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Abstract

Background: Gambiense human African trypanosomiasis (gHAT) has been brought under control recently with
village-based active screening playing a major role in case reduction. In the approach to elimination, we investigate
how to optimise active screening in villages in the Democratic Republic of Congo, such that the expenses of
screening programmes can be efficiently allocated whilst continuing to avert morbidity and mortality.

Methods: We implement a cost-effectiveness analysis using a stochastic gHAT infection model for a range of active
screening strategies and, in conjunction with a cost model, we calculate the net monetary benefit (NMB) of each
strategy. We focus on the high-endemicity health zone of Kwamouth in the Democratic Republic of Congo.

Results: High-coverage active screening strategies, occurring approximately annually, attain the highest NMB. For
realistic screening at 55% coverage, annual screening is cost-effective at very low willingness-to-pay thresholds ($20.4
per disability adjusted life year (DALY) averted), only marginally higher than biennial screening ($14.6 per DALY
averted). We find that, for strategies stopping after 1, 2 or 3 years of zero case reporting, the expected cost-benefits are
very similar.

Conclusions: We highlight the current recommended strategy—annual screening with three years of zero case
reporting before stopping active screening—is likely cost-effective, in addition to providing valuable information on
whether transmission has been interrupted.
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Background
Despite the continued decline in the annual number of
reported cases of gambiense human African trypanoso-
miasis (gHAT), accounting for fewer than 1000 new
cases reported in 2019 [1, 2], the disease persists in
many of the historically endemic sites in Western and
Central Africa. This vector-borne disease, transmitted
by a bite from a tsetse infected with the parasite Try-
panosoma brucei gambiense, is typically—although not
always—fatal when untreated [3]. Human African try-
panosomiasis (HAT), which includes both gambiense and
rhodesiense forms, caused an estimated 1360 deaths in
2019 and approximately 82,615 disability-adjusted life
years (DALYs), of which the majority were caused by
gHAT [4]. Gambiense HAT has been targeted for elimi-
nation by the World Health Organization (WHO); first,
for elimination as a public health problem by 2020 and
then for elimination of transmission (EOT) by 2030
[2, 5]. To achieve these targets, there are several recom-
mended strategies to reduce the transmission and bur-
den of the infection, which are constituted primarily of
the medical interventions of active screening and passive
surveillance.
Passive surveillance depends on the ability of fixed

health centres to test for the infection and carry out treat-
ment on self-presenting individuals, typically upon the
onset of symptoms [6]. Screening and treating infected
individuals both allows the infected people to be saved
from a potentially fatal disease, but it also prevents further
spread of infection via tsetse.
Traditionally, the most effective form of controlling

gHAT infection, however, has been active screening and
treatment [7–9]. Active screening is carried out by mobile
teams that travel to villages in focal disease regions and
target the screening of the whole population for gHAT;
those determined to have the infection can then be treated
at the closest health facility offering treatment. The ini-
tial screening test is typically a serological test for the
presence of the antibody called the card agglutination test
for trypanosomiasis (CATT) [10], although recently rapid
diagnostic tests (RDTs) have also been utilised for screen-
ing [11–13]. Confirmation of the infection is then carried
out via microscopic examination; traditionally, this is fol-
lowed by staging of the disease, which consists of a lumbar
puncture to determine whether the parasite has infected
the central nervous system—considered the second stage
of disease [14]. However, the recently approved drug, fex-
inidazole [15], can be used to treat both disease stages
(except for patients with neuro-psychiatric symptoms and
signs suspicious of advanced second stage disease) and so
may remove the need for lumbar puncture in most cases,
although retaining the requirement of parasitological con-
firmation [16].

Active screening has been very effective in reducing case
numbers and still plays an important role in maintaining
surveillance and treatments where access is problematic,
yet it is an expensive intervention in terms of both time
and money [11, 17]. As local elimination of gHAT occurs
in focal areas, active screening will likely be scaled back
and gHAT testing will become better integrated into fixed
health facilities, as resources can be reallocated and it
becomes unnecessary to screen entire village populations
for the infection [18]. In this situation, reactive screening
can be implemented, whereby after a number of succes-
sive active screenings in which no cases are detected, the
screening stops unless a new case is passively reported,
upon which a ‘reactive’ screen would occur [12]. Several
active screening strategies have been proposed, includ-
ing a recommendation of three repeated screening rounds
with 1-year [19] or 6-month intervals [20]. WHO guide-
lines currently recommend annual screening for three
years of zero case reporting before stopping in previously
endemic villages [5].
Mathematical models of gHAT have been used for the

prediction of future case numbers and evaluation of a
range of plausible control strategies [21–29]. However,
these have typically considered the infection dynamics
and the impact of interventions without accounting for
the costs of implementing such strategies. Here, we explic-
itly use a stochastic model of gHAT infection in a village
population, developed in Davis et al. [26], to simulate dif-
ferent plausible active screening programmes alongside
passive surveillance, allowing us to quantify the relative
costs of implementation as well as the health effects com-
pared to a baseline of passive surveillance (the comparator
strategy). We use parameters matched to screening and
incidence data from the health zone Kwamouth, in Mai-
Ndombe province of the Democratic Republic of Congo
(DRC) (formerly in Bandundu province). Kwamouth is in
a historically high-endemicity gHAT area of the DRC, the
country that contributes 70% of all global gHAT cases
in 2019 [2]. We also present results from a moderate-
endemicity health zone, Mosango (see Additional file 1:
Figure S3) [5, 11, 22, 24, 26, 30–59].
The costs of gHAT interventions have been previously

been evaluated [11, 46, 47, 51] and the different strate-
gies have been considered for large populations [54, 60].
We consider the effect of active screening on individual
villages in the drive for EOT, by determining how active
screening can be best implemented to achieve this goal
whilst providing value for money.

