partnerships, the Swiss Tropical and Public Health Institute (Swiss TPH) has been working along a value chain from innovation to validation and application to combat poverty-related diseases. This article presents an overview of selected know-how repurposing initiatives conducted at Swiss TPH with a particular emphasis on the exploration of drug development pathways in the context of neglected tropical diseases and other infectious diseases of poverty, such as schistosomiasis, malaria and human African trypanosomiasis

    Cost-effectiveness analysis of typhoid conjugate vaccines in an outbreak setting: a modeling study

    Get PDF
    BackgroundSeveral prolonged typhoid fever epidemics have been reported since 2010 throughout eastern and southern Africa, including Malawi, caused by multidrug-resistant Salmonella Typhi. The World Health Organization recommends the use of typhoid conjugate vaccines (TCVs) in outbreak settings; however, current data are limited on how and when TCVs might be introduced in response to outbreaks.MethodologyWe developed a stochastic model of typhoid transmission fitted to data from Queen Elizabeth Central Hospital in Blantyre, Malawi from January 1996 to February 2015. We used the model to evaluate the cost-effectiveness of vaccination strategies over a 10-year time horizon in three scenarios: (1) when an outbreak is likely to occur; (2) when an outbreak is unlikely to occur within the next ten years; and (3) when an outbreak has already occurred and is unlikely to occur again. We considered three vaccination strategies compared to the status quo of no vaccination: (a) preventative routine vaccination at 9 months of age; (b) preventative routine vaccination plus a catch-up campaign to 15 years of age; and (c) reactive vaccination with a catch-up campaign to age 15 (for Scenario 1). We also explored variations in outbreak definitions, delays in implementation of reactive vaccination, and the timing of preventive vaccination relative to the outbreak.ResultsAssuming an outbreak occurs within 10 years, we estimated that the various vaccination strategies would prevent a median of 15-60% of disability-adjusted life-years (DALYs). Reactive vaccination was the preferred strategy for WTP values of 0300perDALYaverted.ForWTPvalues>0-300 per DALY averted. For WTP values > 300, introduction of preventative routine TCV immunization with a catch-up campaign was the preferred strategy. Routine vaccination with a catch-up campaign was cost-effective for WTP values above 890perDALYavertedifnooutbreakoccursand>890 per DALY averted if no outbreak occurs and > 140 per DALY averted if implemented after the outbreak has already occurred.ConclusionsCountries for which the spread of antimicrobial resistance is likely to lead to outbreaks of typhoid fever should consider TCV introduction. Reactive vaccination can be a cost-effective strategy, but only if delays in vaccine deployment are minimal; otherwise, introduction of preventive routine immunization with a catch-up campaign is the preferred strategy

    Update of transmission modelling and projections of gambiense human African trypanosomiasis in the Mandoul focus, Chad

    Get PDF
    In recent years, a programme of vector control, screening and treatment of gambiense human African trypanosomiasis (gHAT) infections led to a rapid decline in cases in the Mandoul focus of Chad. To represent the biology of transmission between humans and tsetse, we previously developed a mechanistic transmission model, fitted to data between 2000 and 2013 which suggested that transmission was interrupted by 2015. The present study outlines refinements to the model to: (1) Assess whether elimination of transmission has already been achieved despite low-level case reporting; (2) quantify the role of intensified interventions in transmission reduction; and (3) predict the trajectory of gHAT in Mandoul for the next decade under different strategies. Method Our previous gHAT transmission model for Mandoul was updated using human case data (2000–2019) and a series of model refinements. These include how diagnostic specificity is incorporated into the model and improvements to the fitting method (increased variance in observed case reporting and how underreporting and improvements to passive screening are captured). A side-by-side comparison of fitting to case data was performed between the models. Results We estimated that passive detection rates have increased due to improvements in diagnostic availability in fixed health facilities since 2015, by 2.1-fold for stage 1 detection, and 1.5-fold for stage 2. We find that whilst the diagnostic algorithm for active screening is estimated to be highly specific (95% credible interval (CI) 99.9–100%, Specificity = 99.9%), the high screening and low infection levels mean that some recently reported cases with no parasitological confirmation might be false positives. We also find that the focus-wide tsetse reduction estimated through model fitting (95% CI 96.1–99.6%, Reduction = 99.1%) is comparable to the reduction previously measured by the decline in tsetse catches from monitoring traps. In line with previous results, the model suggests that transmission was interrupted in 2015 due to intensified interventions. Conclusions We recommend that additional confirmatory testing is performed in Mandoul to ensure the endgame can be carefully monitored. More specific measurement of cases, would better inform when it is safe to stop active screening and vector control, provided there is a strong passive surveillance system in place
    corecore