22 research outputs found
NR1H4 (nuclear receptor subfamily 1, group H, member 4)
Review on NR1H4, with data on DNA/RNA, on the protein encoded and where the gene is implicated
Impact of Liver Inflammation on Bile Acid Side Chain Shortening and Amidation
Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4? (HNF4?) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7?-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4? levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile
Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis
Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strateg
Prognostic and Mechanistic Potential of Progesterone Sulfates in Intrahepatic Cholestasis of Pregnancy and Pruritus Gravidarum
A challenge in obstetrics is to distinguish pathological symptoms from those associated with normal changes of pregnancy, typified by the need to differentiate whether gestational pruritus of the skin is an early symptom of intrahepatic cholestasis of pregnancy (ICP) or due to benign pruritus gravidarum. ICP is characterized by raised serum bile acids and complicated by spontaneous preterm labor and stillbirth. A biomarker for ICP would be invaluable for early diagnosis and treatment and to enable its differentiation from other maternal diseases. Three progesterone sulfate compounds, whose concentrations have not previously been studied, were newly synthesized and assayed in the serum of three groups of ICP patients and found to be significantly higher in ICP at 9-15 weeks of gestation and prior to symptom onset (group 1 cases/samples: ICP n = 35/80, uncomplicated pregnancy = 29/100), demonstrating that all three progesterone sulfates are prognostic for ICP. Concentrations of progesterone sulfates were associated with itch severity and, in combination with autotaxin, distinguished pregnant women with itch that would subsequently develop ICP from pruritus gravidarum (group 2: ICP n = 41, pruritus gravidarum n = 14). In a third group of first-trimester samples all progesterone sulfates were significantly elevated in serum from low-risk asymptomatic women who subsequently developed ICP (ICP/uncomplicated pregnancy n = 54/51). Finally, we show mechanistically that progesterone sulfates mediate itch by evoking a Tgr5-dependent scratch response in mice. Conclusion: Our discovery that sulfated progesterone metabolites are a prognostic indicator for ICP will help predict onset of ICP and distinguish it from benign pruritus gravidarum, enabling targeted obstetric care to a high-risk population. Delineation of a progesterone sulfate-TGR5 pruritus axis identifies a therapeutic target for itch management in ICP
Fast Retinal Vessel Detection and Measurement Using Wavelets and Edge Location Refinement
The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available
Chemosensitizing properties of ß-caryophyllene oxide in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is an aggressive malignant tumor, often associated with multidrug resistance, which limits the efficacy of conventional anticancer drugs [1]. In the last years, the possibility to affect tumour growth with multi-target therapies acting in synergy or on different targets has been highlighted. This approach enables to increase low-dose anticancer drug efficacy and limit systemic toxicity. In present study, the ability of the natural sesquiterpene ß-caryophyllene oxide (CRYO) to enhance the response of HCC to the
first-line drug sorafenib (SOR) has been investigated.
The cytotoxicity of CRYO alone or in combination with SOR was evaluated by MTT assay in different HCC cells [2,3]. Moreover, its ability to modulate both activity and expression of Pgp, MRP1/2 and STAT3 was measured2,3. At last, the sorafenib chemosensitization by the natural sesquiterpene was assessed in a liver xenograft model [2].
Despite a low cytotoxicity in our cellular models, CRYO was able to synergistically increase HCC cell sensitivity to SOR. CRYO also inhibited Pgp and MRP1/2 activity and reduced the SOR-induced expression of Pgp, MRP1/2 and STAT3 (Ser 727). In vivo experiments highlighted the combination of CRYO and SOR was able to inhibit the tumor growth of about 58%, despite a null effect of the anticancer
drug alone.
In conclusion, our results highlight the possible role of CRYO as a chemosensitizing agent in combination with SOR and support its potential usefulness to reverse the sorafenib-induced multidrug resistance by targeting Pgp and MRP1/2 transporters, and/or the STAT3 pathway.
References
[1] Fouquet et al., Oncotarget 2016, 7(22):32493.
[2] Di Giacomo et al., Arch Toxicol;93(3):623-634.
[3] Di Sotto et al., Int J Mol Sci. 2020;21(2):63