Methods
Mathematical modelling
To capture the effects of different active screening
strategies and the underlying infection dynamics on



Davis et al. BMCMedicine           (2021) 19:86 Page 3 of 18

a village population, we use a stochastic compart-
mental model [26]. The stochasticity incorporates the
chance events involved in infection transmission into the
mechanistic model and is better suited than a deter-
ministic model for the purpose of optimising active
screening for a village population. This is because the
population, and hence the number of people infected,
is small and so, for the pre-elimination setting, local
elimination of gHAT can be substantially affected by
chance events, and the probability of those chance
events. A deterministic formulation, which captures aver-
age dynamics, would be less suitable to capture the
chance events associated with village level elimination of
infection.
In the model, individuals in the human population are

classified as either high-risk or low-risk [22], whereby the
high-risk population—a small minority, which has been
previously estimated to be 9.8% in the study health zone of
Kwamouth [30]—have a higher exposure to tsetse and do
not participate in active screening. The model structure
is supported by anecdotal evidence that there is a frac-
tion of the population, typically working males that work
by the rivers, which is the habitat of tsetse [61], and who
are absent for active screening in the villages [32]. Fur-
thermore, previous modelling work indicates that humans
have heterogeneous exposure to tsetse [22, 25, 62]. Rock
et al. [22] fitted several risk structures for humans and,
using the deviance information criterion (DIC), the model
with the risk structure given here best matched to data
on screening and incidence from the WHO HAT Atlas
[40, 41].
The model classifies a person’s infection status as sus-

ceptible SH , exposed (or latent) EH , stage 1 infection I1H ,
stage 2 infection I2H and hospitalised (and temporarily
removed) RH . On exposure to the parasite and upon the
bite of an infected tsetse, a person will progress through
these infection stages, unless detected in active screen-
ing and so treated and moved directly to the hospitalised
class. Stage 2 infection is defined as the time when try-
panosomes have crossed the blood–brain barrier [63].
There is an additional rate defined as the time when
people change infection status from stage 1 infection to
hospitalisation to simulate people being treated through
passive surveillance.
In addition, tsetse are explicitly modelled as the pro-

portion of flies that are in the states of teneral (unfed
and more susceptible to infection than fed flies [64]) SV ,
non-teneral yet uninfected GV , exposed (or latent) EV
and infected IV . The dynamics of the tsetse are modelled
with proportions using ordinary differential equations,
since the exact number of tsetse that interact with a given
population is difficult to determine (although relative
tsetse abundance is being mapped in some areas [65]).

However, the effective density ratio, the product of the
number of tsetse in a population per human and the prob-
ability of human infection per single infective bite, can be
inferred by model fitting to the WHO HAT Atlas data
[40, 41]. A full description of the mathematical equations
in the infection model and the parameters used (taken
from Crump et al. [30], as the median of the distribu-
tions inferred using Markov chain Monte Carlo (MCMC)
methodology and the aggregate annual data from the
WHO HAT Atlas in Kwamouth) can be found in Addi-
tional file 1: Table S1 and Table S2.

Simulating active screening
In villages targeted for active screening, we consider how
the infection dynamics are affected by: the screening cov-
erage c; the screening interval t; active zero-detections za;
reactive zero-detections zr (see Table 1). This is modelled
by taking all combinations of c, t, za and zr for the values
c = 0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85, 90, t = 0.25, 0.33, 0.5, 0.67, 0.75, 1, 1.25,
1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5 years, za = 1, 2, 3, 4, 5
screenings, and zr = 1, 2, 3 screenings. The risk struc-
ture of the model means that the screening coverage is
assumed to have a maximum of 90%, since only the low-
risk human population participate (randomly) in active
screening.
The specified screening procedure is then implemented

in the model by using the screening coverage to randomly
select a proportion c of the population from the low-risk
sub-population, which move into the hospitalised class if
they are correctly identified as being exposed to the infec-
tion after each screening interval. This process is stopped
after number of zero-detections equal to za. However,
if the infection has not been eliminated after the active
screening has been halted, there is still a chance that a new
case can be reported by the individual attending a fixed
facility to be tested for the infection. The model explicitly
incorporates under-reporting of passive case detections,
such that only 27% of cases undetected by active screen-
ing will be detected by passive surveillance. The value
of this parameter was estimated in fitting to this model
structure, and is taken as the median of the distribution
inferred using MCMC methodology applied to the aggre-
gate annual data from Kwamouth from the WHO HAT
Atlas [40, 41].
Reactive screening is the result of the detection of a

case in passive surveillance after active screening has been
stopped (see Additional file 1: Figure S5). Thus, we restart
the screening procedure as reactive screening upon iden-
tification of passive cases, stopping again after the given
number of consecutive reactive zero-detections, zr .
The WHO aims for high screening coverage in active

screenings for villages in gHAT-endemic foci, but just
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Table 1 Descriptions of the variables used for defining an active screening strategy

Variable Name Definition Value range

c Screening coverage Proportion of the village population
screened in a visit.

0–90%

t Screening interval Time between active screening visits to a
village.

0.25–5 years

za Active zero-detections Number of consecutive active screenings
where no cases are detected for the
cessation of active screening.

1–5 screenings

zr Reactive zero-detections Number of consecutive reactive screenings
where no cases are detected for the
cessation of reactive screening.

1–3 screenings

how high that coverage ought to be is not prescribed.
Moreover, guidelines and previous modelling work sug-
gest these screenings should continue annually until there
have been three consecutive years of no new cases, fol-
lowed by a further screening after three years if there are
no detected cases [5, 26, 66]. Our modelling aims to pro-
vide evidence in support of this strategy or recommend
how the strategy could be adapted to make more efficient
use of resources.

Economic modelling
Cost-effectivenessmetric
The cost of an active screening strategy is a function
of several component costs: implementing the screening
test, confirmation of the infection, carrying out treat-
ments, setting up and maintaining the mobile screening
teams. Moreover, active screening may impact the num-
ber of passive tests and treatments performed. In the
current work, we do not consider the additional costs of
passive surveillance, such as capital costs, only the costs
directly affected by active screening. The costs of active
screening strategies will vary depending on the type of
screening test and treatment used, and also the type of
mobile screening team; whilst a traditional truck team
that can carry more tests and equipment, such as a gen-
erator, a motorbike team that can reach more remote
villages [46, 67].
As well as considering the changes in monetary costs,

we want to consider the change in the health benefit
of implementing different active screening programmes;
therefore, we consider the number of DALYs averted [68].
The number of DALYs are the discounted sum of the
number of years of life lost (YLL) and years lived with dis-
ability (YLD), where YLL is the number of years of life
lost due to premature death and YLD is the number of
years of healthy years lost with a weighting for the severity
of the condition [69]. Therefore, the benefit of an active
screening programme is measured by averting DALYs,
and we do not attempt to quantify any additional bene-
fits of achieving elimination. We calculate the number of
DALYs averted by a particular screening strategy against

a comparator consisting of passive surveillance and no
active screening.
We evaluate the net monetary benefit (NMB) to assess

the cost-effectiveness using a 30-year time-horizon. For
each active screening strategy, the net monetary benefit
(NMB) was calculated as:

NMB = WTP × DALYs averted
− Cost of active screening strategy compared
to passive surveillance only. (1)

The net monetary benefit is conventionally conditioned
on the willingness-to-pay (WTP), or the maximum
amount of money that the funder is prepared (willing) to
pay to avert one additional DALY over and above the com-
parator, namely implementing only passive surveillance
but no active screening. The change in costs is the cost
of implementing the active screening strategy, including
the consequential change in cost of passive surveillance,
minus the cost of baseline passive surveillance. A particu-
lar strategy is more efficient than the comparator strategy
at that particular WTP if the NMB is positive. In the con-
text of uncertainty, operationalised by repeated draws of
the simulation, the optimal strategy will have the high-
est mean NMB. Because the NMB is conditioned on
the WTP, we consider a range of fixed WTP thresholds,
such that decision-makers can heed recommendations
according to the typical cost-effective thresholds in their
programmes.
In addition to theWTP, the NMB will be affected by the

population size of a village, NH , the proportion of infec-
tions that go undetected by active screening but that are
detected and treated passively pt , and the initial level of
infection in the population.

Contextualising willingness-to-pay or cost-effectiveness
thresholds
The correct WTP is the cause of much debate. Typically,
the WTP is taken as the product of the gross domestic
product (GDP) per capita of a country and a multiplying
factor. This factor, WTPc, is traditionally set to 3 [70] for
‘cost-effective’ strategies and to 1 for ‘very cost-effective’
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strategies. More recently, it has been remarked that this is
too high for low-income countries [71].
The practical WTP in DRC in the past has been esti-

mated to be between $5–$230 [72] per DALY, or between
$70-$320 for Sub-Saharan African low-income countries
[73]. TheWHOwould previously consider a strategy ‘very
cost-effective’ if theWTP equals the GDP/capita (i.e. $557
in 2018 for DRC) or as ‘cost-effective’ when a strategy was
optimal at a WTP ≥3 times the GDP per capita (i.e. $1671
in 2018 in DRC).
We also note that in the context of elimination, a funder

may be willing to pay more for the additional benefit of
reducing the number of infections to zero, but we simply
leave this choice to the funder.
In accordance with WHO recommendations, we show

the optimal strategies for a range of WTP thresholds
without comment, as we provide guidance, rather than
prescriptions, on what the thresholds should be as that is
beyond our scope as modellers [74, 75].

Economicmodel inputs
To evaluate the NMB, we consider all component costs
and the associated health benefits of implementing an
active screening strategy compared to passive surveil-
lance alone. However, we do not consider out-of-pocket
expenses, therefore framing the model from the per-
spective of the funder of the programme. Since we
are considering the NMB of an active screening strat-
egy, we only consider costs impacted by active screen-
ing but we do not consider costs that are fixed across
all strategies, such as maintaining a fixed health cen-
tre. We note that the total treatment costs will depend
on the quantity of active screening carried out and
additionally on the proportion of infections that are
detected passively. Fitting to the WHO data indicates
that around 27% of the infections that progress to Stage
2 and are not found in active screening are detected
through passive surveillance, with the remainder of infec-
tions going unreported [30]. We can make the worst-
case assumption that all these reported infections are
treated, but none of the unreported infections are treated
and will therefore die outside the healthcare system
(pt = 27%). Alternatively, we can use a higher value
of the parameter pt to assume more people are treated
that are reported in passive surveillance. The parame-
ter pt takes values in the interval 27–100%, such that
the proportion of infections being treated is between
only those reported being treated and all infection being
treated.
Using the formulation of the NMB given by Eq. 1,

we then define the constituent parts of the equation as
follows:

WTP = WTPcG, (2)
DALYs averted

= D1 (1 − pt)
∑

t

(
Change exits from stage 2

infection) (t)ζ(t) (3)

+ D2

∫ (
Change in stage 1 infections

)
(t)ζ(t) dt

(4)

+ D3

∫ (
Change in stage 2 infections

)
(t)ζ(t) dt,

(5)
Change in costs

= C1NH
(
Years of active screening

)
ζ(t) (6)

+ C2NH
(
Active screening visits

)
ζ(t) (7)

+ C3
∑

t

(
Number of people in active screening

)

(t)ζ(t) (8)

+ (C4 + C5)
∑

t

(
Active screening true positives

in Stage 1
)
(t)ζ(t) (9)

+ (C4 + C6)
∑

t

(
Active screening true positives

in Stage 2
)
(t)ζ(t) (10)

+ C4
∑

t

(
Active screening false positives

)
(t)ζ(t)

(11)

+ C7
∑

t

(
Change in stage 1 passive infections

)

(t)ζ(t) (12)

+ C8pt
∑

t

(
Change in stage 2 passive infections

)

(t)ζ(t) (13)

+ C9
∑

t

(
Treatment of stage 1 cases

)
(t)ζ(t)

(14)

+ C10
∑

t

(
Treatment of stage 2 cases

)
(t)ζ(t).

(15)

The willingness-to-pay, in 2018 US dollars per DALY,
is split into the GDP per capita of the DRC, G, and a
multiplying factor, WTPc as is common in the literature
[70] (Eq. 2). For the health benefit of the intervention,
the DALYs averted are the discounted sum of the number
of years of life lost (YLL) and years lived with disability
(YLD). The number of years of life lost is given by the sum
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of the change in number of people that exit the Stage 2
infection class multiplied by both the proportion of these
infections not treated (1− pt) and the discounted average
years of life lost per death (Eq. 3). The number of years
lived with disability is given by the total time spent in
each infection class multiplied by the associated disability
weight (Eqs. 4 and 5).
The change in costs is simply the costs incurred by

implementing the active screening strategy and the effect
on costs of operating passive surveillance, given as a capi-
tal cost of active screening (Eq. 6) and the recurrent cost of
operating each visit (Eq. 7), the number of screening tests
carried out (Eq. 8), confirmation of the infection and stage
determination for the true positive (Eqs. 9 and 10) and
negative confirmation for the false positives (Eq. 11), the
change in testing, confirmation and stage determination
for passive infections (Eqs. 12 and 13), and the treatment
of detected cases (Eqs. 14 and 15).
To calculate both the health benefit costs and imple-

mentation costs we use an annual discount rate of 3%,
denoted in the equation by ζ(t) = exp(−δt). This is
in line with standard conventions and arises through the
assumption that value for society will decrease over time
[42]. The time-horizon used is 30 years, which is suffi-
cient to capture almost all the costs of the active screening
programme (see Additional file 1: Figure S7). The cost
parameters are fixed values composed as a sum of the
cost of the test or treatment, the cost of implementation
and the cost of hospitalisation [54]. These costs are also
dependent on the type of treatment; we primarily con-
sider active screening to use the CATT algorithm, whilst
treatment is principally with fexinidazole with some Stage
1 and Stage 2 infections using pentamidine and NECT
respectively where necessary (see Additional file 1: Table
S4). We also consider the additional treatment strategies
of only pentamidine and NECT, and only fexinidazole
(see Additional file 1: Figure S9) and note that results
for acoziborole could be computed using the accompa-
nying app, which presents results for user inputted cost
parameter values (see https://christopherdavis.shinyapps.
io/optimising-ghat-active-screening/). We expect fex-
inidazole to be the standard treatment in 2020 for most
gHAT patients [16], and acoziborole could replace it as
a single dose cure a few years later if it passes phase III
clinical trials and receives an appropriate recommenda-
tion [76] (see Additional file 1: Figure S9). Cost and health
parameters are shown in Table 2 with full explanations in
Additional file 1.

Results
Breakdown of costs of active screening
We use the stochastic compartmental model, refined from
Davis et al. [26], to simulate different strategies for active
screening. We first consider an active screening strategy

Table 2 Parameters for calculating the NMB

Parameter Name Value

WTPc Willingness-to-pay per DALY Varies

G GDP per capita for the DRC1 $457.85

D1 Discounted average years of life lost per death 21.03 years

D2 Stage 1 disability weight 0.1330

D3 Stage 2 disability weight 0.5432

C1 Active screening capital cost per person $0.22

C2 Active screening recurrent cost per person $0.77

C3 Active screening test per person2 $1.03

C4 Confirmation per person3 $10.96

C5 Stage determination per person in stage 13 $1.59

C6 Stage determination per person in stage 23 $17.21

C7 Passive screening person in stage 13,4 $14.17

C8 Passive screening person in stage 23,4 $29.79

C9 Stage 1 treatment per person5 $85.23

C10 Stage 2 treatment per person6 $561.78

NH Population size Varies

12018 value used. 2We assume the use of the card agglutination test for
trypanosomiasis (CATT) test. 3We assume confirmation is by microscopy using a
blood sample, lymph node aspiration (LNA) and mini Anion Exchange
Centrifugation Technique (mAECT). 4Passive screening includes the screening test
(CATT), outpatient consultation, confirmation and stage determination if
appropriate. 5We assume the use of both pentimidine and fexinidazle in
proportions described in Additional file 1: Table S4. 6We assume the use of both
nifurtimox-eflornithine combination therapy (NECT) and fexinidazole in proportions
described in Additional file 1: Table S4
Values are given as the mean value. For more detailed calculations of these cost
parameters see Additional file 1

with a typical screening coverage of 55% (see Additional
file 1: Figure S2), carried out annually, and with three
active zero-detections and one reactive zero-detection
required for the cessation of screening (c = 55%, t = 1
year, za = 3, and zr = 1). We assume a village population
of size NH = 1000 starting from endemic equilibrium (as
determined from the deterministic version of the model),
and with 27% of infections undetected in active screening
treated passively (pt = 27%). We calculate mean values
of one million stochastic realisations of the process. For
this strategy, the prevalence in both the human and tsetse
populations rapidly decays towards zero (Fig. 1a). The
annual cost of implementing this strategy also decreases
with time (Fig. 1b); this is in part due to 3% discounting,
the method of adjusting future costs to present-day val-
ues (which is applied to both costs and DALYs averted)
[42], but also because decreasing the prevalence of infec-
tions in the population reduces the required number of
treatments. Even with no active screening, infections may
die out in the village due to ‘stochastic fade out’, when
local disease extinction occurs purely by chance. There is a
only a small annual decrease in costs around twelve years,
since the difference in the number of infections treated

https://christopherdavis.shinyapps.io/optimising-ghat-active-screening/
https://christopherdavis.shinyapps.io/optimising-ghat-active-screening/
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Fig. 1 The cost of an active screening strategy. The cost of active screening for a coverage of 55%, a screening interval of 1 year, stopping active
screening after 3 screenings when no cases are detected and stopping reactive screening after 1 screening with no cases, under the assumption of
WTPc = 0.5. Mean values for all quantities are taken from one million stochastic simulations. a The number of infected people dramatically
decreases with time for this coverage (total shaded blue area, with left axis) with the majority of these infections being in the high-risk group (darker
blue fraction). The proportion of tsetse that are also infective is reduced with time (green line, with right axis). b The total change in costs of
implementing a particular screening strategy (left axis) and the number of DALYs averted from the baseline of only passive surveillance (right axis). c
The contribution to the cost from each component of the cost function for years 1, 5, 10, 20 and 30 after starting an active screening programme.
Full costs are given in the table in the bottom row of the table. A population size of NH = 1, 000 is used. All costs are denominated in 2018 US dollars
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in passive surveillance is smaller in later years. However,
costs decay towards zero as the probability of local gHAT
elimination increases with time; whilst some recurrent
costs will remain, the number of treatments will decline
in time with the corresponding reduction in infections.
In addition, the costs also decrease when the consecu-
tive zero-detection threshold is reached, as the cost of the
active screening is completely removed.With the assump-
tion that pt = 27% and c = 55%, the number of DALYs
averted will initially increase each year because more peo-
ple are treated after detection during active screening.
However, in later years, DALYs averted will decline due to
fewer infections under either strategy, implying that the
differential impact in the active screening strategy (versus
passive surveillance alone) is most substantial in the early
years of implementation because both the strategies and
passive surveillance are expected to lead to elimination,
albeit at a different speed (Fig. 1b).
A breakdown of the components of the NMB of imple-

menting this active screening strategy shows that the
biggest costs are the treatment from active screening, the
recurrent costs of the active screening and screening pop-
ulations with the CATT test (Fig. 1c). However, assuming
aWTP of 50% of the GDP per capita of the DRC (WTPc =
0.5 givingWTP equal to $280.89 [77]) the monetary bene-

fit in reducing the years of life lost is dominant and the
biggest factor in maximising the NMB. The total NMB
(black bars) shows the full benefit of this active screening
strategy is always positive with WTPc = 0.5 and so, on
average, this strategy is better than the comparator of no
active screening. Further into the future, the NMB moves
closer to zero, both because of discounting and because
there is a higher probability the infection will be locally
eliminated, and so active screening not required. Note that
the NMB of passive surveillance is positive because the
introduction of active screening and treatment means that
fewer passive confirmations and treatments will need be
carried out, reducing the cost. The table in Fig. 1c shows
the NMB breakdown in full.

Drivers of net monetary benefit across strategies
We performed a four-way sensitivity analysis of the NMB
for the WTP, the treatment coverage in passive surveil-
lance pt , the screening coverage c and screening interval
t (Fig. 2). We considered the mean value of the NMB for
one million simulations for every screening strategy con-
sidering screening coverage c and screening interval t for
a large number of values (stated in Methods and Materi-
als), but discretising WTP and pt to three and two values
respectively for the presentation here. To view how the

Fig. 2 The mean NMB of different active screening strategies. The mean NMB of different active screening strategies for given WTP per DALY
averted (given as multiplication factorWTPc of GDP per capita from the DRC) and the proportion of passive infections that are treated, pt . The red
areas show a negative NMB, whilst blue areas are positive NMB, with white at the boundary of no change. The maximum NMB for eachWTPc and pt
combination is marked by a yellow circle on each heatmap, with a cross if the maximum is for no active screening (only observed here forWTPc = 0
and pt = 27%). A population size of NH = 1, 000 is used and we fix za = 3, the number of consecutive active screening rounds with zero-detections
necessary to cease operations
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exact optima change with these model parameters and all
the specified values for the cost and benefit parameters
(including, treating WTP and pt as continuous variables)
visit the supplementary R Shiny [57] app. This app allows
the sensitivity of the optimal solution to be found on any
updated costings for the active screening strategies.

The interaction betweenWTP and pt.
The NMB for some strategies is highly dependent on both
the WTP and the proportion of passive infections treated
(pt), with (1−pt) suffering disease-induced mortality, but
the impacts of these factors on NMB are neither linear nor
consistent. For instance, at low values of pt (pt = 27%), the
adoption of active screening strategies (of any frequency
or coverage) is substantially different in the WTP value
range of 0–0.5, but increasingly high WTP values would
not yield different strategies. However, at high values of pt
(pt = 100%), the adoption of active screening strategies
at any frequency or coverage level are incumbent on very
high WTP values.

The impact ofWTP and pt on optimal values of screening
coverage and interval.
When assumptions about WTP and pt are fixed, the
screening coverage has a greater impact on whether the
NMB is positive than the screening interval. Low screen-
ing coverage levels (< 20%) can be insufficient to obtain
a positive NMB, whilst the screening interval does not
change the sign of the NMB for most coverage levels,
unless the interval is very small (< 0.5 years). The question
of what value to fix for WTP and pt has important impli-
cations on the optimal choice of screening coverage and
optimal screening interval.
First, the optimal screening interval will be approx-

imately one year under all assumptions of passive
surveillance treatment coverage (pt) and WTP (yellow
dots in all panels of Fig. 2). ForWTPc = 0.5 and pt = 27%
(our standard assumption), the maximum mean NMB is
found when the screening coverage is 90% and the screen-
ing interval is 0.67 years (Fig. 2; the yellow dot in top
centre panel). For WTPc = 0.5 and pt = 100%, the
maximum mean NMB is also at the maximum screening
coverage, but the higher treatment coverage (pt) indicates
that the optimal screening interval is of 1.25 years. The
optimal screening interval is the same for all values of the
number of zero-detections, but the minimum NMB was
found at za = 1 and zr = 1 (see accompanying app). It
is notable that a very high WTP (3 times the GDP per
capita) lends strong support for shorter screening inter-
vals, favouring screenings in a village multiple times a
year.
Second, and turning the attention from the active

screening interval to the coverage, we found that in terms
of NMB, the screening coverage has an inverse relation-
ship with the treatment coverage under passive surveil-

lance (pt). When pt = 100%, the assumption is that
all infections are eventually treated, implying no loss of
life, which would otherwise be a large component of the
change in NMB. Thus, under the assumption of a high
pt , active screening strategies with low coverage will be
preferable, indicating that high costs of screening imple-
mentation will hardly be justified by DALYs averted, as
passive surveillance is already very effective (Fig. 2). In
contrast, under an assumption of a lower pt , high active
screening coverage is needed to compensate for lower
treatment coverage in passive surveillance.

Sensitivity analysis of village characteristics andmaximum
net monetary benefits
We present the active screening strategy that gives the
maximum mean NMB for a range of WTP values, exam-
ining the role of the treatment coverage under passive
surveillance, the village population size, and the endemic-
ity status of the village. To do this, we apply costs (see
Additional file 1: Table S3) to the mean simulation out-
puts to see which strategy provides the largest NMB.
Each line in Fig. 3a–c shows the value of c, t and za that
together give the optimal strategy for given values of pt
and WTP. For instance, assuming that WTPc = 0.5 and
pt = 27%, the maximum NMB is obtained for c = 90%,
t = 0.67 years, and za = 1 (Fig. 3a–c). Figure 3d–f
considers the same results for villages of different sizes
(NH ) and with different initial conditions of the simulation
(endemic, disease-free, and endemic with importations),
all with pt = 27%. We fix zr = 1 for all simulations.
Screening coverage, c, is optimal at 0% (not doing any

screening) or at a very high coverage (the maximum of
90%) (Fig. 3a). For pt = 27%, active screening at the maxi-
mum coverage is optimal for WTPc > 0.02 (Fig. 3a). This
means if there is no WTP to avert DALYs (the decision-
maker wants to remain cost-neutral), it is best not to
incur any screening costs, since the NMB will be negative,
however, if the WTP is above threshold 0.02 of GDP per
capita, it is optimal to screen entire village populations to
reduce the prevalence and prevent further transmission.
The threshold WTP where maximum screening coverage
is optimal is also influenced by pt ; the WTP threshold
decreases for larger values of pt (above 27%) and active
screening campaigns are always optimal for higher pt val-
ues. Therefore, at high pt values (treatment coverage),
the additional costs of active screening are justified in
order to shorten disease duration and expedite elimina-
tion (recovering screening costs via averted treatment
costs).
The optimal screening interval, t, and the number of

active zero-detection before screening cessation are more
sensitive to the WTP, but have similar patterns across
values of treatment coverage (pt). The optimal screening
interval, t, decreases with increasing WTP, since DALYs
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Fig. 3 Theoretical optimum strategy. Theoretical optimum strategy for the mean simulation of infection dynamics given a range of WTP values
(horizontal axis). a–c examine the impact of different treatment coverage (pt ) on a the optimal screening coverage, b the optimal screening interval
and c the optimal number of zero-detections required to stop screening, to achieve the highest NMB for given WTP. These results assume a village
population of 1000 where the disease in endemic. d–f examine the impact of different assumptions about population size and endemicity on d the
optimal screening coverage, e the optimal screening interval and f the optimal number of active zero-detections required to stop screening. The
demography and disease endemicity assumptions are as follows: a population of population 1,000 where the disease is endemic (‘1000 (E)’), a
village of population 1000 where only one person is initially infected (single infection, or ‘1000 (S)’), a village of population 250 where disease is
endemic (‘250 (E)’), and a village of population 1000 where disease is endemic and there exists a small probability of infectious importations (‘1000
(I)’). We fix zr = 1 for all simulations

are valued more highly and more frequent screening
averts more DALYs (Fig. 3b). We also show that for any
value of pt , the screening interval must be two years or
shorter, typically approximately annually. For most WTP
values, a single active zero-detection is enough to justify
cessation of active screening, but we note that if the fun-
der is willing to pay more, there is a benefit in repeated
active zero-detection campaigns before cessation in order
to ensure no resurgence of transmission (Fig. 3c). To con-
sider the full range of pt values a heatmap of the change
in cost with respect to both pt and WTP is given in
Additional file 1: Figure S8.
Additionally, we have considered three other scenar-

ios: a smaller village population NH = 250 at endemic
equilibrium; a disease-free population starting with a sin-
gle infection rather than endemic equilibrium, therefore
mimicking a local post-elimination reintroduction of the
infection; and a population with a small chance of an

imported infection (Fig. 3d–f). For scenarios with the
population size NH = 1000, the results are qualitatively
similar: lower active screening coverage is optimal when
there are fewer infections (due to the single reintroduc-
tion). For a smaller population size NH = 250, it is more
effective to have a shorter screening interval and more
campaigns that yield active zero-detections to ensure local
elimination, since the cost of active screening is smaller
when there are fewer people to screen. When there is a
small rate of importation of infection, the higher prob-
ability of sustaining local infection means that a higher
number of active zero-detections za are optimal for any
given WTP, and therefore active screening must continue
for a longer period of time.

Limiting analysis to practical strategies
According to other literature, a high coverage in active
screening with a minimum number of visits is desirable
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[78], which agrees with our results (Fig. 3). However,
unlike the screening interval and the number of active
zero-detections before cessation, which can be designated
by district managers, it is not always possible to achieve a
desired screening coverage by either decree or investment
because screening coverage depends on the availability
and consent of the population [32]. In fact, attendance
at active screening is often low [79]; for instance, in
Kwamouth during 2000–2016, a median screening cov-
erage of 55% was achieved for all village-level active
screenings taken from the WHO HAT Atlas [40, 41] (see
Additional file 1: Figure S2).
Therefore, since a high screening coverage cannot be

guaranteed, we optimise active screening when we have
imposed a maximum on the screening coverage consis-
tent with historic (obtainable) coverage in DRC. A higher
maximum level of screening coverage allows for a large
screening interval and a small number of zero-detections
before cessation of active screening. For the very low min-
imum screening coverage of 5%, the optimum is screening
four times a year t = 0.25 and five zero-detections to
stop (za = 5), whilst for a high coverage, we see the
expected result of t ≈ 1 year and za = 1 (Fig. 4). For the
median screening coverage in Kwamouth of 55%, the opti-
mal strategy is an active screening every fourmonths, with
two active zero-detection required for cessation. A lower
screening coverage can be compensated for by an increase
in screening frequency thereby reducing the screening
interval t.

Cost-effectiveness of realistic strategies
Whilst we have determined which strategy, on average,
maximises NMB for achievable levels of screening
coverage, we now consider the cost-effectiveness of select
strategies, restricting the number of strategies under
consideration to a smaller number of options. For this
process, we have selected seven options: doing no active
screening and six realistic proposal schemes for active
screening including biennial and annual screening with
different cessation criteria. These active screening strate-
gies are shown in Table 3. We assume zr = 1, pt =
27% and NH = 1, 000, and we initialise simulations with
conditions consistent with endemic equilibrium.
For our comparator strategy (passive surveillance only)

the total cost of implementation is the cost of testing and
treating self-presenting individuals infected with gHAT.
As previously stated, we do not include the fixed costs of
continually operating a passive surveillance network, as
we assume that implementing a strategy does not change
this cost. Thus, Table 3 shows the average cost of only
treating self-presenting patients is $25,754 with 2488.8
DALYs. Since we are considering this our baseline strat-
egy, zero DALYs are averted from this process.
By employing active screening the total costs increase

to the benefit of health outcomes; annual screening
costs more than biennial screening, but a correspon-
dingly larger number of DALYs are averted under strate-
gies that use annual screening. On the other hand,
increasing the number of active zero-detections increases

Fig. 4 Optimal strategy given a maximum screening coverage. Optimal strategy given a maximum screening coverage informed by historic
averages in the DRC. Results are shown for a WTPc = 0.2, 0.5, 3. zr = 1, pt = 27%, NH = 1, 000 are fixed and the optimum t and za is found
simultaneously. a Optimal screening interval t. b Optimal number of zero-detections to stop screening za
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Table 3 Active screening strategies considered in the probability of cost-effectiveness calculations

No. Strategy Screening
coverage,
c (%)

Screening
interval,
t (years)

Active
zero-
detections,
za

Total cost ($) Total DALYs ACER
($/DALY)

ICER
($/DALY)

1 Passive surveillance
only1

0 N/A N/A 25754
[12267, 40807]

2488.8
[1207.8, 3912.6]

Minimum
cost

Minimum
cost

2 Biennial screening with
one zero for cessation

55 2 1 42517
[23546, 62968]

1338.9
[437.8,1755.7]

14.6 14.62

3 Biennial screening with
two zeros for cessation

55 2 2 43066
[24432, 63133]

1339.4
[436.3,1755.5]

15.1 Dominated

4 Biennial screening with
three zeros for cessation

55 2 3 43501
[25092, 63266]

1340.1
[434.8,1756.5]

15.4 Dominated

5 Annual screening with
one zero for cessation

55 1 1 48885
[26628, 72263]

1027.9
[570.3, 2262.7]

15.8 20.43

6 Annual screening with
two zeros for cessation

55 1 2 49571
[27896, 72428]

1027.7
[570.6, 2264.3]

16.3 2501.44

7 Annual screening with
three zeros for cessation

55 1 3 50163
[28670, 72806]

1027.4
[572.9, 2261.9]

16.7 2772.35

1The comparator strategy. 2Relative to Strategy 1. 3Relative to Strategy 2. 4Relative to Strategy 5. 5Relative to Strategy 6.
We show the mean total cost (to nearest dollar) and the total number of DALYs (to the nearest 0.1 DALYs) for each strategy with the 95% prediction intervals across all
stochastic realisations. The ACER is the change in cost over the change in DALYs averted as compared to the baseline strategy, whilst the ICER is compared to the next best
strategy (given in the table footnotes). Costs are denominated in 2018 US dollars

costs but yields few additional DALYs under a regiment
of annual screening and even fewer DALYs under biennial
screening. Given the 95% prediction intervals for the total
DALYs averted for varying just the active zero-detections
greatly overlap, there is little basis on which to choose
between these strategies other than lowering costs, but the
screening interval is much more significant in terms of
health benefits conferred (Table 3).
We calculate the average cost-effectiveness ratio

(ACER) as the ratio of the change in cost to change in
DALYs averted relative to the comparator strategy, whilst
the incremental average cost-effectiveness ratio (ICER) is
the ratio of the change in cost to change in DALYs averted
relative to the next best option (see Table 3). The ICER is
the conventional metric for cost-effectiveness: a strategy
is cost-effective compared to the next best strategy if
ICER < WTP. Active screening at 55% coverage is cost-
effective at extremely lowWTP values ($14–17 per DALY
averted), and the costs-per-DALY of biennial and annual
screening strategies are so similar as to suggest that there
is little loss in efficiency (few diminishing returns) in
undertaking more frequent (yearly) campaigns. Notably,
however, a higher WTP ($2501 per DALY) would be
needed to support the choice of strategies with higher
values of za (multiple active zero-detections), but such
strategies should not be implemented at the expense
of longer screening intervals. Strategies with higher
values of za are primarily payment for certainty that
transmission chains have been broken, rather purchas-
ing any substantial health burden averted (in terms
of DALYs).

Cost-effectiveness analysis in the presence of parameter
uncertainty
Not every village will experience gHAT infection as
depicted by the mean infection profile. Hence, we aim to
account for uncertainty and present the probability that
a strategy is cost-effective. Using the full range of possi-
bilities for the infection dynamics is particularly impor-
tant for gHAT infection in a village as we know there is
potential for large differences between seemingly identical
villages, due to the focal nature of the infection [8]. There-
fore, we have simulated the infection dynamics of each
strategy one million times to compare how the costs and
number of DALYs averted can vary.
When there is no active screening, the variations in the

cost and DALYs incurred arises from uncertainty in the
transmission model (since cost parameters are held con-
stant). By the same token, costs and DALYs are positively
correlated because both arise from transmission, passive
detection and treatment. The more infections there are
in the village, the more treatments will be performed,
increasing costs and incurring DALYs. Inversely, when
there are few infections, DALYs and costs are lower.More-
over, the correlation between DALYs and costs is not
perfect, there is large variation in both measures (Fig. 5a).
There is a similar pattern when active screening exists,

but the range of introduced costs and the number of
occurring treatments increases, expanding the variance in
outcomes and weakening the correlation between costs
and DALYs. However, reducing the screening interval
both increases the costs and reduces the number of
DALYs incurred, all other things held equal. Results for
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Fig. 5 The cost-effectiveness of active screening strategies. a Cost-effectiveness plane showing the total cost of a strategy and the associated total
number of DALYs. Mean values for each strategy are shown by the coloured crosses. b Cost-effectiveness acceptability curves (CEACs) for each
strategy are shown by lines, with the cost-effectiveness acceptability frontier (CEAF) shown by the numbered background colour, which
demonstrated the values for the ICER. WTP is shown in 2018 USD on the top and as theWTPc coefficient on the bottom, where the coefficient is the
multiplier of the GDP per capita of the DRC. See Table 3 for the full descriptions of the strategies

alternative numbers of zero-detections remain marginal
over all parameter values (Fig. 5a). There are significant
differences in the outcomes of strategies with different
screening intervals, but we reiterate that the differences
are robust to different numbers of active zero-detections
(Table 3 and Additional file 1: Figure S3).
We have calculated the probability a strategy is cost-

effective by taking the proportion of our one million
simulations for each strategy that has the largest NMB at
each specific value of WTP (Fig. 5b), thereby producing
cost-effectiveness acceptability curves (CEACs) [80]. The
strategy with no active screening has the highest proba-
bility of being cost-effective for low WTP; however, the
probability is approximately 50% for the lowest WTP (at
cost-neutral values), indicating that performing any active
screening might still be cost-effective. The strategy with
no active screening has negligible probability of being the
cost-effective (< 1%) for approximatelyWTPc > 0.23. For

the highestWTP values, strategy 7 (annual screening with
three zero-detections), has the highest probability, with
similar probabilities for the other strategies with annual
screening. Given the probability of being cost-effective for
high WTP is so similar for strategies 5, 6 and 7, it is diffi-
cult to make a recommendation about which is better, and
so the most cautious strategy s should likely be favoured,
given the minimal change in costs.
It is notable that for certain values of WTP, the strat-

egy with the highest probability of cost-effectiveness does
not always correspond with the preferred strategy accord-
ing to the ICER. These calculations are demonstrated
by the cost-effectiveness acceptability frontier (CEAF),
which is shown as the shaded and numbered background
(Fig. 5b). The CEAF is the optimal strategy according
to the maximum expected NMB (rather than the high-
est probability of the NMB). Discrepancies between the
highest mean NMB and the probability of the highest
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NMB occur because of asymmetric distributions in our
parameters, but it is the CEAF which is used to provide
strategy recommendations for a given WTP threshold for
risk-neutral decision-makers [81].
In the lower-prevalence health zone of Mosango (Addi-

tional file 1: Figure S3) we find similar results, with a rec-
ommendation for annual screening over biennial screen-
ing at moderate WTP values or no active screening at
lower WTP values.

Discussion
To achieve the goal of eliminating gHAT it is useful to
have robust models that can inform policy makers about
the potential of different intervention strategies [82]. As
such, we have followed the five principles of the Neglected
Tropical Diseases Modelling Consortium (see Additional
file 1: Table S7), which were proposed to improve the
quality of communication between modellers and stake-
holders [58]. Furthermore, the addition of economic
analysis will further develop the use of this work,
as to not only evaluate which strategies are able to
decrease in infection in the population, but which are
cost-effective.
We have presented a stochastic model for individual

villages that demonstrates how active screening should
be considered, by determining costs of implementing
the screening for different screening coverage levels c,
screening intervals t, and the number of zero-detections
observed to stop screening za and zr . Using WTPc =
0.5 we find on average that ideally screening would be
done approximately yearly with maximal screening cov-
erage and ceased when no infection is found in a single
screening (c = 90%, t = 0.67 years, za = 1) (Fig. 3).
Whilst the optimum for the screening interval is found to
be 0.67 years, if there is a higher proportion of infection
eventually treated in the population than the assumed
pt = 27%, the optimal interval is larger (1.25 years for
pt = 100%). Practically these intervalsmight be difficult to
implement, so we believe that the current work supports
the implementation of yearly screening. These results
have been specifically calibrated to the high-endemicity
health zone of Kwamouth, DRC, however similar results
for the lower-prevalence health zone of Mosango, DRC
(Additional file 1: Figure S3) support that our recom-
mendations are generalisable to other regions with low-
to high-endemicity (further analysis would be required
to apply these results to very low-endemicity regions or
regions with historically very low screening coverage). It
is noted that such high screening coverage will rarely be
able to be achieved, and so multiple visits where no infec-
tion is observed may be necessary to optimise control,
although the model shows no significant differences in
cost-effectiveness. This is in line with WHO guidelines
of annual active screenings until there have been three

consecutive years of no new cases, followed by a fur-
ther screening with no cases three years after cessation of
activities [5].
In particular, we note that whilst we assumed that reac-

tive screening should immediately resume upon identi-
fication of an infection through passive surveillance, the
time interval for reactive screening to begin has little
effect on the results (see Additional file 1: Figure S6).
Therefore, we conclude that practical concerns about the
feasibility of reactive screening do not impact our conclu-
sions, as long as reactive surveillance is deployed within
two years of finding an new case through passive surveil-
lance.
In fact, the choice of a low za has a high probability of

triggering reactive screening (>70%), and therefore, we
recommend that logistics for reactive screening are put in
place (see Additional file 1: Figure S5). The time-horizon
of 30 years is sufficient in the village context to capture the
dynamics; when we expanded the horizon to 100 years,
we found that roughly 99.1% of costs and 99.8% of DALYs
are attributable to the first 30 years (see Additional file 1:
Figure S7).
As new treatments and active screening modes are

introduced, the costs of the model will change, however,
the biggest effect is that of the number of DALYs averted,
assuming the WTP threshold is set to a reasonable level.
Details of the variation in NMB for different screen-
ing diagnostics and medical treatments can be found in
Additional file 1: Figure S9.
We also note that from the perspective of a single village

(and from the perspective of a risk-neutral payer), we do
not put any weight on local elimination beyond that cap-
tured by expected DALYs averted, favouring an optimal
screening strategy that terminates the programme after a
single active zero-detection (za = 1), rather than repeated
zero-detections to ensure elimination. On the other hand,
when it is assumed that a village is susceptible to importa-
tions of infection, we find that more active zero-detections
are required to maximise the NMB (Fig. 3f ). Other work
has shown that at least three zero-detections for villages
of this size (NH = 1000) [26] to ensure elimination, but it
is unclear how much monetary value we should attribute
to meeting EOT targets.
Our finding that a single zero-detection is optimal in

Fig. 3 is particularly notable when the screening coverage c
is at the maximum (90%). In this case, there is higher con-
fidence that local gHAT elimination has been achieved,
as almost all the population is screened and there are no
cases left to be detected, and even if infection temporar-
ily persists after this, there is a large probability it will
die out due to stochastic fade out [26]. However, a regu-
lar 90% coverage is probably unfeasible, and more realistic
screening coverage will require more zero-detections to
terminate active screening (Fig. 4).
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We note that there may be also be additional costs in
restarting active screening as reactive screening, in par-
ticular if regional cessation results in disbanded trained
mobile teams. We have not accounted for this in our
model, but it may lend support to a higher number
of active zero-detections, which lower the probability
of reactive screening once routine active surveillance
has ceased (see Additional file 1: Figure S5). We can-
not make a recommendation for the number of reactive
zero-detections as the impact is negligible on the cost-
effectiveness (even less so than the active zero-detections)
and the effect is completely outweighed by the stochastic-
ity of the infection dynamics (see Additional file 1: Figure
S6).
Whilst many other diseases have established procedures

for active case finding and evaluated cost-effectiveness
(i.e. tuberculosis) few have done it for elimination and no
studies have evaluated active screening properties with
this level of detail. Bessell et al. [11] found that RDTs
can be cost-effective; Sutherland et al. [54] took active
screening programme properties for granted and instead
focused on the combination of active screening, passive
surveillance, and vector control. Therefore, this is the first
cost-effectiveness paper that examines in detail the rela-
tive efficiency of active screening strategies. Furthermore,
we have provided the tools for the reader to adapt the
analysis to their specific chosen costs (see accompanying
app).
Unsurprisingly, we find that a big factor in choosing a

strategy to implement is how much the programme fun-
der, ministry of health or external donor is willing to
pay to avert an additional DALY beyond other accept-
able configurations of the me. WTP is not a metric about
the total cost of the me, it is a metric of comparative
efficiency, considering incremental costs and incremental
effects between two or more strategies. To calculate what
WTP gHAT programmes were acting on in the past, one
would have to know what alternative strategies they were
considering, which is beyond the scope of our current
work. In addition, contributions to gHAT programmes are
complicated, since much of the activity has historically
been funded by donors; indeed, without external funding
there would be substantial harm to the programme [83].
Therefore, we present our results across a range of WTP
values. We have used a WTP value of 0.5 of the GDP per
capita of the DRC (WTPc = 0.5), which is commonly used
in the literature [72, 84], but note there may be a higher
WTP to achieve the additional aim of gHAT elimination.
Future research is warranted to evaluate the spe-

cific characteristics of each village, how villages and
health zones (or districts) share costs and the impact
it makes on relative efficiency. Moreover, the risk of
importation, the impact of potential sero-negative skin-
infected cases, and the risk of animal reservoirs would

have to be further explored in in-depth epidemiological
modelling.

Conclusions
Using a dynamic cost-effectiveness framework we have
performed analysis to examine the optimal use of medi-
cal resources for strategies against gHAT as it approaches
the end-game. With a limited number of active screening
teams and resources for them to carry out their duties, it
is important to have guidelines that optimise their activ-
ities with the aim of driving towards elimination. We
considered a range of different active screening inter-
ventions, including changing the coverage, frequency and
cessation criterion of screening, on top of a baseline pas-
sive surveillance system. The results indicate that active
screening is effective in reducing case numbers and hence
the infection in the population, with approximately annual
screening representing good use of resources and being
cost-effective at very low WTP (> $20.4/DALY averted)
when realistic coverage of 55% was assumed. Biennial
screening at the same coverage each visit would avert
fewer DALYs at a slightly lower cost and was only cost-
effective for a narrow range of WTP values ($14.6–20.4).
The calculated costs and DALYs averted were very simi-
lar for all the cessation criteria considered here (one, two
or three years of zero cases before stopping active screen-
ing), however the additional information gained about
progress towards elimination of transmission, leads us to
suggest cessation after three years of zeros is appropriate.
We recommend that active screening should be carried
out annually with cessation after three years of detecting
no cases for a moderate-to high-endemicity health zone in
the DRC—in line with current WHO guidance.
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